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In paper, using exact solutions of the stationary Schrédinger equation and the equation of motion for
an elastic semiconductor medium, using the secondary quantization formalism, the theory of interaction of
electrons with acoustic phonons in a multilayer arsenide-based AlAs/GaAlAs resonant tunneling structure
is developed. Using the Matsubara Green's functions and the Dyson equation, expressions, which describe
the temperature energy shifts of electronic levels in the nanostructure and their decay rates, are estab-
lished. Direct calculations of the quantities characterizing the interaction of electrons with acoustic pho-
nons are performed on the basis of physical and geometric parameters of a typical nanostructure, and their
dependences on the geometric design of the total potential well of the nanosystem at various temperatures
are studied. It is shown that the influence of acoustic phonons leads to the decrease in the quantum elec-
tronic transitions frequency in the studied nanostructure, and this effect becomes more noticeable with in-
creasing temperature. It has been established that the absolute values of the electronic stationary states
temperature shifts decreases with the increase in the electronic stationary level number. Also, an increase
in the temperature entails an increase in the electronic states decay rates that is a dissipation effect direct-

ly affecting electronic processes in nanostructures.
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1. INTRODUCTION

The development of modern nanoscale devices that
can operate in the terahertz and infrared ranges of
electromagnetic waves, in particular, quantum cascade
lasers (QCLs) and detectors (QCDs) [1-4], is a main
part of semiconductor physics and technology. It leads
to significant scientific and technical interest in multi-
layer semiconductor resonant tunneling structures
(RTS) — plane nanosystems, which are precision active
elements of the cascades for mentioned devices.

Considerable attention of theoretical physicists wor-
king in this direction extends to the study of the spec-
tra and interaction of quasiparticles in multilayer RTS.

The interaction of electrons with optical phonons in
such nanosystems is studied quite well [5, 6]. However,
in the case of acoustic phonons, this direction remains
poorly studied. The spectra and components of the dis-
placement field for acoustic phonons were mainly stud-
ied for single-well nanosystems [7-9] placed in an ex-
ternal non-stressed medium, which simplified the ap-
plication of boundary conditions for the components of
the displacement field and the stress tensor.

In the same simplified model, the interaction of
electrons with acoustic phonons in the trivial case of
temperature (7'=0 K) was also studied. For a more
realistic model of multilayer RTS, the problem of acous-
tic phonons investigation was recently solved for both
homogeneous arsenide-based AlAs/AlGaAs [10] and
anisotropic AIN/GaN [11] nanosystems. However, in-
teraction with acoustic phonons in multilayer nano-
structures still remains an unsolved problem.

In the present paper, a quantum mechanical theory
of the interaction of electrons with acoustic phonons in
the multilayer RTS is developed. The spectra of elec-
trons and acoustic phonons were calculated. Direct cal-
culations performed for the double-well active band of
the QCL or QCD show, that the developed theory de-
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scribes well the shifts of the electronic spectrum and
electronic states decay rates due to the electron-phonon
interaction in a wide temperature range.

ol @

v

1

Sy e 7 (KRt il FAs”: i
/

X:

v

Fig. 1 — Geometric (a) and energy (b) schemes of closed three-
barrier RTS

2. THEORY OF STATIONARY ELECTRONIC
STATES IN A MULTILAYER
NANOSTRUCTURE

First, we will study stationary electronic states in a
three-barrier RTS, the energy scheme of which is
shown in Fig. 1a.
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Taking into account the notation given in Fig. la,
the potential energy of an electron U(z) and its effective
mass m(z) in the studied nanosystem can be presented
using unit Heaviside function &(z) as follows:

U(z)=U, {H(—z) +0(z—2z5) +

oY)
+ é[(@(z ~2,,) =0z~ 2,,.) | }

m(z) =m, é(&(z —2y,1)—0(z —zzp)) +
m, {9(—2) N io[e(z —2,) - 0z-2,,,) |+ 0z 25)} NE)

where, m, and m, are the effective masses of an elec-

tron, respectively, in semiconductor layers for GaAlAs
potential wells and AlAs potential barriers,
U, =0.9(E,(AlAs) - E (AlGaAs)) is the value of the

potential barrier. Bandgap E; for arsenide Gai-:Al:As
semiconductor at temperature 7T is calculated due to
Varshni ratio

E (x,T)=E, (x,0) +a(x)/ T*(B(x)+T), 3)

where bandgap at 77=0K and Varshni parameters
depending on the value of x are as follows [12]

