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In the present paper, we have used Ziman’s approach and transition matrix (t-matrix) approach to 

study the electrical resistivities of bcc liquid metals. By carrying out this study, we have verified the validi-

ty of our proposed pseudopotential extracted from generalized pseudopotential theory (GPT). Our theoreti-

cal results agree well with experimental results. Also, it has been verified that for transition metals t-

matrix approach is more realistic and physically sound than Ziman approach. 
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1. INTRODUCTION 
 

Over the past few years there have been several the-

oretical and experimental investigations on electronic 

transport properties of liquid metals in order to under-

stand its structure and atomic interactions occurring in 

the similar solid state metals [1-6]. These studies can 

help to establish relation between the electronic state 

theory and liquid state theory in metals as liquid state 

shows dual behavior, metallic as well as fluidic. Pseudo-

potential approach has been an important area of re-

search for investigations of nearly all physical proper-

ties such as static, dynamic and electronic properties of 

metallic solids, liquids, alloys and glasses [7, 8]. This 

approach is found to be simple in computation, less 

complicated and physically more transparent in compar-

ison with first principles method [9]. The t-matrix and 

Ziman’s approach requires pseudopotential phenome-

nology. It can be used to study the electrical resistivity 

of bcc liquid transition metals which can further explain 

the electron-ion interaction. According to the past stud-

ies, it has been established that t-matrix is more suita-

ble and can provide accurate information about the in-

teractions occurring in liquid metals whereas Ziman’s 

approach, that is based on electron-ion interactions, is 

not applicable to transition metals due to the strong 

resonant scattering caused by empty d states [10]. 

In present communication, we have computed electri-

cal resistivity of molybdenum, tungsten, niobium, chro-

mium and iron (Mo, W, Nb, Cr and Fe) at a given tem-

perature using Ziman and t-matrix approach and have 

proposed a transition metal pseudopotential (TMPP) by 

using generalized pseudopotential theory (GPT). 

The present paper is organized in a given manner: In 

section 2 we have described necessary mathematical 

equation to calculate liquid metal resistivity. Section 3 is 

devoted for comparison of our computed results with 

other theoretical data and experimental findings. We 

have also discussed merits and demerits of present ap-

proach in this section. The paper is concluded with con-

cluding remarks in section 4. 

2. THEORY 
 

We use t-matrix of pseudopotential to calculate the 

relevant scattering cross-section. The transition matrix for 

the scattering on the energy shell can be written as [11] 
 

t(k,k)=
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The t-matrix is normalized to atomic volume Ω and 

it has dimension of energy. The values of phase shifts 

(∆0, ∆1, ∆2) are calculated using method described in 

reference [1]. The electrical resistivity computed using 

t-matrix approach takes the following form 
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where y = q/kF. Here, we have used Percus-Yevick 

equation for S(q) with packing fraction  = 0.45. 

The form of bare-ion pseudopotential, directly ex-

tracted from generalized pseudopotential theory (GPT), 

with having three parameters core radius (rc), radius of 

d-electron (rd) and hybridization parameter () has the 

following form in q-space (in a.u.) [12] 
 

     (q) = 
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], (3) 

 

Z is the valency and Ω is the atomic volume at melting 

temperature. To obtain screened pseudopotential we 

have adopted method suggested by Wallace [13]. The 

present calculation consist of exchange and correlation 

function due to Hubbard and Sham [14, 15]. 

 

3. RESULTS AND DISCUSSION 
 

In present work, we have proposed a simple scheme to 

determine pseudopotential parameter in which three 

parameters are reduced to two. Here, rd/rc, i.e. ratio of d-

electron along with the core radius is kept within the 

range of 1.1 to 1.5 and hybridization parameter   for all 

metals is tuned in such a manner that first zero (V(q0) = 0)  
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are found between 1 kF and 1.5 kF. The values of the in-

put parameters used in the calculation of pseudopotential 

are tabulated in Table 1. 

Table 2 exhibits the computed values of phase shifts 

∆0, ∆1 and ∆2 (in radian) at q = 2kF. In addition, it shows 

the calculated values of liquid metal resistivity using 

Ziman approach and t-matrix approach compared with 

the experimental findings and other theoretical values. 

From the detailed analysis in Table 2, we observe that 

our results are in good agreement with the experimental 

values at a given temperature. In addition, it has been 

found that our results for molybdenum, niobium, chromi-

um and iron are far more superior in comparison with the 

theoretical values obtained by Ononiwu [10] and Waseda 

[11]. We would like to elaborate these studies in detail. 

