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The influence of the cross-sectional shape of a quantum filament on the energy spectrum of electrons is
studied. The calculation of energy levels of electrons in a quantum wire is performed. For the Al.Gai_:As
quantum wire with infinite and finite depths, energy level spectra were obtained. The dispersion depend-
ence with a parabolic law in a quantum wire with finite and infinite height of the potential barrier based
on Alo2sGaorsAs and Alo7sGao2sAs was calculated, and graphs of dispersion dependences were obtained.
The results are obtained for the linear sizes of a quantum wire from 5 nm to 15 nm. The transverse dimen-
sions of cylindrical and rectangular quantum wires with close energy levels are found. The analysis of en-
ergy levels in cylindrical and rectangular quantum wires is carried out, and their similarities are revealed.
It is shown that the energy levels are close to each other when the cross-sectional areas of rectangular and
cylindrical quantum wires become equal. The solutions of the Schrédinger equation are presented, when
the solution for a cylindrical wire can be replaced by the solution for a rectangular wire.
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1. INTRODUCTION

Modern development of microelectronics is charac-
terized by the fact that the dimensions of semiconductor
devices are close to the de Broglie wavelength. Quantum
wires are one-dimensional electron systems whose
transverse dimensions are of the order of the de Broglie
wavelength, and the wire length is many orders of mag-
nitude greater than the de Broglie wavelength. In this
case, the energy spectrum of electrons differs signifi-
cantly from the energy spectrum of electrons in massive
samples. In this case, the energy spectrum is divided
into sub zones [1-3].

In [4-8], the effect of an external magnetic field on
the electron gas energy was studied. In [9-14, 18-20],
the energies of electrons in a cylindrical quantum wire
were calculated.

In the present work, the energy levels of electrons
in rectangular and cylindrical Al:Gai-xAs quantum
wires are calculated; the spinning of the shape of a
quantum wire on the energy spectrum of electrons is
investigated.

2. THEORY

2.1 The Energy Spectrum of an Electron in a
Quantum Wire in the One-electron
Approximation

To determine the energy spectrum of electrons, we
solve the Schriodinger equation

2

—;—mvzw(x,y)+U(x,y)l//(x,y) =Ey(x,y). (1)

In the Cartesian system for a quantum wire of rec-
tangular cross-section, the potential energy has the
following form:
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Here L: and Ly are the transverse dimensions of the
quantum wire, m is the effective electron mass. The
solution of equation (1) with boundary conditions (2)
gives the following expression for the electron energy in
a rectangular quantum wire:
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Here n and [ are the integers, k- is the wave vector
along the z-axis.

2.2 The Energy Spectrum of an Electron in a
Quantum Wire with a Rectangular Cross-
section of a Potential Well with Finite Depth

In this case, the coordinate dependence of the poten-
tial energy has the following form:
0, 0<x<L,
- x<0, L, <x
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The solution of equation (1) for potential energy (4)
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is as follows [15, 18]

2_2 2 2
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Here ma and mp are the effective masses of elec-
trons in the A and B regions.

2.3 The Energy Spectrum of an Electron in a
Cylindrical Quantum Wire with Infinite
Height of the Potential Barrier

In this case, the expression for the potential energy
of an electron has the following form:

<R
U(r)=U(p)= {i (;;p; ®

Here R is the radius of the cylinder, p is the dis-
tance from the center of the axis of the cylinder to the
point in question. Using expressions of the operator in
a cylindrical coordinate system, the Schrédinger equa-

tion for a cylindrical coordinate system (quantum wire)
can be expressed as follows:

”(te o 1 & 0o
oS p ot g ()
2m\ pop Op p°o¢° oz )
WU (x) () = B (1)
The solution of this equation can be written as

f(r)=e"e"y(p). (10)

In this case, the Schrodinger equation takes the fol-
lowing form:

oy (p)
P o TP

v (p)
op

((k2 —kzz)p2 —lz)y/(p) =0.(11)

Here, %? =2mE/h*. The solutions to this equation
are

f(x)=Cppe™d, (ﬁgp]eikﬁ (12)

Here Ji(x) is the Bessel function. For a cylindrical
quantum wire with infinite depth of the well, the elec-
tron energy has the following form:

_nB R
MR omR? T 2m

13)

Here, fn1 are the zeros of the Bessel function.

