JOURNAL OF NANO- AND ELECTRONIC PHYSICS
Vol. 11 No 3, 03026(4pp) (2019)

ARYPHAJI HAHO- TA EJIEKTPOHHOI ®I3UKH
Tom 11 Ne 3, 03026(4cc) (2019)

Three-dimensional Extremely Short Optical Pulses in Graphene with Inhomogeneities

N.N. Konobeeva®, M.B. Belonenko

Volgograd State University, 400062 Volgograd, Russia
(Received 20 March 2019; revised manuscript received 20 June 2019; published online 25 June 2019)

We consider the Maxwell's equations for an electromagnetic field, which propagates in impurity
graphene with taking into account the spatial inhomogeneity. By heterogeneity, we mean the presence of a
region of increased electron density. A particularly important case is inhomogeneity due to areas of
increased concentration of conduction electrons due to the presence of impurities. According to this fact, it
seems appropriate to investigate the impact of such inhomogeneity on the pulse propagation in impurity
graphene. Due to the diversity of impurities and the nature of their interaction with the graphene
subsystem, different approaches are possible in such problems. One of these approaches is to consider the
scattering of ballistic electrons in graphene by impurities. Impurities are considered responsible for the
occurrence of a disorder and a weak localization. In this case, they go beyond the limits of the self-
consistent Born's approximation and the renormalization-group approach is applied. In this paper, the
electronic spectrum for the graphene subsystem is taken from the approach of the renormalization group,
widely used in quantum field theory, when the transition from areas with lower energy to areas with more
energy is caused by a change in the scale of consideration of the system. The main idea is that the Fermi
velocity is renormalized, which begins to depend on the electron energy in a logarithmic way. Within the
framework of the semi-classical approach, an effective equation for the vector-potential of the
electromagnetic field is obtained and solved numerically. It is observed that three-dimensional extremely
short optical pulses propagate unstablely with disturbed pulse shape. In this case, the introduction of a
spatial inhomogeneity of the charge density into the medium makes it possible to reduce the pulse loss in
the amplitude. The influence of the spatial parameters of the inhomogeneity on the propagation pattern of
an extremely short optical pulse is also studied. It is shown that the depth and the width of the spatial

inhomogeneity of the charge density do not have a significant impact on the pulse shape.
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1. INTORDUCTION

Recently, the propagation of extremely short optical
pulses in various nano-objects has attracted the
attention of researchers [1-5]. This is due primarily to
the prospects for the use of such pulses for solving
various kinds of problems of modern nanoelectronics.
An extremely short pulse is called a pulse consisting of
several oscillations of an electric field with a duration
of several femtoseconds in the optical range. In this
work, the semi-classical approach is used, when light is
viewed from the point of view of a classical object, and
graphene electrons are quantum. This approach is
widely known and well-tested [6]. Note that the
authors performed the complete classical solution of
the problem, where all subsystems are considered
classically. In the semi-classical approach, the
derivation of the basic equation (and it coincides with
the equation in the classical approach) is
methodologically simpler.

In this paper, we study the features of three-
dimensional extremely short pulse propagation in
graphene taking into account an inhomogeneity. Here
we mean the region of increased electron density. Such
inhomogeneity can lead to the appearance of
interesting and unexpected physical effects that are of
practical importance. We noted earlier that effects with
a completely different type of inhomogeneity were
considered, namely, with varying electric field along
the CNTs (carbon nanotubes) axis. In particular, the
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work [7] is associated with two-dimensional modeling
of the propagation of ultrashort electromagnetic pulses
in an array of CNTs with a varying electric field along
the axis. In addition, recently, the authors carried out a
comprehensive study of the latter task in the 3D case,
as a result of which the possibility of bipolar
propagation of electromagnetic breathers through the
array of CNTs was demonstrated, taking into account
the varying electric field [8]. It was found that in this
specific case, an electromagnetic pulse causes a
significant redistribution of the electron density in the
sample, both for 2D and 3D systems. In addition to the
varying field leading to the redistribution of electrons,
there are other natural inhomogeneities observed in
experimental samples. Especially important problem
occurs in the situation when inhomogeneities are
caused by regions of increased concentration of
conduction electrons due to the presence of impurities.
In this regard, it seems appropriate to study the effect
of electron concentration inhomogeneity on the
propagation characteristics of extremely short
electromagnetic pulses in graphene. The question of
establishing the region of spatial inhomogeneity of
carrier concentration in the form of an extremely short
pulse is of most interest. The relevance of this issue is
crucial for modern applications of optoelectronics. In
this paper, we are interested only in the shape of the
optical pulse and show that it changes. This can easily
be measured wusing pre-existing autocorrelation
techniques.
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2. STATEMENT OF THE PROBLEM AND
BASIC EQUATIONS

