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In this paper, we propose a model for taking into account the vector order parameter for studying the
evolution of an ultrashort optical pulse in a medium with carbon nanotubes. We consider the electric field of
the pulse in the three-dimensional geometry. To describe the dynamics of the considered system we use the
phenomenological theory developed by A.Z. Patashinskii and V.L. Pokrovskii. Given the specificity of the
problem at hand, it is assumed that the vector order parameter is related to the electric field directed along
the nanotube axis. For the clarity, we consider a ferroelectric medium with the polarization, which has three
nonzero spatial components. Based on the Ginzburg-Landau theory, we obtain the governing equation of
motion for the vector order parameter. Based on Maxwell’s equations, we obtain the effective nonlinear wave
equation in a cylindrical coordinate system. We use the approximation when the accumulation of charge can
be neglected. Therefore, the cylindrical symmetry in the field distribution is preserved. The system of these
two equations allows us to analyze the dependence of the shape of three-dimensional ultrashort optical pulses
on the distance from the critical point of phase transition. That important observation can in practice be used
to identify experimentally the critical point. We show that ultrashort optical pulse propagates stably without
secondary wave radiation. The energy of the electromagnetic pulse is preserved in a localized region. Also a
comparative analysis of two models of the order parameter (scalar order parameter and vector order
parameter) is performed. The influence of the order parameter model on the dynamics of the pulse is
determined. The proposed technique allows us to carry out the spectroscopy by changing the order parameter
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when probing the medium with ultrashort pulses.

Keywords: Vector order parameter, Carbon nanotubes, Optical pulses.

DOI: 10.21272/jnep.12(4).04016

1. INTORDUCTION

L.D. Landau has introduced a general approach to
the description of phase transition, which is driven by
the most fluctuating parameter called the order
parameter [1]. The order parameter is a value different
from zero at a temperature less than critical (7'< T¢)
and tending to zero at T'> Tt This value can be the
magnetization in a ferromagnet, the polarization vector
in a ferroelectric, etc. The increased interest of
researchers in phase transition media is primarily due
to the large number of practical applications [2-4]. In
this case, a very important problem is the studying the
dynamics of the order parameter in the presence of
strong external variable fields [5]. From this point of
view, it seems relevant to consider a composite
medium, which consists of a medium with a phase
transition and carbon nanotubes (CNTs) [6-8]. This fact
is due to both the ability of carbon nanotubes to
withstand electric fields of high intensity and their
stabilizing effect on the propagation of electromagnetic
field pulses (for example, light bullets) [9, 10]. It should
be noted that CNTs are sensitive to the electric field
orientation due to the structure anisotropy.

The interaction of the order parameter with the
medium implies the choice of a model to describe this
parameter. Some phase transitions may have an order
parameter with more than one degree of freedom. In
this case, it can take the form of a complex number, a
vector, or even a tensor, the magnitude of which tends
to zero during the phase transition. The authors
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previously studied the possibility of spectroscopy of a
scalar order parameter [11]. In this paper, a model for
the vector case is constructed.

Thus, the statement of the problem is to determine
the possibility of using light bullets for spectroscopy of
the vector order parameter in composite nonlinear
media with CNTs.

2. BASIC EQUATIONS

As an object of study, we choose a medium
containing CNTs. We can write down the equations of
motion using the phenomenological approach developed
in [1, 12]:

av_p22 M
dt oP

where I is the kinetic coefficient (further it is equal to 1),
P is the order parameter, @ is the functional density of
free energy.

Further, we assume that the vector order
parameter P = (Px(x, y, 1), Py(x, y, 1), PAx, vy t) Iis
connected with an electric field whose vector potential
has the following form: A =(0,0, A(x, y, z, t)). For
definiteness, we consider a ferroelectric with a polar
axis coinciding with the CNT’s axis.

We choose @ in the standard form taking into
account the influence of the external field E = (0, O,
Ex, vy, z, t)):

®=d,+a-P*+b-P'-EP, 2)
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where a, b are the expansion coefficients. We also take
into account that the medium field acts on the electrons
of carbon nanotubes together with the electromagnetic
field of the pulse Es = 6D/6P.

We consider a propagation of the light bullets in the
three-dimensional case. The electric field of the pulse is
directed along the CNT’s axis.

Let us write a standard expression for the current
density [13]:

j=2e3 [ v,(p)-f(p:s)dp, ®3)

s=1 BZ

where e is the electron charge, p is the component of the
quasi-momentum of the conduction electron along the
CNT'’s axis, v,(p)=0¢,(p)/dp is the electron velocity,

f(p, s) is the Fermi distribution function, es(p) is the
dispersion law which describes the properties of CNT’s
electrons and has the form [14, 15]:

&(p)= i;/o\/l +4cos(ap)cos (”—s] +4cos? (”—sj , (@)
m m
where s=1,2,...m, CNT type is (m,0), y0=2.7 eV,
a =3b/2h, b =0.142 nm is the distance between adjacent
carbon atoms.