The potential energy of an electron of a cylindrical
quantum wire with finite depth is:

0, 0<p<R
U(r)—U(P)_{W’ p;§< (14)

The solution of equation (9) with boundary condi-
tions (14) is sought in the form (10). The Schriodinger
equation for the radial distribution function in the re-
gion takes the form

Sy (p) 10v(p r
ap(2 )+p 8/() )+ By -— |w(p)=0

We introduce a new variable
ZmA 2
E=kyp, ky= 2 E-k? . (16)
Then equation (15) takes the form

Pw(p) .ov(p)
2 o +& 5 +(§2—12)4//(p):0. (17)

4

The solutions of this equation are a linear combina-
tion of the Bessel Ji(&) and Neumann Ni(é) functions of
order [

vy (p)= A, (kap)+ BN, (kyp), 0<p<R. (18)

The Schrodinger equation for a radial function w(p)
outside the potential well takes the following form:

%y oy
PP -M?)y =0, R. (19
oo e My =0 p> R (9

2
C=ypp, V= f Z;B (W-E)+k2 . (20)

The general solution of equation (19) is a linear by
the combination of the Bessel function with an imagi-
nary argument [;(¢) and the Macdonald function Ki(&)

o (p)=AK (75p)+ By (7pp), p>R. (21)

Here

Thus, for the radial wave function, we obtain the
following expression:
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0<p<R

AlJl (kAp) + BlNl (kA'D) ’ (22)

AK, (75p)+BoLi(7pp), P>R

l//(p)={

If we consider that the wave function is finite inside
the cylinder and is zero at infinity, then the solution of
the equation for the radial component of the wave func-
tion takes the following form:

l//( ) _ {AlJZ (kAp)>
Asz ( 73/7) ,
Here A1 and Az are constant values, the ratio Ai/A2

is selected in such a way that the following boundary
conditions for the radial wave function take place:

0<p<R
P @23)
p>R

v (P)| _p=va(P), p

L) 1 dnio)
m, dp mg dp

(29)

p=R p=R

Substituting (23) into (24) we obtain the following
transcendental equation:
Ji(ksR) K, (v5R) _m,

, =24, (25)
J,(kR4R)K;(y5R) my

Here J')(&), K'i(§) are the derivatives with respect to
p of the Bessel and Macdonald functions. If we consider

that the solution of equation (9) satisfies the condition
f(z,0,p)=f(z,0+27,p), exp(i2zl)=1 then it follows

that /=0,£1,%2,... .

3. DISCUSSION OF THE RESULTS

Using expressions (3) and (7) for a quantum wire
with a rectangular cross-section, we compare the ener-
gy spectra for Alo.2sGao.7sAs and Alo.75Gao.2sAs samples
[16, 17]. The dependences of the electron energy on the
wave vector k for a rectangular potential well with infi-
nite and finite depth are shown in Fig. 1.

Graphs in Fig. 1 are obtained for a rectangular quan-
tum wire with a side of 10 nm. In a cylindrical quantum
wire, the radius is defined as follows

L
Nrh

In this case, the cross-sectional areas of the wires
are equal. In the second curve, the radius of a cylindri-
cal quantum wire is equal to half the side of the square
R = L/2. In this case, the cross-sectional side of a square
quantum filament is equal to the diameter of the cross-
section of a cylindrical quantum filament. From Fig. 1
it can be seen that the value of the energies in a cylin-
drical quantum wire is closer to the energies of a rec-
tangular wire compared to the energy levels of the se-
cond cylindrical quantum wire.

The first and second energy levels of rectangular
quantum filaments (Alo.25Gao.75As) in the finite depth of
the potential well differ from cylindrical quantum fila-
ments for level 1 by 2.5 % and for level 2 by 2 %. Ener-
gy levels of a cylindrical quantum wire for the first lev-
el differ by 15 % and for the second level — by 10 %. For

LL,=zR* L,=L=L =R-=
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Alo.25Gao.75As samples, the difference in the values of
energy levels is the same value. Fig. 1 compares the
electron energy values of a rectangular quantum wire
with infinite height of the potential well. The energies
of the first level for the first sample differ by 7 % and of
the second level — by 6 %. The energies of the second
cylindrical quantum wire for the first level differ by
16 % and for the second level — by 19 %.

Fig. 2 shows the dependence of energy levels on the
size of a quantum wire. Fig. 2 (Alo.25Gao.75As) presents
energy levels of a rectangular quantum well for the first
level. The ratio of the energies of a rectangular wire at
L =8 nm from the ratio of the energies of a cylindrical
wire for the first level differs by 7 %, for the second level
— by 6 %. For a cylindrical quantum wire, the first level
differs by 14 %, the second level — by 18 %.

For a quantum wire with a potential well of the fi-
nite depth of Alo.25Gao.7;sAs at L = 8 nm, the dependence
on the cross-sectional dimensions of a rectangular wire
and a cylindrical wire for the first level differs by 1.2 %,
for the second level — by 8 %; in the second sample, for
the first level — by 14 %, for the second level — by 18 %.
In Fig. 2, deviations of energy levels are of the same
magnitude as in the previous case.

At L = 14 nm, the energy levels for the Alo.25Gao.75As
sample for the first and second levels of electrons in a
rectangular wire differ from those of a cylindrical wire,
both for the first level and for the second level by 6 %.

