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The magnetite Fe3O4 nanoparticles with a size range of 8-9 nm were synthesis by the chemical co-

precipitation of ferrous chloride, ferric chloride and NaOH as reducing agent with some modifications in 

the reported methods. The synthesized magnetic nanoparticles were heated at different temperature in the 

range of 250 °C to 850 °C. The effect of heating on structural properties of synthesized sample was studied 

by X-ray diffraction (XRD) and field effect scanning electron microscope (FESEM). The XRD patterns con-

firm the formation crystalline phase of Fe3O4 nanoparticles. The pattern formation of the nanoparticles 

was observed upon sintering treatment. Also there was a phase transition from magnetite (Fe3O4) to hema-

tite (-F2O3) was observed when the samples was heated above 550 °C. The vibrating sample magnetome-

ter (VSM) was used to study the magnetic properties, hysteresis curve and the saturation magnetisation. 

The saturation magnetisation decreases as the annealing temperature increases which is attributed to the 

phase transformation. 
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1. INTRODUCTION 
 

The iron oxide magnetic nanomaterials, magnetite 

(Fe3O4), hematite (-Fe2O3) and maghemite (-Fe2O3), 

have gained great interests in the past few years for 

owing to their fascinating properties, abundance in 

nature and ease of synthesis. The properties which 

make it an ideal candidate for the research are the 

biocompatibility, ease in surface modification and mag-

netic properties [1]. Further at nanoscale the single 

magnetic domain induces the superparamagnetism and 

size dependent properties. The most common applica-

tions of magnetic nanomaterials in the field of medicine 

are drug delivery system (DDS) [2], MRI contrast agent 

[3] and hyperthermia [4].  

Depending on the experimental conditions at the 

time of synthesis one or more of the iron oxide phases 

may be formed. This can be avoided by controlling the 

experimental conditions and ensure the presence of a 

single-phase as the magnetic properties change with 

the phase transition. The magnetite, pure black in 

colour, is oldest iron oxide magnetic material and ther-

modynamically unstable. When heated in the presence of 

oxygen it oxidized to hematite, hematite and maghemite 

at different temperature. This puts limitation in its ap-

plications in places where the temperature conditions 

are much higher than the room temperature [5]. 

The magnetic properties of the iron oxide nanopar-

ticles depend on the crystal phase transition occurring 

at different temperature or oxidising condition. The 

crystal phase transition mainly depends on the particle 

size, precursors used, conditions, heating rate and sin-

tering time. It was observed that the particle size in-

creased from 6.6 to 37.6 nm by increasing temperature 

from 50 to 850 °C and therefore the saturation magnet-

ization (Ms) increased from 41.69 to 53.61 emu/g till 

temperature 550 °C, and then decreased intensively to 

0.49 emu/g at 850 °C [6]. The pure magnetic nanoparti-

cles with an average crystallite size of 48 nm when 

heated at 650 °C the crystallite size of increases with 

heating temperature and holding time. The nanoparti-

cles gave the highest saturation magnetization 

97.99 emu/g, higher than synthesised nanoparticles but 

the change was not that drastic [7]. The particle size of 

8 nm were synthesised by chemical method had de-

creasing magnetisation from 60 emu/g to 14 emu/gm 

when heated upto 500 °C [8].  

As limited reports are available on the current topic, 

the behavioural study of magnetic nanoparticles at differ-

ent temperatures for different sintering time is needed. 

The present paper presents the result obtained in 

the study of sintering effect on Fe3O4 nanoparticles 

when heated in the range of 50 °C to 850 °C for 120 

minutes. 

 

2. EXPERIMENTAL  
 

2.1 Synthesis of Fe3O4 Nanoparticles 
 

Materials 

All chemicals used for the synthesis were AR grade 

and used without any further purification. Precursors 

used were ferrous chloride tetrahydrate (FeCl2.4H2O), 

ferric chloride hexahydrate (FeCl3.6H2O) and sodium 

hydroxide (NaOH). 
 

Synthesis of Fe3O4 Nanoparticles 

The Fe3O4 nanoparticles were synthesized by the 

chemical co-precipitation of FeCl2.4H2O and FeCl3.6H2O 

with molar ratio of 1:2 with NaOH as a reducing agent. 

Inert atmoshphere was maintained in the reactor by 

using flow of N2 gas as the oxidation in the inert at-

moshphere will oxidise it to Fe(OH)3. At first, 0.1 M 

solution of FeCl2.4H2O and 0.2 M of FeCl3.6H2O in 

100 ml deionised water was reduced with 0.8 M of NaOH 

in 100 ml of deionised water.  The NaOH solution was 
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added drop wise with the help of addition funnel with 

pressure equalising tube. The solution was stirred for 3 

hours on magnetic stirrer at 300 rpm. The black precipi-

tate was formed which was allowed to settle magnetical-

ly overnight. Next day, the supernatant liquid was re-

moved carefully and the precipitate was redispersed in 

100 ml water. The process was repeated three times to 

obtain high purity [9]. The precipitate was dried in an 

oven at temperature of 50 C. The sample was crushes to 

powder with a mortar and pestle. 

The chemical reaction can be given as, 
 

2FeCl3 + FeCl2 + 8NaOH → Fe3O4(s) + 4H2O + 8NaCl 
 

Upon sintering the crystal phase is changing which 

is a of oxidation of the Fe3O4 nanoparticles, the reaction 

for it can be written as  
 

 2Fe3O4 + ½O2 → 3(-Fe2O3) at 250 °C  
 

and 
 

 2Fe3O4 + ½ O2 → 3(-Fe2O3) at 700 °C  

 

Sintering of Fe3O4 Nanoparticles 

The fine powder was divided into six equal parts 

and transferred to a crucible. One part is not heated 

and taken as it is while the second part was placed in 

the furnace and heated to temperature 250 °C for 120 

minutes. The furnace was allowed to cool naturally and 

when it reached room temperature the sample was re-

moved and used for further characterisations. Similarly, 

samples were heated to 400, 550, 700, 850 °C [10].  