During the propagation of an ultrashort pulse in a
CNTSs’ array, due to the field inhomogeneity along some
axis, the current is also inhomogeneous, which leads to
charge accumulation in a certain region, which can be
neglected for femtosecond pulses [13]. It can be
assumed that cylindrical symmetry is preserved in the
field distribution (6/0p — 0), then the effective equation
for the vector potential has the form:

2 2 » A+ A
li(r 6AJ+ OCA _O°A | den qusin[qae( + h)J _o,
g=1 ¢

or 022 cot? c

bq = Zasq J. dp‘cos(pQ)'f(p,S)
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Here As corresponds to the electric field of the medium
(E, =-0A,/cdt), kB is the Boltzmann constant, T is the

temperature, as; are the expansion coefficients of the
electron dispersion law (4) in a Fourier series:
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3. RESULTS AND DISCUSSION

The studied system of equations (1), (2) and (5) is
solved numerically [16]. The initial condition is chosen
in the Gaussian form:

2 2
A(z,r,0)=Q-exp —[2_20] exp(—rz}

z

2
dA(z,r,0 - - 2
e e [ ] p[]

4 z
where @ is the pulse amplitude; j, 5 determine the
pulse width; zo is the initial displacement of the pulse
center; v: is the initial pulse velocity along the z-axis.

The evolution of the electromagnetic pulse during its
propagation through the sample is shown in Fig. 1. A
broadening of the ultrashort optical pulse is observed,
and a 300-fold decrease in the intensity of the electric
field of the pulse occurs. Such behavior can be explained
by the interaction of the current flowing through the
CNTs with the subsystem described by the vector order
parameter and is a consequence of the relaxation
dynamics of the order parameter.

The influence of the model of the order parameter
on the propagation process of an ultrashort optical
pulse is presented in Fig. 2.

As can be seen from Fig. 2, taking into account the
order parameter has a stabilizing effect on the electro-
magnetic pulse shape (Fig. 2b, ¢ compared to Fig. 2a),
but leads to its attenuation in amplitude. Note that the
more stable (from the point of view of concentrating
most of the energy in the main pulse) is the pulse,
which we considered in a medium with a scalar order
parameter (Fig. 2b).

The influence of the equilibrium value of the order
parameter a in the scalar and vector cases is presented
in Fig. 3.
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Fig. 1 —The intensity of 3D electromagnetic pulse I(r, z, t) = E*(r, 2z, t) (Io is the intensity maximum) at different time points
(@=0.1,=-1,I'=0.1): (@) t=0s; (b) t =510-13s; (c) t =10-10-3 s
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Fig. 2 — The intensity of 3D electromagnetic pulse I(r, z, t) = E2(r, z, t) (Io is the intensity maximum) for different values of the
relaxation rate I' (¢=0.1, f=—1, t =10-10-13 s): (a) excluding the order parameter; (b) scalar order parameter; (c) vector order

parameter
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Fig. 3 — The intensity of 3D electromagnetic pulse I(r, z, t) =
= E2(r, z, t) (Iv is the intensity maximum) for different values
of parameter a ('=0.1, t=10-10-13s: (a) scalar order para-
meter; (b) vector order parameter. Solid line: a= 0.1, dotted
line: = 0.2

An increase in the order parameter a contributes to
the energy concentration in the main pulse and to a
decrease in the “tail” following it. We also note that
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taking into account the order parameter (both scalar
and vector) leads to a decrease in the pulse intensity.

It is known that, according to the Landau theory of
phase transitions, the value of the parameter « is
determined by the following dependence on the phase
transition point: oo T, -7, where T is the phase

transition temperature, Tc is the current temperature.
Shown in Fig. 3 curves allow us to conclude that the
pulse shape is directly determined by the distance from
the phase transition point and can help to determine it.
Thus, we can talk about the possibility of spectroscopy
of not only the scalar, but also the vector order
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4. CONCLUSIONS

As a result, we can draw the following conclusions:

1. The model, which describes the evolution of
three-dimensional ultrashort electromagnetic pulses in
CNTs with the scalar order parameter, is generalized
to the vector case.

2. It is shown, that an increase in the order
parameter has a stabilizing effect on an ultrashort
optical pulse, contributing to the conservation of the
pulse energy in a localized region.