E (x,T)=E, (x,0) +a(x)/ T*(B(x) +T), (4)

E, (x,0) =xE (AlAs) + (1 - x)E (GaAs);
E,(AlAs) = 2239 (meV); E,(GaAs) =1521 (meV); 5)
a(x) = (6.00x + 5.58(1—x))-107* (e V/K);
P(x) =408x +220(1 — x) (K).
For stationary electronic states, that is for E < U,

we represent the wave function of an electron in the
nanosystem as follows

Y(E,x,y,2) =¥ (E,2) = eTW(E,z), (6)

1
7z

where k is the electron quasi-momentum and 7 1is the
vector in the plane corresponding to the cross-section of
the nanosystem by the xOy plane, I, I, are the geomet-
rical parameters of this cross-section.

Thus, taking into account expression (6), the sta-
tionary spectrum for an electron and its wave functions
it is necessary to find solutions for the stationary
Schrédinger equation

ol 1 )o
{_262(’”(2)}62 + U(z)} Y(E,z)= E¥(E,2). (7)

Moreover, the total energy of an electron is expressed as
the sum of the energies of the longitudinal and trans-
verse movements:
nk*

, 8
om ()

Moff

EnﬁzE’”+EL:En+
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where the effective electron mass averaged over the
contributions of all layers of the nanosystem is deter-
mined as [5]

My = +j: D‘I’(En,z)‘/m(z)sz. )
The solutions of the Schrodinger equation taking in-
to account (1) and (2) are
W(E,2) = Y'(E,2)0(-2) + VO (E,2)e ©*0(2 - z;) +
+ il WOE,2)[ 02, )~ 0z-2,)] - (10)
o
= ADe9(~2) + B®e 0(z - 2,) +

i i (A(p)eiK(z—zpfl) + B iKGE=2,0) ) [6’(2 - zp_l) -0(z- zp)] .

p=1

where the following notation is introduced:

K =\2m,E It z=\2m,{U, - E) . 11)

In relation (10), it is taken into account that
BY = A® =0, since the condition is fulfilled
Y(z) > 0. (12)

z—tw0

Now, using the boundary conditions for the wave
function (8)

VOB =WT(E,z)

ki
z2—z,+0

1 d¥YP(E,z)
m(z) dz

1 d¥YP(E,z2)|

13)
B m(z) dz '

z—z,-0 z—z,+0

the dispersion equation is obtained, which determines
the stationary spectrum E, of an electron in the nano-
structure. In addition, from relation (10) and conditions
for normalizing the wave function

E,,z)dz = 6,0 (14)

+00
[ ¥ (E,,2)¥Y5(

all coefficients A”, B®) are uniquely determined, and
therefore the wave function W(E,,z) .

We now replace the wave functions with operators in
the following form:

Vo= %‘I’n};(?,z)&n%, (15)
then we get the free electron Hamiltonian as follows
H, = %Eﬂ;d;};dn};, (16)

+

where a
nk

and dn% are the fermionic creation and an-

nihilation operators for the electronic stationary states.

3. ACOUSTIC PHONON MODES IN PLANE
ARSENIDE-BASED RESONANT TUNNELING
STRUCTURES

The components of the elastic displacement field as-
sociated with acoustic phonons and the modes of these
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phonons are obtained by the solutions of the equation o%u _ B
of motion for a multilayer AlAs/GaAs semiconductor p(z)yz(clz +2C )V (V-1u) = Cy V< (V xw), (22)

layered medium: u =u(x,y,z),
6212 X,Y,2 60—(x7y72) . .
( 2}’ ) = "a ,j=1,2,3; Now, taking into account the plane geometry of the
ot X an studied multilayer nanosystem, we can assume that
X=X Xy =Y, Xy =2.

p(2)

u(x,y,z) =u(x,z) =u(x)u(z) . (23)

where the stress tensor has a form . _ ) .
Moreover, the displacement vector «(z) in this case

o,(x,3,2) = Cy,, (2, (x,¥,2), [, m=(1;2; 3) (18)  has two nonzero components

and the strain tensor is as follows w(z)=u,(2)+u,(z)= (ux(z); 0; UZ(Z))- (24)

