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High intrinsic carrier mobility, small band gap for germanium and possible monolithic integration with
Si based devices have prompted renewed interest in germanium to continue the historic progress of CMOS
devices. To obtain efficient germanium-based electronic devices, it is necessary to understand the dopant
diffusion in this semiconductor. Up to now, n-type dopant diffusion in germanium at most is modeled by
diffusivity proportional to the square of the free electron density (n). This study determines the tempera-
ture dependence of the quadratic proportionality factor of the P diffusivity with the free electron density,
through simulations of experimental P diffusion profiles in the temperature range from 650 to 870 °C. Ac-
curate simulation is achieved within that temperature range, taking into account the quadratic propor-
tionality between the phosphorus diffusivity and the free electron density.
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1. INTRODUCTION

As dimensional scaling of traditional silicon CMOS
devices approaches its fundamental limits, diverse re-
search is being done to introduce novel structures and
materials to accomplish this technological progress and
to continue the historical progress in information pro-
cessing and transmission [1-5]. In this context, recently
germanium has emerged as a promising candidate in
order to improve devices (CMOS), because of its distinc-
tive physical characteristics such as high intrinsic carri-
er mobility, small band gap and possible monolithic
integration with Si based devices [5-11]. For optical
applications, germanium with smaller direct band gap
(0.8 €V) offers a higher optical absorption, correspond-
ing 1.3 to 1.55 um wavelength range. This makes ger-
manium a good candidate for ultimate use in photode-
tector devices within that wavelength range, used in
telecommunications [12, 13]. In addition, the smaller
direct band gap, the lower melting point for germanium.
This helps to fabricate electronic devices characterized
by a scaled operating voltage and lowest thermal cost;
this is consistent with the international technology
roadmap for semiconductors [5, 12] and compatible with
requirements of the thermal stability in integrating
metal gate electrodes and novel high-k dielectrics into
developed transistors [14-16]. Knowing the parameters
of n- and p-type dopants, diffusion in this semiconductor
is necessary to obtain efficient germanium-based elec-
tronic devices.

The enhanced diffusion is directly associated with
the characteristics of the point defects involved in the
diffusion mechanisms. In the case of n-type dopant
diffusion in Ge, the mass transport is mediated by va-
cancy mechanism [17-20]. Up to now, n-type dopant
diffusion in germanium at most is modeled by diffusivi-
ty proportional to the square of the free electron density
(n) [19-23]. The quadratic proportionality is a result of
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the difference charge between the substitutional dopant
donor and the singly negatively charged mobile donor-
vacancy pair [20, 22-24].

The aim of this work is devoted to the estimation of
the quadratic proportionality factor of phosphorus diffu-
sivity in germanium with the free electron density,
through simulations of experimental P diffusion profiles
in Ge, taken from reference [20], in the temperature
range from 650 to 870 °C.

2. MODEL USED

In accordance with previous reports [19-24], we
have taken into account the vacancy mechanism to
model the diffusion of phosphorus in germanium. We
considered that the diffusion occurs via doubly nega-
tively charged vacancies in the form of dopant-defect
pairs or simple exchange. This leads to quadratic pro-
portionality between the phosphorus diffusivity and the
free electron density, therefore the expression of the
diffusivity of phosphorus (D) in germanium takes the
following form:

D=an?, 1)

where « is the quadratic proportionality factor of P

diffusivity in germanium with the free electron density.
The density of free electron carriers (n) is calculated

from the mass action law, assuming charge neutrality:

n=4(C+C*+4n?), @

where C and n; represent respectively the local phos-
phorus concentration and the intrinsic carrier density.

The total flux </ of phosphorus in germanium, by in-
serting the arising term due to an internal electric
field, can be described as follows:
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The conservation of the diffused mass quantity is
expressed by the continuity equation:

oC oJ
N (4)
ot ox
From the equations (1)-(4), diffusion of phosphorus
in Ge can be described by the following diffusion equa-
tion:

oC_ o

ot ox [Deff@j ’

ox ®)

where x and ¢ represent respectively the spatial coordi-

nate and the time, Deff is the effective diffusion coeffi-

cient. It is expressed as follows:
DY = han?, (6)

where & is an enhancement factor arising due to an
internal electric field:

. clfcY
h—1+2ni[(2nij +1J

3. NUMERICAL SIMULATION
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3.1 Numerical Treatment of Diffusion Equation

Because Deff depends on the dopant concentration,
the equation (5) can be written as:

€] 2
oC_aDTAC et

ot Ox Ox Ox?
We use finite difference method to solve equation
(8), exactly, the implicit finite difference scheme. This
scheme is characterized by an accuracy of order
O(At, Ax2) and unconditionally stable. We divide the
space into k slices and we replace the partial deriva-
tives in the equation (8) by the following finite differ-

ence approximations:

1+68,  —6) 0
-5 1+6+6, 6] 0
0 6]  1+8{+56] -6}

0

3.2 Features of Our Program for Simulating
the Diffusion

To simulate the experimental profiles of the phospho-
rus diffusion in germanium at the indicated tempera-
tures and times in Table 1, we accomplished a program
by FORTRAN language where we relied on to solve the
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Here, Ax, At, i, j represent respectively the space step,
the time step, the space index and the time index.

From the equations (8)-(12), we get the relationship
expressing the concentration at time jA¢ and the con-
centration at time (j — 1)A¢:

Crt ==6/CL +(1+6/ +80,)Cl = 80,C, . (13)
where 57 =5, (Deff )j and &, = % .

