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The problem of diffraction of H-polarized light at normal incidence on an unlimited sequence of infi-
nitely thin metallic strips is solved. A quantum-mechanical approach to the problem of diffraction is ap-
plied. Light wave is represented as a flow of particles — photons. Probability of a photon in front of and be-
hind the grating is described by two-dimensional psi-function — single-valued, continuous and restricted,
which satisfies the two-dimensional Schrédinger equation.

A strict solution of the problem about determination of psi-function of a photon dissipated by the grat-
ing is led down to the boundary Riemann-Hilbert problem. The solution is obtained in the view of the con-
vergent infinite system of linear algebraic equations. The system is suitable for any relation between the
wavelength and the period of the structure and any relation between the width of a slit and the width of a
strip and is convenient for numerical calculations with the help of PC. Analysis of the expressions obtained
for psi-function gives the possibility to conclude the following. Photons passed through or reflected by the
grating get the discrete values of momentum during the interaction with the grating and deviate at dis-
crete angles which are determined by the obtained expressions. There are intensity maxima in the points
where photons come and minima — in the points where photons do not come.

As follows from the analysis of the values of the photon momentum, the possible values of the constitu-
ent of the photon momentum perpendicular to its initial direction of motion are determined by even values
of the "quantum" of momentum which magnitude is determined by the grating period. This result may be
examined as a rule of selection of possible values of the perpendicular constituent of the photon momen-
tum. As follows from numerical calculations, the diffraction maxima are located in front of a slit and have
some internal structure, depending on the relation between the wavelength and the grating period. When
the ratio of the wavelength to the grating period decreases, the diffraction peak turns out to be slightly
modulated. When the ratio of the wavelength to the grating period is more than one, the diffraction pat-
tern vanishes and we have homogeneous illuminance.
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1. INTRODUCTION

There are many articles devoted to the problem of
wave scattering by a flat-strip grating. This is ex-
plained by theorists’ interest and a wide range of appli-
cations. In this paper, a quantum-mechanical approach
to the problem is applied, light wave is represented as
a flow of particles — photons. The problem of diffraction
of H-polarized photons at normal incidence of the flow
on the grating of an unlimited sequence of infinitely
thin metallic strips is solved. The problem of determin-
ing ¥-function of the photon in front of and behind the
grating is led down to the Riemann-Hilbert problem.
Exact expressions for ¥-function as an endless system
of algebraic equations are obtained. Calculations for
some values of parameters are performed. Phenomenon
of diffraction of particles is discussed.

2. PROBLEM STATEMENT

The grating is located in the XOY plane. The width
of a slit between neighboring strips equals d, the grat-
ing period is /, and thus the width of a strip equals [ — d
(see Fig. 1). The homogeneous flux of photons falls
normally onto the grating from the side of negative
values of the Z-axis. It is necessary to define intensity

of the flux (the probability density |‘F|2) of photons
reflected and passed through the grating.
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Fig. 1 - Diffraction grating
Let us represent photon ¥-function as a plane de
Broglie wave [1]:

¥ =He¢* 1)

o
(time multiplier '™ in this expression is absent, a
stationary process is considered). According to the con-
cepts of quantum mechanics, ¥-function must be sin-
gle-valued, continuous and restricted and have a con-
tinuous derivative, which can be easily verified by (1).
In the area above (z < 0) and under (z > 0) the grating,
Y-function of the dissipated photon must satisfy two-
dimensional Schrédinger equation [2]

© 2021 Sumy State University


http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
http://sumdu.edu.ua/
https://doi.org/10.21272/jnep.13(1).01002

A.V. BEzouGLy, O.M. PETCHENKO, G.O. PETCHENKO

2 2
a—T+a—2+2—E‘P 0, @)
oy oz

where E and m are respectively the photon energy and
mass. For photons, equation (2) takes the following
form:

2 2
Zfﬁ; PR =0, 3)
Y Z

In this case, it coincides with the wave equation for
electromagnetic wave: k=24, 1 is the photon wave-
length. By reason of symmetry it comes out that the pho-
ton ¥-function must not depend on the X coordinate and,
as a result of periodicity of the structure, be a periodic
function of the period [/ in the direction of the Y-axis.
Thus, it can be decomposed into Fourier series [3]:

.27n
‘I’(x,y) = ; H, (z)elTy.