Let’s consider the propagation of extremely short ele-
ctromagnetic pulses in graphene with impurities, with
the electric field of the pulse directed along the x axis.

The electron spectrum of graphene obtained in the
renormalization group approach is given according to
[9] as:

&(p,,p,) =v(p,, p,)\P; + P +m’
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Here, px, py are the electron’s momentum components,
m is the gap in the spectrum (0.1 eV) [9], yo is the
overlap integral (2.7 eV), €o is the energy at which the
velocity is measured (i.e., we use a system of units in
which the Fermi velocity for electrons near the Fermi
level is taken as unity). Here it is necessary to make
the following comments. First, considered graphene has
the gap in the energy spectrum, since the introduction
of impurities, i.e. disturbances, leads to this effect.
Second, the mode of scattering of graphene electrons is
considered here according to [9] and in the
approximations made in this work. The main difference
from the previous considerations is the dependence of
the Fermi velocity on the electron energy, to which the
influence of impurities reduces. The fundamental point
is the fact that the electromagnetic field is considered
classically based on Maxwell's equations. This is due to
the fact that the intensities of extremely short pulses
are quite large (up to 107 V/em) and, therefore, a pulse
contains many photons, so that quantum effects
associated with fluctuations in the number of photons
can be neglected [10].

According to the quantum mechanics, in the pre-
sence of an external electric field E, which is directed
along the x-axis and considered as E =-—0A/cdt, we
should change momentum on generalized momentum
p — p-eAlc (e is the electron charge).

Let's write the wave equation for 3D case in the
cylindrical coordinate system:
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Further, we assume that 6/0p — 0 due to the
cylindrical symmetry.

Note also that the estimates made in [8] allow us to
conclude that the effect of charge accumulation for
femtosecond pulses can be neglected. This is confirmed
by numerical experiments for the case of carbon
nanotubes and a pulse of tens of femtoseconds in
duration.

The standard expression for the current density can
be written as:
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where parentheses mean averaging with a non-
equilibrium density matrix. Operators a and a+ relate
only to the electronic subsystem, which does not
contradict the presence of a sufficiently large number of
photons in the pulse (there should really be about 50 in
order for our approximation to work, and this will be
linear, not a nonlinear mode like ours). In the expression
for current density, we can use the number of particles
that follows from the Fermi-Dirac distribution. Further,
we will consider the case of low temperatures, when only
a small region in the momentum space near the Fermi
level contributes to the sum (integral). So, we write the
formula (3) in the form:

j=e[dpdpp, [p— ¢ A] @
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The nonlinearity in equation (1) is a nonlinearity
with saturation. In the case of taking into account the
spatial inhomogeneity of the charge density, the
equation for the propagation of an extremely short
pulse can be written as:
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Here, f(z) is the function that determines the spatial
inhomogeneity of the charge density, a and § are the
depth and width of the spatial inhomogeneity,
respectively, z* is the position of the displacement of the
inhomogeneity. The term with the derivative with
respect to the angle ¢ can be neglected in the future due
to symmetry. Note that the reduced form of nonlinearity
is characteristic of graphene. For a different kind of
nonlinearity, there will be different results.