For treatment of boundary conditions, we use no-
flux boundary conditions, and then we find:

Ci=C, (14)

Ci=Ci,. (15)
From (13)-(15), we get the tridiagonal matrix sys-

tems that bind the concentration at time jA¢ and the

concentration at time (j — 1)At in the form Bc = a, where

(ks C/
cit ci
(O C;
a=| ... |, C=| ..
c/! C/
i G
and
0
‘é;j 1+ (S‘ij + 5;‘];1 ‘é‘ijn 0
0 -6 1+5]

tridiagonal matrix systems that have been reached,
using the Thomas algorithm, which is based on LU de-
composition method.

Because the effective diffusion coefficient depends on
the dopant concentration, which is varied during the
diffusion, it has to be recalculated for every time step.
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We chose the values of a at diffusion temperature 7,
which bring the coincidence of simulated profiles and
experimental profiles. We have chosen the values of
intrinsic carrier density according to the reference [20].

The phosphorus concentration Co at surface of the
germanium sample is considered constant during the
diffusion Civ-1=Co (j=1, 2, ..., n;), where the initial
conditions are C0=0 (=2, 3, ..., k), k and n; represent
respectively the total number of space steps and total
number of time steps.

Table 1- Co at surface, time and a corresponding to diffusion
temperature T used for these simulations

Co (cm~3) t(s) T (°C) o (cm8s—1)
1.8 x 10! 36000 650 2.31 x 10-52
3.6 x 1018 125200 700 6.00 x 10-52
3.5 x 101® 16000 750 2.68 x 10-51
3.7 x 1018 1864000 800 1.35 x 10-50
1.3 x 101® 604800 820 2.17 x 10-50
1.5 x 101® 590400 845 3.02 x 10-50
2.3 x 1019 |252000 870 5.51 x 10-50

4. RESULTS AND DISCUSSION

Fig. 1 and Fig. 2 show the simulated profiles (solid
lines). We have obtained and compared them with the
experimental profiles of phosphorus diffusion in Ge at
the indicated temperatures and times.
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Fig. 1 — Simulated profiles (solid lines) and experimental profiles
(Ref. [20]) of phosphorus diffusion in Ge measured with SIMS
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Fig. 2 — Simulated profiles (solid lines) and experimental profiles
(Ref. [20]) of phosphorus diffusion in Ge measured with SRP
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The simulated profiles and the experimental profiles
concordance in Fig. 1 and Fig. 2 confirm that the phos-
phorus diffusivity is proportional to the square of the
free electron density.

Fig. 3 shows the change of the quadratic proportion-
ality factor a depending on the inverse of the tempera-
ture, given by our simulation data.
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Fig. 3 — a variation with the inverse of the temperature

The temperature dependence of the quadratic pro-
portionality factor is best reproduced by the following
expressions:

2.28(eV)

a=572.3x10"* exp| —
kgT

J cm®s™t,  (16)

where T is the temperature in kelvins, kg is the Boltz-
mann constant.

5. CONCLUSIONS

In this work, an accurate simulation of experimental
P diffusion profiles in germanium is achieved based on
the modeling of phosphorus diffusion by the vacancy
mechanism, taking into account the quadratic propor-
tionality between the phosphorus diffusivity and the free
electron density. This simulation allowed us to deter-
mine the relationship between the quadratic proportion-
ality factor and the temperature. The quadratic propor-
tionality factor of phosphorus diffusivity in germanium
with the electron density determined from our simula-
tions data in the temperature range from 650 to 870 °C
is best reproduced by Eq. (16).
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TemneparypHa 3ajI€:KHICTh KBaAPAaTUYHOIO Koedinienra npomopuiiinocti qudysii dpochopy
B repMaHii i3 BiIbHUMU €JIEKTPOHAMH
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Bucoxa BHYTpIITHS MOOLIBHICTE HOCIIB, HEBEJIMKA 3a00pOHEHAa 30HA I TePMAaHI0 Ta MOYKJINBA MOHOJITHA
iHTerpairisa 3 IPUCTPOSMHU Ha OCHOBI Si CIIOHYKAJIM BIIHOBUTH IHTEpeC J0 TePMAaHI0 Y IPOJOBKEHH] ICTOPUYIHO-
ro mporpecy mpuctpois CMOS. s oTpumaHus e(peKTUBHUX eJIeKTPOHHUX IPHUCTPOIB HA OCHOBI repMaHiio He-
00XITHO 3pO3yMITH AU(y3it0 JOMIIIKH y IIhOMY HAMBIPoBimHUKY. [0 1160r0 vacy, audyy3is TOMIIIOK 7-TUIY B
repMauii MoJIe/II0BaJIaCs, TOJIOBHIUM YMHOM, AUQY3i€i0, IPOHIOPIHAHOK KBAAPATy KOHIIEHTPAIlI]l BUIBHUX eJIeK-
TpoHiB (). Y H0CITiIKeHH] BUBYAETHCS TEMIIEPATYPHA 3AJIEKHICTh KBAIPATUUYHOTO KoediIlieHTa IPOIOPIIHHO-
cri mudyaii P Bim KOHIIEHTpAIlli BITBHUX €JIEKTPOHIB IIJISIXOM MOIEJIIOBAHHS €KCIIEPUMEHTAJIbHUX MPOdiIiB
nudyaii Py miamasoni Temmepatyp Bim 650 go 870 °C. Toune MoeOBAHHSA JOCATAETHCA Y IIHOMY TEMIIEPATYP-
HOMY [I1aIla30Hl 3 ypaxyBaHHAM KBAAPATUYIHOI IIPOIIOPIHHHOCTI Mixk qUQy3IHHOI PyXJIMBIcTIO aToMiB docdopy

Ta KOHIIEHTPAITIEI0 BUIbHUX €JIEKTPOHIB.

Knrouosi ciosa: ®ocdop, qudysia, KoediienT mpomopriiiaocti, lepmamniii.
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