Let us assume that photons cannot penetrate into
metallic strips. Thus, in metallic strips ¥= 0.

From the condition of finiteness, ¥-function will
have in the upper half-space the view:

‘P( )(y’ ) e ke
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In the lower half-space, the amplitude of the proba-
bility of a photon passing through the grating

\F(II) (y,z) _

As well as in the work [4], let us consider:

_/2_27”12_2””. f"i_
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which gives the value of the root with a positive imagi-
nary part, and if it equals zero — a positive real part.

3. SOLUTION OF THE PROBLEM

In this work, we restrict ourselves to the case of H-
polarization, when photons have only Hy-component of
the magnetic field. As it follows from Maxwell electro-
magnetic theory [4], H-polarized photons will have non-

zero H, =y, E, :é%// components of the electro-
2
. . . i oy
magnetic field. On metallic strips, E :%6— =0, the
2

derivative of the function is zero, and on slits, the
Y-function and its derivatives are continuous. Thus, at
the boundary z = 0 we have the following conditions:

@ an
v 6W =0 (on strips), (6)

0z 0z
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The condition (6) is carried out over the entire peri-
od of the grating. Using expressions (6), (7), at z=0 we
obtain equalities

ﬂn =—q,, (8)

i ,Bnexp(iz%nyj =0 (on strips). )

n

. . ... o¥ . . .
Since the derivative 5_ is continuous on slits, we
z

also obtain the equation (on slits)
= 27\’ 2
-k+ > B, kz—(%j exp[LTy] 0. (10

Now we reduce the system of equations (9), (10) to
the canonical form. First of all, using relations (10) we
pass from coefficients S, to coefficients ax

> anei"¢ =0

n=-o

T-<‘(0‘S72’, (11)

i a, ‘n‘ et = Zon + f(e?) ‘(p‘ <7, (12)
where
2
0-L4-27 ¢ —1+i«/g2 -1,
A l n ] (13)
_ Lll‘d) f(e*) ==i0+ ¥ a, |n|e™¢,
n=0

Differentiating (11) and denoting axn = x», we obtain

Y x,e™ =0, < ‘go‘ <r 14)

n#0

i X, Mei”"’ =ifa, + f(e" <7 (15)
n

Note that one additional equation must be added to
these two equations, because as will be seen later,
when obtaining the solution of the Riemann-Hilbert
problem [4], another unknown constant appears. We
get it by putting ¢ = 7in equation (14)

n=0 n

=-q,. (16)

The system of equations (14), (15) forms the well-
known in the theory of diffraction of electromagnetic
waves on periodic structures Riemann-Hilbert problem
[4]. It is similar to the equations obtained in solving the
problem of diffraction of E-polarized wave on a grating
of infinitely thin strips with ideal conductivity. The
difference is in the choice of the origin of the coordinate
system. In the case of E-polarization, the point y =0
lies in the middle of the slit, and in the case of diffrac-
tion of H-polarized photons, the origin of the y-axis lies
in the middle of the strip. That is, the system of equa-
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tions in the first case is written relative to the coeffi-
cients of the field behind the grating, in the second case
— relative to the coefficients of expansion of the psi-
function before the grating, which is dictated by the
formalism of the Riemann-Hilbert problem. Equations
(14), (15) are reduced to the problem, the exact solution
of which is represented in the form of an infinite sys-
tem of linear algebraic equations with respect to un-
known coefficients an [4]:

—x, = i00,V° 0V + 3 x,¢, MV,;; +2CR ;m #0
#£0 n
0=i0a,V° —i0V + ¥ x, @gnvon +2CR, an
n#0 n
ay =102, V2 —i0V? + Y x, M;V; +2cR,_,
n#0 n

where xn=nan and expressions for the coefficients
vveveEve Ve R ,R, through Legendre polynomi-
als are given in [6]. It is only necessary to consider the
argument on which they depend on

u= cos@ . (18)

The infinite system of equations (17) converges at
n — o as 1/n? [6] and is convenient for numerical calcu-
lations with the help of PC. At n =const, n =N, a sys-
tem of order N + 2 with complex coefficients is extract-
ed from the infinite system (17). In the end, we get the
following expression for the probability amplitude of
photons passing through the grating (considering that
bn=En, an=a nand xn =x_n):