3. RESULTS OF NUMERICAL SIMULATION

The equation (5) is solved numerically [11]. The
initial condition has the form:

o] 580 o )

z r

, (6)
dA(z,r,0) =2v.Q z —220 exp{—(z_fo)] exp{—rz]
V. 7.

dt

z z r

where r is the radius, @ is the pulse amplitude
(2.10V/m), , » define the pulse width (400 nm,
450 nm), v, is the initial pulse velocity in the z-
direction (95 % from the light velocity), zo is the initial
pulse center shift (4 102 nm).

The pulse evolution is presented in Fig. 1.

This behavior of the pulse is associated with the
type of nonlinearity in (5). There is a decrease in the
amplitude of the pulse, as well as its spreading over
time. That is, we can conclude about the instability of
the pulses, which leads to a violation of their structure.

The dynamics of a 3D extremely short pulse with
allowance for inhomogeneity is presented in Fig. 2.
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As follows from Fig. 2, the introduction of spatial in-
homogeneity of the charge density does not prevent the
pulse from spreading along the transverse coordinate,
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but counteracts a significant decrease in the amplitude
of the pulse.
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Fig. 1 — The electric field strength of 3D electromagnetic pulse (one unit corresponds to 106 V/m) at different time points: (a) the
initial pulse; (b) £ =0.5:10-13 s; (c) ¢ = 5.0-10-13 5. The unit along the r-axis corresponds to 30 nm, along the z-axis — 20 nm
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Fig. 2 — The electric field strength of 3D electromagnetic pulse (one unit corresponds to 10¢ V/m) at different time points, taking
into account the heterogeneity (¢ = 0.8 r.u., 6= 5 r.u.): (a) the initial pulse; (b) ¢ =0.5-10-13 s; (c) £ = 5.0-10-13 5. The unit along the

r-axis corresponds to 30 nm, along the z-axis — 20 nm
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Fig. 3 — Comparison of the electric field strengths of a 3D
electromagnetic pulse (one unit corresponds to 106 V/m) in the
case of taking into account inhomogeneity (b) and without it
(at t=5.010-13g): (a) without inhomogeneity; (b) §=5r.u.
The unit along the r-axis corresponds to 30 nm, along the z-
axis — 20 nm

Comparison of cases with and without spatial inho-
mogeneity is shown in Fig. 3.
According to the calculation results, approximately

the same spreading of the pulse occurs in the case of
homogeneity and without it. However, in the case of
introducing spatial inhomogeneity of the charge
density into the medium, the loss of pulse in the
amplitude is minimized compared with the case of a
homogeneous medium. Note also that the width of the
introduced inhomogeneity does not have a significant
effect on the nature of the propagation of an extremely
short pulse in graphene. Numerical calculations have
shown that the depth of spatial inhomogeneity also has
a weak effect on the pulse shape.

4. CONCLUSIONS

The main results of this work are the following:

1. 3D extremely short optical pulses propagate
unstably with violation of the pulse shape.

2. The introduction of the spatial inhomogeneity of
the charge density into the medium makes it possible
to reduce the loss of the pulse amplitude.

3. The depth of the spatial inhomogeneity of the
charge density does not have a noticeable effect on the
pulse shape.

4. All the predictions made and the consequences
arising from them (technical applications can be used in
the control and management of the form of extremely
short pulses) are based on a semi-classical approach.
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TpuBumipHi Hag3BHMYANHO KOPOTKi onTHYHI iMITyJibcHu B rpad)eHi 3 HEOQHOPITHOCTAMU

N.N. Konobeeva, M.B. Belonenko
Volgograd State University, 400062 Volgograd, Russia