Waseda have used muffin tin potential to determine 

phase shifts at fermi energy and by using these phase 

shifts, he has constructed t-matrix form factor as a func-

tion of q/kF. Also by utilizing experimental structural 

data, he has calculated the potential. Ononiwu have used 

Ziman’s theory updated by Evan’s et al. (for details see 

[1]) to study the transport properties of liquid transition 

metals. In nearly free electron approximation, he has 

simulated the effect of the d-band resonance. Here, t-

matrix form factor replaces the ordinary V-matrix pseu-

dopotential form factor. 

In comparison with both the theoretical researchers, 

we find that present form of pseudopotential with simple 

method to determine potential parameter yields better 

results. One more thing emerging from the present study 

is that the values of t-matrix resistivity of all the five 

metals molybdenum, tungsten, niobium, chromium and 

iron are far better than nearly free electron Ziman ap-

proach. Such observation is in agreement with Bhatia et 

al. [1] who have used both the approaches to carry out 

comparative study of liquid metal resistivities for 16 

transition metals. 

For further detailed explanation of the given calcula-

tion, we have also presented the variation of ∆0, ∆1, ∆2 up 

to q = 2kF (up to fermi surface) for chromium and iron in 

Fig. 1 and Fig. 2, respectively. During computation, we 

observe that the maximum value of the phase shift for 

each metal is found to be less than   radian. Such ob-

servation goes in the favor of application of the pertur-

bation expansion and born approximation. The main 

ingredient for the calculation of t-matrix resistivity is t-

matrix form factor t(k,k) (see Eq. (1)). We have also ex-

amined the behavior of t-matrix form factor t(k,k) for all 

the five metals and presented the behavior of t(k,k) for 

Cr and Fe in Fig. 3 and Fig. 4, respectively. 
 

Table 1 – The input parameters and pseudopotental parameters (in a.u.). The quantity shown in parenthesis represents temper-

ature (in C) at which atomic volume (Ω) is used 
 

Metal Z Ω   rc rd 

Mo 6 115.27 (2617) 63 0.227 0.255 

W 6 116.47 (3410) 60 0.275 0.3063 

Nb 5 137.02 (2741) 52 0.2725 0.3025 

Cr 3 93.04 (1900) 35 0.25636 0.282 

Fe 3 89.35 (1550) 24 0.215 0.2365 
 

Table 2 – The computed results of phase shifts ∆0, ∆1 and ∆2 (in radian) and liquid metal resistivity ρziman and ρt (in µΩcm) 
 

Metal ∆0 ∆1 ∆2 ρziman ρt ρexp Other theoretical results 

Mo 2.3529 2.0233 0.9135 32.97 91.05 97 [16] 94 [10] 

W 2.7415 1.9374 0.8938 40.96 81.92 131 [16] 96 [10] 

Nb 2.6938 1.7071 0.7284 56.27 96.11 92.97 [17] 110 [10] 

Cr 1.5412 1.0655 0.4421 14.04 77.52 80 [11] 
56 [10];  

120 [11] 

Fe 1.9075 1.0483 0.4146 40.27 137.88 140 [11] 
92 [10];  

182 [11] 
 

 

 
 

Fig. 1 – The variation of phase shift for Cr 

 
 

Fig. 2 – The variation of phase shift for Fe 
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Fig. 3 – The variation of t-matrix form factor for Cr 
 

 
 

Fig. 4 – The variation of t-matrix form factor for Fe 
 

It is interesting to note that the behavior of t-matrix 

form factors are identical to screened pseudopotential 

V(q). From the present study, we can observe one inter-

esting observation that the first zero of t-matrix form 

factor for all the metals (Mo, W, Nb, Cr and Fe) are 

found near Fermi surface (within the range (1-1.2) kF). 

By taking the limit of Eq. (1) as q → 0, the values of the 

t-matrix form factors at q = 0 can be found. This limit-

ing value can be represented by following form in the 

atomic unit: 
 

t(k,k)= 
  

   
[           

                          ]. (4) 

 

4. CONCLUSIONS 
 

The current study establishes that the local pseudo-

potential method extracted from the generalized pseu-

dopotential theory (GPT) can help in understanding the 

transport properties of bcc liquid transition metals. 

From the comparative studies, we observe that the val-

ues of the liquid metal resistivities for transition metals 

t-matrix approach is satisfactory and far more realistic 

than nearly free electron (NFE) Ziman approach occur-

ring due to weak scattering. In addition, it has been 

found that our results agree very well with the experi-

mental investigations compared to other theoretical val-

ues. Encouraged by present method, we would like to 

extend it for the study of other bcc metals and their al-

loys. 
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