‘{‘(H) (y,z) =

N 19)
= exp[—ikz]- [bo +23° b, exp {i (k -7 ) z} exp (in¢)}
1

To represent the probability amplitude in the far
zone, the value N = 6, which is limited in the sum of the
expression (19), is sufficient. In optics, when z/[ > 1,
expression (19) may be represented in the form

¥ (3,2) = {1— a+23a, COS(W)} SC
1

4. DISCUSSION OF OBTAINED RESULTS

Let us consider the phenomenon of light diffraction.
First of all, this phenomenon manifests itself when
light meets an obstacle on its way. So, there must be
some interaction between photons and material bodies.
Based on the assumption, the photon passed (or re-
flected) through a slit gets the component of momen-
tum in the direction perpendicular to its primary one
as a result of interaction with the obstacle-grating.

According to de Broglie [1], particles with corpuscu-
lar properties have wave properties. The rule of transi-
tion from a classical picture to a quantum one consists
in that the photon has energy E =%® and momentum
p=kh=2ah/A. Thus, for the photon reflected from or
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transmitted through the grating, according to (5) and
(6), the following expressions can be written:

® i

Y, = n;ﬂ anexp;(—pzz +pyy) , (21)
® i

Y, = n:Z_:m bnexp;(pzz + pyy) s (22)

where p:, py are respectively the z- and y-components of
the photon momentum. In classical electrodynamics,
when a plane wave falls on a grating, a diffraction field
is represented as a superposition of spatial harmonics,
each of them propagates at an angle, the tangent of
which is determined by the relation:

k
tqa, =+ = __2znil . (23)

z k2 _ 2zn 2
l
Using concepts of quantum mechanics, we can write
(23) as:

-

k. h !
tqa, == By (24)
ki p,

z
After simple trigonometric transformations, we get
from (23) the known grating equation

Isinon = nA. (25)

The expression that coincides with equation (25)
was also obtained in [7] when approaching narrow
slits. In this case, the approach was based on the appli-
cation of the laws of conservation of energy and mo-
mentum at elastic collisions of a photon with electrons.
In the mentioned work [7], the diffraction pattern is
explained by the fact that electrons moving in a metal-
lic strip have discrete values of the y-component of the
momentum. Photons passed through or reflected by the
grating get the discrete values of the momentum at
elastic collisions with electrons, deviate at discrete an-
gles an which are determined by expressions (23)-(25).
There are intensity maxima in the points where pho-
tons come, and minima — in the points where photons
do not come.
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Fig. 2 — Representation of the probability distribution of pho-
tons: 1) =1.2;2) 0=2.1;3) 0=3.1;4) 0=4.1
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It is worth noting an interesting result following, in
our view, from the analysis of the momentum py, which
can be considered as a rule of selection of possible val-
ues of the y-component of the photon momentum. The
latter is determined by even values of "quantum" of the
momentum 77/, i.e. py=27n/l, where n=0,+1,+2 ...

The results of numerical calculations of the square
module of the Y-function are shown in Fig. 2 for one
period at different values of #<4.2 and fill factor
d/l=0.5, because as follows from expression (23) the
diffraction pattern is repeated with the structure peri-
od I. As it can be seen from Fig. 2, the diffraction max-
imum is located in front of a slit and has some internal
structure, depending on the relation between the wave-
length and the grating period &= [l/A. As follows from
expression (20), at < 1 the amplitude probability of a
photon will be determined by a single term, because at
n > 1 magnitude » becomes imagine

) (7,2) = exp|[-ikz ] b, ,
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Visnyk

I'yctuna moroky dorouis Ha nudpakmiiiHiil KapTUHI Ipu po3ciloBaHHI
H-nmonapusosanux ¢poTOHIB HA HECKIHYEHHIH pPeriTIi 3 MeTaJIeBUX CMYT

A.B. Beayrumii, O.M. [letuenxo, I'.O. [leTuenko

Xapriecorkull HauloHAIbLHUL YHI8epcumem micbko2o 2ocnooapcemaea imeni O.M. Bexemosa,
eys. Mapwana Baxcanosa, 17, Xapkris 61002, Vikpaina