1 a ’ b a ki 9 i ] 1
U, (x y,z):{ u; (x yz)+ U, (x yz)]. (19) Further, it 1is convenient to represent vectors

ox,, 0ox; #,(z), u,(z) asthe sum of two components:
In relations (17) and (18), respectively, the RTS density ,(2)=u.(2) + Lji (2);
and elastic constants, depending on the z coordinate (25)

— _ —1
and notation in Fig. 1b, are in next the form: u, (2) = u,(2) +1u.(2),

6 . . . . .
p2)= S p [ Oz — 27 D) — g(z— 2 p))} 20) which satisfy the following conditions [10]:
p=1

(qux(z)(z)) 0,(V-(V-u (Z)(Z))) v l(z)(z)

(26)
Cijlm(z) = Z Cl.(]IZTZ’L(Z) [9(2 _z(pil)) -0(z _z(p))j|’ 21 (v ux(z)(z)) =0; (Vx(Vx ux(z)(z))) ==V ux(z)(z)'
p=
cow Now the solutions of equation (22), taking into ac-
h o _ | Puw ) Cin" (@), . di count expression (23) with conditions (25) and (26),
where p =)~ an yim (2) = Cw(y, U should be sought in the form [10]:
b> ijlm ’
“‘w” and “b” denote the RTS layer corresponding to the a(x, y,2) = u(x,2) = w(z)e" ¥ 27)
potential well and the barrier, respectively.

If in relation (18) we go over to the Voigt notation In this case, equation (22) for an arbitrarily selected
with two indices and then take into account (20) and p-th layer of the nanostructure is equivalent to the fol-
(21), equation (17) is equivalent to the following one: lowing two equations:

d*ulP) (2) s @ | 1 d’u!P(z) . o
= P - [P (x) =0, ——= 2 - = [l P(x,) =0, (28)
dz* P dz* o2 |t
where propagation velocities of the longitudinal and agi (2) agi (2) oul(z) ow(2)
transverse waves in a separate nanosystem layer 2 o =0; o o2 =0. (31
Ul(p) _ \/C{? + 204(12) : Ut(p) _ JCLZ) ’ (29) Then taking into account (27) up to a constant we have:
p(p> p(p) ‘ , o
u (2) = _r ou,(2) =i X (Al(p)e—l§”)(2—zp) _Bl(p)el;(”(z—zp))’
w is the cyclic frequency, q is the wave vector. z qg oz q
The solutions of equations (28) have the form: (32)
UD) () = AP, 2" @20 | B 117 (-2,4). t
u, " (z) = A"e +B"e ; iqu' (2) + ou,(z) —o;
U (2) = AP ") | Bt o), oz (33)

tey_ i 94 (p),~2"(z=2,) _ p(p) 2" (2-2,)
o w@ =i~ (At e BPe .
2 7 Zt 7 (30) t
t .

Thus, the components of the displacement field for
the studied nanosystem can generally be represented in

The components uiip)(xS) and ufcip)(xS) are obtained following form:

using conditions (26). Hence we have:
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u,(2) =ul? () +ulP(2) = (Bl(o)e

p=1
1 . (P) q L(p)
u,(2) =ul(z)+ul(z) =i B”’) & +— BPle*
q ¢
(p)
+1 Zl_
q

(6) - (p)(z 25
(p) AT

5 (p) »
+i> X Al(6)e*zl (z=25)
p=1{ ¢4 X

In relations (34), it is taken into account that

A = A© —0; B® = B
> ¢

vironment, in which the RTS is located (at z<0 and

z > z5), the components of the elastic displacement must

decrease to zero at x, — oo, which is fully ensured by

the fulfillment of the condition:

=0, since in the external en-

(35)

u X
x,(g)( 3 X3 o0

Unknown coefficients
Bl(o),Bt(O),Al(G),At(G), Al(p), Bl(p), A;p), Bt(p) in the solutions

(34) are found using the boundary conditions for the

7(p) (D)
(")(xg) cp o4, (z)+6u2 (2) =CP iqu;")(z)+
ox 0z

z J 0(-2) +

auff’ )(2)) .
1 equ
0z
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0 (0) 6) — (6) 6) — P
+ B0 2)‘9(_2)‘*‘(141() (=2) | A® e <zz>)0(z )+

_ _ ., p)
+Z(A<p> 2 <zz>+B<p) P <“)+A§p’ 7 (zz>+B(p> 7 <zz>)[9(2 2, 1)~ 0(z— Z)]

(34)