 

2.2 Characterizations 
 

The structural property of the synthesised nanopar-

ticles were studied by X-ray diffraction (XRD) which 

was recorded by Rigaku Ultima IV, Japan Xray diffrac-

tometer operating at 40 KV-40 mA using CuK radia-

tion (  1.5406 Å). The morphology and crystal size 

was observed by field effect scanning electron micro-

scope (FESEM) (Hitachi S-4800). The magnetic proper-

ty, hysteresis loop, was studied by a vibrating sample 

magnetometer (VSM: LakeShore 7309). 

 

3. RESULTS AND DISCUSSION  
 

3.1 Structural and Morphological Analysis 
 

As shown in the Fig. 1, the XRD peaks are seen at 

angles 30.0°, 36.6°, 43.0°, 53.8°, 57.2°, and 62.9° corre-

sponding to the planes (220), (311), (400), (422), (511) 

and (440). The peaks are sharp and distinct, revealing 

excellent crystallinity and homogeneity. The diffraction 

peaks are matching with reported data indicating the 

formation of a single phase spinel structure. The aver-

age crystallite size in Fe3O4 nanoparticles was deter-

mined from their XRD patterns using the Debye-

Scherrer equation [11], 
 

 
cos

k
D



 
  Å  

 

where D is the average crystallite size in Fe3O4 nanoparti-

cles,   1.5406 Å is the wavelength of X-ray,  is the full 

width of half-maxima (FWHM) of the diffraction line and 

θ is the Bragg's angle and k is the Scherrer constant (0.9). 

Gaussian peak fit is used for the best fit on the highest 

intensity peak. The particle size is calculated by Scherrer 

formula which varies from 8 to 13 nm with increase in 

sintering temperature from 50 to 850 °C except for 550 °C 

at which the particle size is 14 nm. 

At 50 °C XRD of Fe3O4 is shown in Fig. 1. The ob-

served peaks are at (220), (311), (400), (511) and (440) 

planes confirming the face centred cubic spinel structure 

(JCPDS Card No. 19-0629). Upon sintering at 250 and 

400 °C, the X-ray diffraction (XRD) peak lines are ob-

served remained same as that of Fe3O4. The only varia-

tion is slight shift towards higher angles from 35.72° for 

Fe3O4 to 35.80° for -Fe2O3 (JCPDS Card No. 39-1346). 

At 550 °C transition from -Fe2O3 phase to α-Fe2O3 

phase can be seen. But at temperatures 700 °C and 

850 °C peaks corresponding to -Fe2O3 phase can be 

seen at (012), (104), (110), (113), (024), (116), (018) and 

(214) (JCPDS Card No. 33-0664) [12]. The morphology 

and particle size of the synthesised nanoparticles were 

determined using FESEM. The FESEM images were 

taken for four samples sintered at different temperature 

i.e. at 50 °C, 250 °C, 550 °C and 850 °C. The Fig. 2 shows 

the corresponding images. The FESEM images confirm 

that the particle are spherical in shape with the size 

range of 8-14 nm. As the sintering temperature is in-

creased agglomeration and pattern formation can be 

seen. With the rise in temperature the pattern formation 

become clear and prominent [13-14]. 
 

 
 

Fig. 1 – XRD of Fe3O4 nanoparticles sintered at different 

temperature 

 

3.2 Magnetic Properties 
 

The room temperature magnetic properties were stud-

ies by VSM up to 10000 Oe. The synthesis magnetic Fe3O4 

nanoparticles exhibit ferromagnetism and superpara-

magnetic behavior. The Fig. 3 shows the hysteresis curves 

of nanoparticles before sintering (Fe3O4) and after sinter-

ing at 250 °C, 550 °C (-Fe2O3) and 850 °C (-Fe2O3) for 

120 minutes. It can be seen from the graph that the mag-

netic properties of iron oxide nanoparticles change with 

the phase transition from Fe3O4 to α-Fe2O3. The Fe3O4 

nanoparticles have the maximum saturation magnetisa-

tion of 43 emu/g, but decreases when heated. For temper-

ature 250 °C and 550 °C the change is not that significant  
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Fig. 2 – FESEM image at T  50 °C before (a) sintering and after sintering at 250 °C (b), 550 °C (c) and 850 °C (d) 
 

 
 

Fig. 3 – VSM at T  50 °C before (a) sintering and after sinter-

ing at 250 °C (b), 550 °C (c) and 850 °C (d) 
 

as the loss of magnetism may be compensated by the 

increase in the particles size to certain extent. But for 

850 °C, when the phase is totally transformed to -

Fe2O3 phase the saturation magnetisation has reduces 

to just 4.7 emu/g [15]. 
 

4. CONCLUSION 
 

The present study shows that the sintering of magnet-

ic nanoparticles of Fe3O4 in air results in the phase transi-

tion Fe3O4 to -Fe2O3 to -Fe2O3. This transformation of 

the phase results in a drop in saturation magnetisation 

from 43 emu/g to 4.7 emu/g. As the temperature is raised 

the phase transition happened smoothly giving pure 

phase at specific temperature and two phases coexist at 

intermediate temperatures. The crystal morphology 

changes significantly with sintering temperature. The 

particle size increases from 8 nm to 13 nm. 
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