Posp’sizana 3amava npo mudpaxririo H-ossspr30BaHOIO CBITJIA IPY HOPMAJIBHOMY IAJIHHI HA IPATKY, YTBO-
peHy HeoOMEeKeHOIO ITOCJTIIOBHICTIO HeCKIHUYEHHO TOHKHUX METAJIEBHX CMYT. 3aCTOCOBAHO KBAHTOBO-MEXaHITHUN
maxig 1o 3amadl gudppariii. CBITIOBa XBUJIS MIPEICTABIEHA Y BUATJISA/L IOTOKY YACTHHOK — (POTOHIB. I71M0Bip-
HICTh (POTOHA B 00JIACTI TIEPe]T Ta 3a IPATKOI0 OIMCYETHCS JTBOBUMIPHOIO IICi-YHKITIEI0 — OJJHOSHAYHOIO, Herepe-
PBHOIO Ta 0OMEKEHOI0, AKa 3aJ[0BOJIbHSE JBoBUMipHOMY piBHsHHO [Ipemiarepa. Crpormii po3s’s30k 3a1adl IIpo
BU3HAYEHHSA IICI-QYHKINI (POTOHA, PO3CISHOrO IpaTKOl, 3BOMUTHCS M0 TpaHWYHOI 3amadi Pimama-TI'innGepra.
PosB’s130k 3amaul oTprMAaHO y BUIVIAAl HECKIHUEHHOI CHCTeMH JIHIMHUX anreOpaiuumx piBHAHB. Crucrema mpu-
JaTHA Ui OyOb-AKUX CIIIBBIIHOLICHb MiK IOBYKHHOIO XBIJI Ta IEPIOJOM CTPYKTYPH Ta Oy[b-SKHX CIIBBIIHO-
III€HB MisK ITUPUHOI IIUINHU Ta IUPUHOK CMYTH, 3PYYHA JIJIs IPOBEIEHHS YNCEeJIBHIX PO3PAXYHKIB 34 JI0IIOMO-
romo [TK. Anamia Bupasdy mis nci-QyHKINI Jae MOsKJIMBICTD 3pOOMTH HACTYIIHMI BHCHOBOK. (DOTOHM, MPOITyIIeHl
200 BIZOUTI IPATKOI0, OTPUMYIOTH JUCKPETHI 3HAYCHHSA IMITyJIbCY BHACIIIIOK B3a€MOZIl 3 IPATKOIO 1 BIIXUJIAIOTHCS
HA [OUCKPeTHI KyTHW BiJ IEPBHHHOINO HAUPAMKY. MakcnMyMmMu IHTEHCHBHOCTI Ha AUQPAKIIMHIA KapTHHL
3'SBJIAIOTHCS B TOUKAX, KYJIU HAIXOIATH (POTOHU, a MIHIMyMH — B TOYKaX, Kyau (DOTOHH He HaIXOJATh. K BU-
IJTMBAE 3 aHAJTI3Y 3HAYEHD IMITYJIbCY (DOTOHA, MOKJIMBI 3HAUEHHS CKJIA0BOI IMITyJIbCY (DOTOHA, TIePIIeHIAKYJIs-
PHOI 0 #0T0 [TOYATKOBOTO HATIPSAMKY PYXY, BUSHAYAIOTHCS IIAPHUME 3HAYEHHSIMU "KBAHTA" IMITYJIECY, BEJIMYN-
Ha SIKOT0 BU3HAYAETHCS mepioziom rpatku. Lleit peaysbrar Moske po3riisiiaTucs sk JesKe IPaBUJIO BI0OPY MOK-
JIMBUX 3HAYEHB CKJIAJOBOI IMITyJIbcy OTOHA. SIK BUILIMBAE 3 YMCETIPHUX PO3PAXYHKIB, TUMPAKINIHHI MAKCAMY-
MU PO3TAIIOBYIOTHCS TIE€PEJ] IIIJIMHOI 1 MAOTh JesIKy BHYTPIIIHIO CTPYKTYPY, 3aJIEHKHO BiJI CIIIBBIHOIIEHHS J10-
BIKMHU XBIJIL Ta Tepioy rpatku. [Ipy aMeHIIeHH] BIHONIIEHHST TOBKIHIN XBIJIL JI0 TIepiojly IpaTKy U PAKITi-
HUM MK BUABJISAETHCA 3JIETKA IIPOMOIYIboBaHUM. Ko/ BiIHOIIIEHHSA JOBKMHN XBUJII 10 IIePIoAy IpaTKu crae Oi-
JIbIIEe OMUHMUIN, TUQPAKI[IHA KAPTHHA SHUKAE, MA€MO OTHOPIIHY OCBITJICHICTS.
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