(p)=11" (=2, _ g(p) 1" (=2,) ) | (P)1"(2,) _ gp) ot (z2,)
(Alp e - B;Pe” }((p) AlPe -B? [9(2—2p71)—9(z—2p)J+

j[@(z -z,,)—0(z- zp)}

components of the displacement vector ux(z), u-(z) and
stress tensor oz, oz at all heteroboundaries of the in-
vestigated RTS:

(p) — 5,(p+D)
x(z)(z)‘ —-& ux(z) (Z) 252" 4s’
(p) (p+1) .
( )‘ 2% ( ) 22 g’ (36)
(p) (p)
( )‘ ( )zaz(”)ﬁ-s
>0, p=0- 5.

where the components of the stress tensor are defined
as [10]:

2
_ Cx)( 2Z(p)A(p) -1 (-2, )+2Z(p)B(p) 7“7 (z-2,) ( q(p) +Z;(p)]A1(p)el;m(22”) [ q(p) +I;D)JB;P)6%(F)(2zp)]eiqx;
Ve X

(p)(xg) Cl(g)Vu(x Z)+2C(p) 6ua (Z) [-qcl(é))u(p)(z)+(cg) +2c(p))au (Z)]
z

. auP(z)) ;
:[chg)u;m(z) oW 2672() J pidt

(37

)’ C“’)] APe” 4"z, |

(P)(5_ P (5 (P) (5
o[acte U et e g -cip A i -cip e

G =CiP -2Cf.
The dispersion equation for finding the spectrum of
acoustic phonons Q =Q(q) is obtained by determining

the ratio between the coefficients Al(p), BZ(”) , At(p), Bt(p)

of p-th and (p + 1)-th RTS layers using transfer-matrix
method [10-12]:

T
DL 1 1 1 1 1
(Al(p) Bl(p) Ar(p) Bt(p)) — Twp+ )(q)(Al(p+ ) Bl(p+ ) At(p+ ) Bt(p+ )) : TPPD () = M, Y@M (@), (38)
where, in accordance with the boundary conditions (36), the matrix My(q) is defined as
A2 77 2y2,) ) A C2)
Z(p) (p) <p) (p) (p) (p)
A A2 IR A CR P B CR ) L4 )
q q lt(p) pr) (39)
M,(q)= e - >s 2 AP 2 oy .
P —9CD) P 72 20 4Pt Gz _ q(p) gl P A q(p) (») |2 @ 2p0)
X X
i[qcfg> %q i cm] ey e) i[qu‘”) (%q f c«ﬂ] A g (O - O )e ) ig(Clp - O e
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Next, it is necessary to express the coefficients
Bl(o),Bt(O) of the solutions for the medium at z<0 in

terms of the coefficients AZ(G),AT((") of the solutions for

the medium at z > z5:

T
(0 B” 0 B”) =T%Qqe)(4" 0 A® 0)",40)
where the transfer matrix of the nanosystem
5
79 =T(q,0) = [1 T"""(q,@) . (41)
p=0

The dispersion equation that describes the dependences
of the spectrum of acoustic phonons Q, ,(q) =, ,(q)

is obtained as

IT(q,0)| = f’[o 7@ (g, )| =0. (42)

Using the boundary conditions (36), all the coeffi-
cients in the solutions (34) are expressed through one of

them, in our case it is a coefficient BZ(O) . This coefficient

is obtained from the normalization condition

BOf Ip(z)(u @[ +u. @ i —71 (43)
ﬂ .q x y

Thus, we obtain the Hamiltonian of acoustic pho-
nons in terms of the occupation numbers [5, 8]:

J. NANO- ELECTRON. PHYS. 12, 06030 (2020)

H,.(q) = 29n<q>[b,; @b, () ﬂ T
n

where b'(q) and b,(q) are respectively the bosonic acous-

tic phonon states creation and annihilation operators.

4. HAMILTONIAN OF ELECTRON-ACOUSTIC
PHONON INTERACTION. SHIFTS OF THE
ELECTRONIC SPECTRUM AND DECAY
RATES OF THE ELECTRONIC LEVELS

Taking into account the normalization condition
(43), the elastic displacement of the nanosystem medi-
um acquires the following form:

iq,w,r) = Z )y (bn (@) +b, (-q)) x
p=lgn Zl l '
45
u’(‘p")1 (a)rh ’ 2) —iqr ( )
X P (@ .2) e [9(2 -z,,)-0(z _Zp+1)]
For GaAlAs arsenide semiconductors, the defor-
mation potential is expressed as
H,, =Hy(V-u), (46)

where Ho is the deformation potential constant, which,
taking into account (45), gives the expression for the
interaction Hamiltonian through the deformation po-
tential in the second quantization representation:

3 - hH2 + (» (p)( D, > 2) ~igqr
=2 3 o G @+ )| —igul (o, z>+T [0z-2, ) -0(z-2,,)]=
5 2 (17) (p p)
LY Y h ®, (@ +b' () q+@ (A;mem )(2-2,) +Bl(p)elz( (z—z,,))+ (A7)
p=lq,n, 2lxly ! ! q

Py (D) (o .
r2q(are ) e e [0 2, ) -0 2,.0)]

Then, the Hamiltonian, which describes the interac-
tion of an electron with acoustic phonons, takes the
following form:

I B, @ 550, (b, (@ +b;,(-9)], (48)

nnn1

e—ac.ph — =

hH

F’"h (q) = 2[ l (p)

x [ ¥ (E,2) q+(

where the binding functions an (@) due to the expres-
sions (10) and (47) are defined as:

Zl(p)) (») (»)
(Al(p)e_’“ %) 4 BPeH (Z'Z”))+
q

(49)

— Pz (P) (2, *
+2q(Ar(p)e Wy Bt ZP))}\PEE(EmZ)dZ-

Thus, the Hamiltonian of the electron-acoustic
phonon system:

H= I:I+FI +H

e—ac.ph =
ZEEnk il +ZQ (Q)[lf (@b, (@) +— }r (50)

¥ Z_le(q)a/,w a,; ] b, @+b;,(-a) |-

n,n',n,k,g

For a discrete electronic spectrum, its renormali-
zation by interaction with acoustic phonons is ob-
tained by performing the Fourier transform of the
Green's function, which is determined from the Dy-
son equation:

G, =(Q-E, - M, (@), (51)

where the mass operator is
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M@b=5S|F (o L,
n\= = nnn q ‘ : —+
ann! 1 Q—En,J;H7 —hwn‘ +1in

(52)

1%
+ - — 3 1>0,
Q- En',E+q —ho, +in

_ (eha)”l IRT

and Va —1)"! is the occupation number of

the acoustic phonon states.

Next, we will consider the electron motion per-
pendicular to the layers of the nanostructure. Then,
assuming that & =0, we find the renormalized elec-
tronic spectrum from the dispersion equation, which
in turn follows from the relations (51) and (52):

ho-E,—M (Q)=0. (53)

Whence the shifts of the electronic states and their
decay rates are obtained as:

(q)\ dq*
— "”1” .
A _Q, O(Q)—(2 )22 H B, —ha,’

n

. 6
W(q)\ dg

S(E,~E,;~ha,)

=—2ImM, (Q) = “zﬁ

QEkO 2z

where the symbol “P” means that the integral must
be taken via the Cauchy principal value.

Then, the stationary levels of the electronic spec-
trum renormalized by the interaction with acoustic
phonons are defined as

E,=E,+A,. (55)

5. DISCUSSION OF THE RESULTS

The calculations of the electronic spectrum of
acoustic phonons, shifts of the stationary electronic
spectrum levels and their decay rates were carried
out on the basis of the theory developed above. The
geometric parameters of a double-well nanostructure
used in direct calculations are the following: quan-
tum well widths di = dz2 =10 nm, thicknesses of po-
tential barriers A1 = Az =A3=2nm. The geometrical
parameters of the nanostructure cross-sectional area
are taken as Iz =1, =10-% m. The value of the poten-
tial barrier is Uo = 520 meV. The deformation poten-
tial constants are as follows:

HE™s = 717 eV, H™ =-5.64 eV. Other physical

parameters of GaAs and AlAs semiconductors are
given in Table 1.

Table 1 — Physical parameters of GaAs and AlAs semicon-
ductors

- P Cn Cr2 Cus

(kg/m3) (GPa) (GPa) (GPa)
GaAs | 0.063 5320 106.5 60.2 33.6
AlAs | 0.146 3760 119.9 57.5 56.6

The dependences of the first four stationary elec-
tronic spectrum levels E, on the value of d
(0 <d <di+dy), ie., on the position of the internal
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potential barrier in the total potential well, are
shown in Fig. 2.