3. The possibility of spectroscopy of the vector
order parameter using three-dimensional ultrashort
optical pulses is demonstrated.
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Brius BeKTOPHOrO nmapamerpa nopaaky Ha quHamiky 3D yasTpakopoTKux iMmyJsibCiB
Y ByIJIELIEBUX HAHOTPYOKaX

N.N. Konobeeva, M.B. Belonenko

Volgograd State University, 400062 Volgograd, Russia

VY poboTi My HPOIOHYEMO MOJENH JJs BPAXyBaHHS BEKTOPHOIO IapaMerpa HOPSIAKY y JIOCIIIKEeHHL
€BOJIOLI]  YJIBTPAKOPOTKOTO OITHYHOIO IMILyJILCY B CEPENOBHINl 3 BYIJIEHEBUMH HAHOTpyOkamu. Mu
PO3IJIAAaeMO eJIEKTPUYHE II0JIe IMIyJIbCYy B TPUBHUMIPHIN reomerpii. JjIs ommcy IMHAMIKKA CHCTEMH, IO
pO3IJISAgaeThCsl, MH BHKOPHCTOBYEMO (DEHOMEHOJIOTIUHY Teopio, poapobierny A.3. [laramuncbkmm Ta
B.JI. TTokpoBcbkum. 3 oruisamy Ha crerndiky 3agaHol mpobieMu, ITepeadavaeThbes, 0 BeKTOPHUN IIapaMeTp
HOPSIJIKY IIOB'SI3aHUN 3 €JIEKTPUYHUM II0JIEM, CIIPSIMOBAHUM Y3[0BK ocl HAaHOTPYOku. J{yisi HaouHocTi Mu
PO3TJISIIAEMO CETHETOEJIEKTPUYHE CEPEJIOBUINE 3 IIOJISIPU3ALE0, SIKe MAa€ TPHU HEHYJIBOBI IIPOCTOPOBL
rommonenTd. Crmpaounch Ha Teopino [in3bypra-Jlammay, Mu oTprMyeMO OCHOBHE PIBHSHHS PyXy IJIS
BEKTOPHOTO Itapamerpa Iopsaky. Ha ocHoBl piBHsHb MakcBesuta My 3HaAX0auMo edeKTHBHE HeJIHINHe
XBUJIbOBE pIBHSAHHS B IFUIIHAPUYHIA cucTeMi KoopauHaT. Mu BHKOPHCTOBYEMO HAOJIMIKEHHS, KOJIH
HAKOIIMYEHHAM 3apsiy MOKHA 3HEXTYBATH. 1TOMYy B PO3IOJLIL IO 30€piraeThCs IIMIHAPUYHA CHMETPIs.
Cucrema 1MX IBOX DPIBHSIHB JIO3BOJISIE IPOAHAI3YBATH 3AJIEIKHICTH (DOPMU TPHUBUMIPHUX YJIBTPAKOPOTKUX
ONITMYHUX IMILyJIbCIB B BigcTaHl Bl KpUTUYHOI TOUKH (a3oBoro mepexoxny. lle BaskImBe crocrepesxeHHs
HA MPAKTHI] MOKe 0yTH BHKOPHCTAHE VIS eKCIIePUMEHTAILHOI0 BUSHAYEHHS KPUTUYHOI Touku. [lokasaso,

M0 YJABTPAKOPOTKUI ONTUYHUN IMILYJIBC

IIOIIHNPIOETHCA

cTablIbHO 0e3 BTOPHUHHOTO XBHUJILOBOIO

BUIIPOMIHIOBAHHA. EHEpris eJIeKTpOMArHITHOTO IMIIyJIbCy 30epiraeThcs B JIOKaJI30BaHii obsacti. Taxosm
TIPOBOJUTHCA MOPIBHAJIBHUN aHAJI3 JBOX MOJeJsel mapaMerpa Mmopaaky (CKaJIspHUN mapamerp IMOPSAIKY Ta
BEKTOPHUWH Iapamerp MOpsAAKYy). BH3HAUEeHO BILIMB MOJEJI IapaMerpa MOPsAAKY Ha TUHAMIKY IMILyJIbCY.
3ampornoHoBaHa METOIUKA JI03BOJISAE TTPOBOJUTH CIIEKTPOCKOINI0 MIJIAXOM 3MIHM IapaMerpa IMOPSAIKY IIpU
30H/IyBAHHI CePeIOBUINA YIbTPAKOPOTKUMH IMILYJIbCAMU.

Kmouori cirosa: Bexropuwmit mapamerp nmopsinky, Byriteresi manorpyoru, OmTrdHI 1IMITYJIBCH.
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