In a cylindrical quantum wire of the second sample,
the first and second levels differ by 18 %. Fig. 2b ob-
tained for Alo.25Gao.7isAs shows the level difference of
about the same magnitude. In Fig. 2 with electron en-
ergies for a cylindrical quantum filament Alo.25Gao.75As
with a finite well depth for levels 1 and 2 differ by 13 %
for the first and 18 % for the second levels of a rectan-
gular quantum filament with finite depth of the poten-
tial well. For a cylindrical quantum wire 2, the first
level distinguishes by 22 % the second level — by 1 %;
the difference in Fig. 2d for Alo25Gao.7sAs remains at
about the same level.

4. CONCLUSIONS

To study the influence of the size and shape of a
quantum wire on the energy spectrum of electrons, the
Schréodinger equation was solved for rectangular and
cylindrical samples. The solution of the Schrédinger
equation in the Cartesian coordinate system for rectan-
gular quantum wires is much simpler than for cylindri-
cal quantum wires.

The calculations of the energy levels of Alo.25Gao.75As
and Alo.75Gao.2sAs quantum wires show that the rela-
tive difference of the energies of rectangular wires from
cylindrical ones does not exceed 10 %. From this it fol-
lows that the values of electron energies of a rectangu-
lar filament can be used to estimate the energy of elec-
trons in a cylindrical quantum wire. In this case, the
allowable error of calculations will be less than 10 %.
When the radius of the section of the circle R and the
side of the square L of cylindrical and rectangular fila-
ments are related by the following relation, the levels of
electron energy in these samples are almost the same.
In this case, with a small error, instead of the energies of
the cylindrical wire, it is possible to use the energies of
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the rectangular wire. This replacement greatly sim-
plifies the calculation of the electron concentration,
density of energy states, heat capacity, electrical con-
ductivity, and entropy of the electron gas in cylindri-
cal quantum wires.
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Enepris ej1eKTpoOHIB y NPAMOKYTHHX TA NWIIHAPUIYHUX KBAHTOBUX JPOTAX

G. Gulyamov!?, A.G. GulyamovZ2, A.B. Davlatov2, B.B. Shahobiddinov!

I Namangan Engineering-Construction Institute, 160103 Namangan, Uzbekistan
2 Physical-Technical Institute, Uzbek Academy of Sciences, 2B, Chingiz Aytmatov St.,
100084 Tashkent, Uzbekistan

Bugrueno BrmB ¢hopMu HOMEPEYHOro mepepidy KBAHTOBOIO JIPOTY HA €HEPreTUYHUIN CIIEKTDP €JIEKTPOHIB.
IIpoBomuThCA PO3PAXyHOK PIBHIB €HEprii eJIeKTPoHIB y KBaHTOBOMY ApoTi. Jlsa kBarToBoro apory AliGai-<As
3 HECKIHYEHHOI0 Ta KIHIIEBOIO TJIMOMHOIO OyJIM OTPHMAaHI CIIEKTPH eHepreTHYHuX PiBHIB. PosdpaxoBawo jucrre-
PCifiHy 3aJIeKHICTD 3 IapabosIIYHIM 3aKOHOM Yy KBAHTOBOMY JIPOTI 3 KIHIIEBOIO T4 HECKIHYEHHOI BHUCOTOI II0-
TeHIliHOro 6ap'epy Ha ocHoBl Alo2sGaorsAs Ta Alo.7sGaoz2sAs Ta oTpuMaHo rpadiky TUCIEPCIAHUX 3aJIEAKHOC-
Teit. Pesyspraty orpumano I JIHIMHIX PO3MipiB KBAHTOBOTO APOTY B Meskax B 5 HM 10 15 Hm. 3HaiigeHO
TOIepevHl PO3MIPH IMIIHAPAYHAX Ta IPSIMOKYTHAX KBAHTOBUX JPOTIB 3 OIM3bKUME piBHsaMu eHeprii. [Ipo-
BeJIeHO aHAJI3 eHePreTUYHUX PIBHIB B IIMJIHPUYHUX TA MPIMOKYTHUX KBAHTOBHX JPOTAX TA BUSBJIEHO iX
cxoskicTb. [Tokasano, 10 piBHI eHeprii 6JIM3bKI OIFH J0 OHOI0, KOJIH ILJIOIII TIOIIePEeYHOr0 Iepepiay mMpaMOKY-
THUX 1 IMATIHAPAYHAX KBAHTOBUX JAPOTIB CTAl0Th piBHUMHU. [IpemcraBieno poss’asku pisHauusa llpemiurepa,
KOJIM PO3B’SI30K JIJIsI IIUJIIHPUYHOTO JIPOTY MOKHA 3AMIHUTH PO3B’I3KOM JIJISI IIPSIMOKYTHOT'O JIPOTY.

Kmiouosi cnosa: Ksanrosuit apit, [loreniiiina ama, Exepreruyni pisHi.
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