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In this paper, an ultra compact photonic crystal (PhC) biosensor for detecting glucose concentration us-

ing resonant microcavity (RMC), sandwiched by two inline quasi-waveguides is investigated. The RMC is 

used as sensing region. It consisted of 77 core/shell (C/S) rod defects and 14 functionalized holes. The 

basic structure is formed by air holes arranged in hexagonal lattice in silicon (Si) background. The sensing 

mechanism of our biosensor is to detect the resonant wavelength shift, which is caused by the change of 

the refractive index (RI) of the shell layer and active holes filled with the analyte sample of glucose solu-

tion. The plane wave expansion (PWE) and finite difference time domain (FDTD) methods are chosen to 

analyze and simulate the performance of the suggested structure. The FDTD results reveal high sensitivi-

ty of 624.7904 nm/RIU with high linearity and quality factor. The presented sensor has a simple design 

and is easy to manufacture. In addition, the total size of the presented device is 92.65 m2 which is very 

small for nanotechnology based sensing. 
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1. INTRODUCTION 
 

Photonic crystal (PhC) biosensors have gained 

enormous interest of many researchers, due to their 

simplicity, high sensitivity and wide range of applica-

tions such as pressure [1, 2], temperature [3, 4], chemi-

cal gas [5], refractive index [6], biosensor to detect the 

glucose concentration in urine [7], cancer cell detection 

[8], virus [9], different blood constituents [10] and glu-

cose concentration [11-13], etc. PhCs offer a promising 

prospect for ultra compact photonic devices and inte-

grated circuits. They are used to reduce the compo-

nents dimension to nanoscale range with ultra-low 

optical loss, this leads to a confinement of light within 

the structure. These materials with a periodic modula-

tion in the dielectric constant, creates a frequency re-

gion where the light signal is not allowed to propagate 

inside the structure for both polarizations and all direc-

tions of the propagation. This forbidden frequency re-

gion is called photonic band gap (PBG), which makes 

PhC appropriate to control and manipulate the optical 

signal. By introducing different defects in PhC struc-

ture, allowed modes appear inside PBGs. This will give 

various applications such as, filters [14], logic gates 

[15] multiplexers and demultiplexers [16]. One of the 

most important components of PhC applications is 

optical sensor. In this context we have designed an 

optical PhC sensor to detect the glucose concentration. 

In this design PhC resonant microcavity is utilized as 

sensing region. The RMC are sandwiched by two inline 

waveguides. We have designed the proposed device by a 

hexagonal lattice of air holes in Si matrix. The plane 

wave expansion method is employed to calculate the 

diagram of dispersion and the sensing function is dis-

played using finite difference time domain. The design 

structure, sensing principle and the FDTD results are 

discussed in the following sections. 

 

2. GLUCOSE BIOSENSOR DESIGN 
 

In this paper, our goal is to design a new biosensor 

structure using two dimensional (2D) PhC to detect the 

glucose concentration with high sensitivity. For design-

ing the suggested device, we employed 2D hexagonal 

lattice of air holes in silicon (Si) background. The radii 

of the pores are r  0.341a, where a is the distance 

between the two adjacent air holes. The refractive in-

dexes of Si and air were considered as 3.4 and 1 respec-

tively. The Si is a good candidate for PhC applications. 

The number of holes in x and z directions is 22 and 22, 

respectively. The total size of the structure is 

92.65 m2, its dimension is very small which is suitable 

for use in integrated circuits. 

The PBG of the fundamental structure without any 

defects calculated using PWE is depicted in Fig. 1. The 

basic structure has PBG for TM mode which is indicat-

ed by red region. As shown in Fig. 1, the normalized 

frequency is observed from 0.21722 (a/) to 0.31778 

(a/), where  is the vacuum wavelength, which is suffi-

ciently wide for sensing region. 

Fig. 2 depicts the schematic structure of the de-

signed glucose biosensor. 

The suggested device consists of resonant microcav-

ity and two horizontal inline quasi-waveguides. The 

inline quasi-waveguides are formed by omitting several 

holes in the x direction. The RMC consists of 77 C/S 

rods and 14 functionalized holes. The C/S rod is made 

by Si rod covered by air shell layer. As illustrated in 

Fig. 2b, the parameters rc and rs denote the radii of the 

internal rod and the external shell-layer respectively. 
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Fig. 1 – Band structure of hexagonal PhC lattice of air holes 

in Si background for TM polarization 
 

 
 

Fig. 2 – The final sketch of the proposed PhC glucose biosen-

sor (a), the diagrammatic presentation of the regular core/shell 

rod (b) 
 

In the present work, we study the biosensor proper-

ty of our suggested device. The designed biosensor is 

used to detect the glucose concentration over a range 

from 0 g/L to 90 g/L. The sensing principle is based on 

the change of the refractive index (RI) of the shell layer 

and the functionalized holes when the glucose concen-

tration varies. In this study we have considered the 

inner and the outer radii of the C/S rods equal to 

0.205a and 0.415a respectively. As illustrated in 

Fig. 2a, the radii of the functionalized holes, which are 

shown in gray color, are the same as radii of the shell 

layer (rs). The RI variation of glucose concentration 

from 0 to 90 g/L is calculated by [13]: 
 

 0 00011889 1 33230545. . ,n C   (1) 
 

where C is the glucose concentration in g/L. 

The different glucose concentrations with known re-

fractive indices, sensitivity and quality factor are dis-

played in Table 1. 