250

200 H,
150 |-

100
E2
50

0 5 10 15 20
d(nm)

E, (meV)

Fig. 2 — Dependences of the stationary electronic spectrum
E,ond=di +d:

As can be seen from Fig. 2, the dependences of the
electron energy spectrum form with increasing d,
respectively, of (n — 1) minima and n maxima, which
corresponds to the level number n. In addition, the
dependences Ex(d) are symmetric about the middle of

the total potential well, i.e., the point d = (d,+dy)/2.

25

20

15 -

10 -

Q,(9) (meV)

gq(nm™)

Fig. 3 — Dependences of the stationary electronic spectrum
E.ond=d: +d2

Further, in Fig. 3, the spectral dependences for
acoustic phonons as a function of the wave vector ¢
are shown. As seen from this figure, the dependences
are formed by a set of branches located within three
regions, which are determined in the order of in-
creasing energy values Qf .., Qhaer Qoioner Qhiae» i
accordance with certain group propagation velocities
of the transverse (index “T”) and longitudinal (index
“L”) waves in GaAs and AlAs semiconductor materi-

als. Dependences Q, (@) within these regions are

formed, respectively, at the values: for the first group
—at Q},., for the second — similarly at Q},., and
for the third — at Q.. With an increase in the

wave vector values ¢, the energies of acoustic pho-
nons also increase quasilinearly within the given
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three regions. It should be noted that the dependenc-
es in the first (QF, . < Q, (@< Qh..) and the third

(QléaAS <Q, (@< QIgIAS) regions have similar behav-

ior, but in the first region, phonon branches form in
pairs, and in the third region, the branches approach
each other with increasing ¢q. The dependency
branches formed within the second group

(Qas £, (@) < Q) radically differ from the oth-

er two groups due to the different sign of their dis-
persion from q. In addition, in this group of depend-

0 0,0

J. NANO- ELECTRON. PHYS. 12, 06030 (2020)

ency branches there are those that have a weak qua-
siquadratic dependence on q.

Further, in Fig. 4, the dependences of the station-
ary electronic spectrum level shifts and their decay
rates are presented, which were calculated at three
different temperatures: 0 K, 100 K and 300 K. These
temperature values are relevant for the next reasons:
the simplest case of electron-phonon interaction (0 K),
cooling of QCL and QCD by liquid nitrogen (operating
temperature range of about 80-100 K), QCL and QCD
operating at room temperature (300 K).

0,0

® Rl [® =] O —
100K 100K| o2l 100K
alb —— 300K o5l 300K| " 300K
sl
2+ -10 -0,6
3 3 3
E , E E
< < < ol
N 12 F
14 1
0 5 10 15 20 0 5 10 15 20
d(nm)
15 ,@ —0K
—— 100K
—— 300K
10+
s 5 3
[} (]
£ £ £
[y - =
05

0,0 L L L
0 5 10 15 20

d(nm)

d(nm)

Fig. 4 — Dependences of temperature shifts (a, b, ¢) for the electronic spectrum levels (n = 1, 2, 3) and their decay rates (d, e, f) on

d = di + ds at different temperature values

As can be seen from Fig. 4a, b, ¢, the dependences
of temperature shifts on d are similar to the behavior
of the levels of the stationary electronic spectrum,
being also symmetric relative to the center of the
total potential well. This is quite true for the depend-
ences calculated at 0 K. However, with an increase in
temperature (100 K), despite the symmetry of the
dependences being maintained, additional maxima
are formed associated with the contribution of the
remaining electronic levels to the spectrum renor-
malization. At room temperature, we have a signifi-
cant increase in the maxima formed at 100 K, and
two additional maxima are also formed. In general, it
should be concluded that with increasing tempera-
ture, the shifts of the electronic spectrum increase,
with lower energy levels shifting more, which leads
to a decrease in the frequency of the electronic tran-
sitions in the nanostructure.

Further, in Fig. 4d, e, f, the dependences on d for
the decay rates I'n(d) of the electronic spectrum levels
in the investigated RTS are shown. These depend-
ences are also symmetric relative to the center of the
total potential well, as well as the dependences of
temperature shifts. It should be noted that in most
cases, with increasing temperature, the maxima of
the dependences that are formed in I'.(d) correspond

to the minima of the dependences Ax(d). This behav-
ior of the electronic states decay rates is determined

by the behavior of the functions & (En -E, . —ha)n‘)

and the dependence of these quantities on tempera-
ture through the Vi (T") function. Thus, due to the

electron-acoustic phonon interaction, in addition to
renormalizing the energies of quantum transitions,
the absorption bands also change.