Poarsinarorses piBusguusg MakcBesia 1UIst eJIeKTPOMATHITHOTO IOJISL, 10 ITOUIUPIOETHCS Y JOMIIIKOBOMY
rpadperi 3 ypaxyBaHHSAM IIPOCTOPOBOI HeomHOpimHOCcTi. [li7] reTeporeHHICTIO MAaeThCA HA yBasl HASABHICTH
obJsiacTi MiABUINEHOI eJeKTPOHHOI IiyibHOocTi. OCOOJMBO BaKJIMBUM BHUIIAAKOM € HEOJHOPIIHICTH, SKa
00yMOBJIeHA JUISHKAME IIIBHUINEHOI KOHIIEHTPAITI] €JIEKTPOHIB IIPOBIIHOCTI BHACIIIOK HASBHOCTI JIOMIIITOK.
3rigHo 3 UM (GaxToM MpeCcTaBIIAEThC JOILIBHUM JOC/IIATH BILUIME TAKOI HEOJHOPITHOCTI HA MTONIUPEHHS
iMIysbcy B gomimkoBoMy rpadeHl. BHacminmox pisHOMaHITHOCTI JOMIIIOK 1 Xapakrepy IXx B3aemomii 3
migcucreMon0 rpadgeHa y TakMX 3aJadax MOKJMBI pisHI miaxomu. OamH 13 HUX IOJIATAE Y PO3TIIAIL
PO3cisiHHS OaJICTHYHHUX eJIEKTPOHIB y rpadeni momirmmkamu. Jlomimkn BBasKaoThCS BIAIOBIIATBHUME 34
BUHUKHEHHsI PO3YHOPSIKYBAHHS 1 cjabkoi Jiorasisaiii. Y I1hOMYy BHIAJKY BOHM BHUXOISTH 34 MeEXKl
CaMOy3TOPKeHOr0 HabIMsKeHHsaA BopHA 1 3aCTOCOBYEThCA IMIAXIT [0 MEepeHOPMyBaHHS. Y OaHIA poOoTi
€JIEKTPOHHUM CIEeKTp s mmijgcucreMu TrpadeHa B3ATO 3 IMIAX0Ay TIPYHU IEePEeHOPMYBAHHS, IIMUPOKO
BHKOPHCTOBYBAHOI'O Yy KBAHTOBIN TeOpii II0JIA, KOJIH MepeXiJ Bif MJIAHOK 3 MEHIIOK €Heprielo I0 MIJISHOK 3
01JIBIII0I0 eHeprielo 00yMOBJIEHMM 3MiHOI0 MaciTaly crcremu. OCHOBHA imes IMoJIATae y TOMY, IO ITBAIKICTD
DepMi ITEPEHOPMOBYETHCA 1 IOYMHAE 3AJIEMKATH BIl €HEpril eJIeKTPOHIB JjorapudgMidao. Y paMrax
HAIBKJIACHYHOTO HXO0AY OTPUMAHO e)eKTUBHE PIBHAHHS JIJIsSI BEKTOPHOTO IIOTEHIIAJy eJIeKTPOMATHITHOTO
OJIsi, sIKe PO3B’s3aHEe YHCeJIbHO. BusiBieHO, IM0 TPUBUMIPHI HAJA3BUYAMHO KOPOTKI OITHYHI IMILyJIBCH
POSIIOBCIOPKYIOTHCS 13 TTOPYIIIeHOw (OpMOI0 IMITyJibey. Ilpy 1bOMy BBEIEHHSI ITPOCTOPOBOI HEOHOPITHOCTI
IIJIBHOCTI 3apsily y CepeIoBHUINEe J03BOJISIE 3MEHITUTH BTPATH IMITyJibcy B amiunTymi. JlocmimxeHo BIine
IPOCTOPOBUX TIMAPAMETPIB HEOMHOPITHOCTI HA KAPTUHY POSMOBCI/IKEHHS HAJA3BUYAWHO KOPOTKOIO
OnTHUYHOTO IMITyJThey. Ilokasano, o raubuHa 1 IMMPUHA ITPOCTOPOBOI HEOJHOPITHOCTI MILILHOCTI 3apsiy He
MAaTh CyTTEBOTO BILIMBY Ha (DOPMY IMIIYJILCY.

Kmouori cirosa: Yabrpakoporkuii imirysibe, ['paden, Heomgmopinaicrs, [ligbHICTS 3apsTy.
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