A Gaussian input light signal with a central wave-

length of 1.55 m is launched into the input port of the 

inline quasi-waveguide. The power monitor is placed at 

the end of the output port. The sensing mechanism is to 

detect the resonance wavelength shift, which is caused 

by the change of RI of the 77 shell rods and 14 func-

tionalized holes. A vital parameter in evaluating the 

performance of the designed sensor is the sensitivity 

(S) which is defined as: 

 / ,S n    (2) 
 

where  is the change in the resonant wavelength and 

n is the change in the RI. S is measured in terms of 

nm/RIU and it should be as high as possible. 

Another important parameter used to analyze the 

performance of the proposed structure is the quality 

factor (Q). Q is defined as the ratio of stored energy loss 

and is given by: 
 

 0 / ,Q     (3) 

 

where 0 is the central wavelength of the transmission 

and  is the full width at half maximum of the output 

intensity. 
 

 
 

Fig. 3 – Normalized transmission spectra of the proposed 

structure in the absence of glucose 
 

Fig. 3 shows the transmission spectrum in the ab-

sence of glucose in the solution (C = 0 %). The existence 

of a resonant peak at   1.55 m means that the inline 

quasi-waveguide can couple with the RMC, and this 

resonance possesses a high quality factor (Q). 

In order to analyze the sensitivity of the designed 

structure, we change the RI of the C/S rods and active 

holes from 1.33230545 to 1.34300555. Fig. 4 depicts the 

normalized transmission obtained of the glucose con-

centration varying from 0 % to 90 %. It is revealed from 

this figure that the resonant mode is shifted due to 

higher frequencies when the RI increases. Every 15 g/L 

of C variation results in 1.1 nm shift in the resonant 

mode. The transmission efficiency of the output spectra 

is more than 97.76 %. 

In other to observe the effect of the outer radius (rs) 

of the shell layer on the resonant wavelength for 

C = 0 %g/L, we vary the external radius from 0.41 a to 

0.419 a. Our results show that resonant mode is influ-

enced by the change of rs. This mode is shifted to the 

lower wavelength (blue-shift) when the filled area in-

creases. From Fig. 5, it can be noted that the graph 

obtained is varies quasi-linearly with respect to the 

variation of rs, when rs increases with a step of 0.001a. 

From the FDTD results, the designed structure sen-

sitivity is equal to 624.7904 nm/RIU and the quality 

factor reaches 34505.712, in the RI range of 1.33230545 

to 1.34300555. Furthermore, the dependence between  
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Fig. 4 – Normalized transmission spectra of the proposed 

structure for different concentration of glucose 

the RI variation and resonant wavelength shift is 

shown in Fig. 6. It revealed from this figure that the 

resonant wavelength varies linearly with the meas-

urements of the different concentration of glucose. 

The sensibility of the presented biosensor is better 

than that of some previous structures proposed in re-

cent articles for detecting the glucose concentration [11, 

17, 18]. The comparison of the existing sensing struc-

tures is displayed in Table 2. The total footprints of this 

proposed structure is 92.65 m2, its dimension is very 

small, it can be integrated easily with PC based devices 

and it offers high sensibility, high quality factor and 

good linearly, so we can utilize this type of devices as a 

glucose sensor. 

 

 

 

Table 1 – Refractive index, resonant wavelength, sensibility and quality factor with different glucose concentration  
 

C (g/L) Refractive Index (RIU) 0 (nm)  (nm) S (nm/RIU) Quality factor (Q) 

0 1.33230545 1550.0 
  

30418.329 

15 1.3340888 1551.1 1.11422 624.7904 31050.726 

30 1.33587215 1552.2 2.20238 617.4839 33897.342 

45 1.3376555 1553.3 3.33591 623.5287 33324.337 

60 1.33943885 1554.4 4.43148 621.2297 34505.712 

75 1.3412222 1555.5 5.52858 620.0218 32135.634 

90 1.34300555 1556.6 6.62548 619.1979 33022.014 
 

 
 

Fig. 5 – The shift in the resonant wavelength as a function of 

the external radius (rs) 
 

 
 

Fig. 6 – Linear relationship between resonant wavelength and 

the RI 

Table 2 – Comparison of our results with some recent works 
 

Reference Sensing structure Quality factor Sensibility (nm/RIU) 

[11] PhC microcavity 549.2 422 

[17] PhC ring slot cavity Q = 107 160 

[18] PhC ring shaped holes cavity-coupled waveguide 1.11105 462 

[19] hexagonal nanocavity PhC resonator 3860 544 

[20] optofluidic-gas sensor using 2D PhC 7070 575 

This work PhC resonant microcavity 3.4505104 624.79 

 

3. CONCLUSIONS 
 

In this paper, an ultra compact optical biosensor 

based on PhC using core shell (C/S) rods and functional-

ized holes for detecting glucose concentration is investi-

gated. This designed device is formed by hexagonal lat-

tice of air holes in Si background. The sensing mecha-

nism of our biosensor is to detect the resonant wave-

length shift, when the analyte flows through these defect 

rods. The FDTD results show that the resonant mode 

shift is linearly proportional to the glucose concentra-

tion. Every 15 g/L of variation of glucose concentration 
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results in 1.1 nm shift in the resonant peak. The sug-

gested device provides high sensitivity and high quality 

factor compared with the reported studies. The total 

footprint of the designed structure is 92.65 m2, which is 

ultra compact and can be a promising platform to detect 

the glucose concentration. 
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