6. CONCLUSIONS

A quantum-mechanical theory of the interaction
of electrons with acoustic phonons in an arsenide-
based AlAs/GaAs resonant tunneling nanostructure
is developed. Based on the developed theory, the
temperature shifts of stationary electronic levels and
their decay rates depending on the position of the
internal potential barrier in the total potential well
were calculated. The results of these calculations,
performed for different temperatures, show that an
increase in temperature causes an increase in the
shifts of the electronic spectrum levels and their de-
cay rates. In practice, this affects the need to adjust
the calculated operating frequency of the working

QCLs and QCDs.
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Bsaemonisa enexrponis 3 akyctuuaumu poHonamu y AlAs/GaAlAs
PE€30HAHCHO-TYHEJbHUX HAHOCTPYKTypPax

1.B. Boiiro, M.P. Ilerpur

TeproninvcoKuli HAUIOHABHUL MmexHiunUuill yHisepcumem imenl leana Ilynios,
8ysi. Pycora, 56, 46001 Tepnonins, Yipaina

¥ craTTi, 3 BUKOpHUCTAHHSIM TOYHHX PO3B'sI3K1B crartioHapHoro piBHsHHs [llpeinrepa Ta piBHAHHS PyXy
IpPY:KHOI0 HAIIBIPOBLIHUKOBOIO cepefoBuIna, Ha 6a3l (opmasiaMy BTOPHHHOIO KBAHTYBAHHS, PO3BUHYTA
Teopis B3a€eMOJil eJIeKTPOHIB 3 aKyCTUYHUMY (DOHOHAMH B apCEHIIHIN 0araToIrapoBiil pe30OHAHCHIN TyHe-
npHIA cTpykTypl AlAs/GaAlAs. 3 BuropucraHHAM MallybapiBcbkux QyHKN ['pina Ta piBusausa aiicona
BCTAHOBJIEH] BUPA3H, SIK1 OKCYIOTH TEMIIEPATYPHI 3MIIIeHHS eHepriil eJIeKTPOHHUX PIBHIB B HAHOCTPYKTYPi
1 mBuAKOCTI iX 3racaHHs. BeamocepenHi po3paxyHKN BEJIMYNH, IO XaPAKTEPHU3YIOTh B3a€MOII0 eJIEKTPOHIB
3 aKyCTUYHUMH (POHOHAMM, BUKOHAHO HA OCHOBI (PISMYHUX 1 T€OMETPUYHUX MAapaMeTPIB THIIOBOI HAHOCTPY-
Krypu. [locIaimoBHO HOCTIAMEHO 3aJIeKHOCTI MePeHOPMOBAHNX CHEKTPAJILHUX IapaMeTpPiB eJIEeKTPOHA Bif
reOMEeTPUYHUX IIapaMeTpiB CyMapHOI IOTEHIaJbHOI MU HAHOCHUCTEMHU IIPH Pi3HHMX Temieparypax. [loka-
3aHO, 0 BIUIUB aKyCTUYHUX (DOHOHIB CIIPUYMHSE 3MEHIIEHHS YaCTOTH KBAHTOBUX €JIEKTPOHHUX IIEPEXO/IiB
y IOCIPKYBAHIA HAHOCTPYKTYPI, a 1eil epeKT cTae O1IbII IOMITHAM 3 POCTOM TeMIepaTypu. BeTaHoBeHO,
1m0 abCOJIIOTHI BeJIMUYMHK TEMIIEPATYPHHUX 3MIIEeHb €JIEKTPOHHMX CTAI[IOHAPHUX CTAHIB 3MEHIIYIOTHCS 31
301L/IBIIIEHHSM HOMEPa eJIEKTPOHHOIO CTAI[IOHAPHOTO piBHA. TaKosm picT TeMmepaTypu CIIPUYMHSIE PICT 4aciB
PO3CiIOBAHHA €JIeKTPOHHUX CTAHIB, 10 € eeKTOM OMCHIAIlii, 0e3rocepeIHbO BILIMBAKYNA HA €JIEKTPOHHIL
TIPOIIECH B HAHOCTPYKTYPI.

Kmiouosi cmosa: Axycrmunuit dgouon, Eimexrpon-ponornna Bsaemomis, Pisusauma [aticoma, 3wmimeHHs
€JIEKTPOHHOI'O CTaHy, 3racaHHA eHepreTUYHOTO CTaHy.
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