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The Limit of the Numerical Continuity 

 

1.   Limit of a variable 

A numerical continuity is an infinite set of numbers 

x1, x2, …, xn, …, arranged in a specified order one after 

another, denoted by {xn}. 

The numbers that are part of a continuity are called 

its members. 

In many cases, you can create a formula for a general 

member xn continuity.  

Let the variable x be given by its values x1, x2, …, 

xn,… We can assume that the continuity {xn} is given. We 

give the values of the boundary of the continuity {xn} and the 

boundary of the variable xn, n = 1, 2, …. 

Definition. The constant number is called the limit 

of the variable xn if any positive number ε is given in advance, 

which can be arbitrarily small, and there is a number N such 

that as soon as n is greater than N (n > N), then 

|𝑥𝑛 − 𝑎| < 𝜀. 
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If a is the limit of the variable xn, then we can say 

that xn tends to the limit a, when n tends to infinity, and write 

down 

lim
𝑛→∞

𝑥𝑛 = 𝑎. 

Geometrically a constant number a is the boundary 

of the variable xn if for any predetermined small 

circumference of point a of radius ε, there is such a value xN 

that all points corresponding to the following values of the 

variable are in neighborhood (Fig. 1). 

 

 

Figure 1 – Bounded order 

 

Definition. The variable xn tends to ∞ if any 

predetermined positive number M, which can be arbitrarily 

large, finds a number N such that as soon as n is greater than 

N (n > N), then |xn| > M.  

If the variable xn tends to ∞, then it is called an 

infinitely large variable and is written as xn → ∞ or 

lim
𝑛→∞

𝑥𝑛 = ∞. 

Definition. The variable xn tends to + ∞ if any 

predetermined number M > 0, which can be arbitrarily large. 
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There is such a number N that as soon as n is greater than N 

(n > N), then xn > M. 

Definition. The variable xn tends to – ∞ if any 

positive number M, which can be arbitrarily large, finds a 

number N such that as soon as n is greater than N (n > N), 

then xn < –M. 

2.   Boundary functions 

Let function y = f (x) be defined in some 

neighborhood of the point x = a or in some points of this 

neighborhood. 

Definition. A constant number b is called the 

boundary of the function f (x) when x tends to a (x → a) if 

any predetermined positive number ε can be arbitrarily small, 

and there will be such a positive number δ that as soon as 

|x – a| < δ, then |f (x) – b| < ε. 

If b is the boundary f (x) for x → a, then lim
𝑥→𝑎

𝑓(𝑥) =

= 𝑏, or f (x) → b for x → a. If f (x) → b for x → a, then from 

a geometric point of view for all points x that are distant from 

the point a and are not further than δ, the points M of the 

graph of the function = f(x) are placed in a band 2ε wide, 

which is bounded by lines y = b – ε and y = b + ε (Fig. 2). 
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Figure 2 – Function limit 

 

Definition. A constant number b1 is called the 

boundary of the function f (x) at the point x = a on the left if 

no matter how a positive number ε is predetermined, which 

can be arbitrarily small and there is such a positive number δ 

that as soon as a – x < δ, then |f(x) –b1| < ε. 

It can be written as follows: lim
𝑥→𝑎−0

𝑓(𝑥) = 𝑏1. 

Definition. The constant number b2 is called the 

boundary of the function f (x) at the point x = a on the right if 

any predetermined positive number ε, which can be 

arbitrarily small, finds such a positive number δ that as soon 

as a – x < δ, then |f(x) –b2| < ε, which can be written as 

lim
𝑥→𝑎+0

𝑓(𝑥) = 𝑏2. 
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Figure 3 – One-sided border 

 

We can prove that if the boundary on the right and 

the boundary on the left exist and are equal b1 = b2 = b, then 

b will be the boundary of the function f (x) at the point x = a. 

The existence of the boundary of the function for 

x → a does not require the function being defined at the point 

x = a. 

Definition. A constant number b is called the 

boundary of the function f (x) when x goes to infinity if for 

any positive number ε, which can be arbitrarily small, there 

is a positive number N such that only for all values of x that 

satisfy the inequality |x| > N the inequality |f (x) – b|< ε holds. 
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Figure 4 – The limit of the function is at infinity 

 

Definition. The function f (x) will be infinitely large 

for x → a if for each positive number M, which can be 

arbitrarily large, we can find such δ > 0 that for all values of 

x other than a, satisfying the condition |x – a| < δ, there is the 

inequality |f (x)| > M. 

In this case, write lim
𝑥→𝑎

𝑓(𝑥) = ∞ or f (x) → ∞ for 

x → a. 

 

 

Figure 5 – Infinitely large function 
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If the function f (x) → ∞ for x → ∞, then write: 

lim
𝑥→∞

𝑓(𝑥) = ∞.  

Definition. The function y = f (x) is called bounded 

in the domain where the argument x changes if there is a 

positive number M for which the inequality |f (x)| ≤ M will 

hold for all values of x belonging to this domain. If such a 

number M does not exist, then the function f(x) is called 

unlimited in this area. 

Definition. The function f (x) is said to be bounded 

at x → a if there exists a circle centered at point a at which 

this function is bounded. 

Definition. The function y = f (x) is said to be 

bounded for x → ∞ if there exists a number N > 0 that can be 

arbitrarily large such that for all values of x, satisfying the 

inequalities |x| > N, the function f (x) is bounded. 

Theorem 1. If lim
𝑥→a

𝑓(𝑥) = 𝑏 and b has a finite value, 

then the function f (x) will be bounded for x → a. 

Theorem 2. If lim
𝑥→a

𝑓(𝑥) ≠ 0, then the function 𝑦 =

=  
1

𝑓(𝑥)
 will be bounded for x → a. 
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3.   Infinitesimale and their basic properties 

Definition. The function α = α(x) is called 

infinitesimal for x → a or for x → ∞ if lim
𝑥→a

𝛼(𝑥) = 0 or 

lim
𝑥→∞

𝛼(𝑥) = 0. 

From the definition of the boundary it follows that if 

lim
𝑥→∞

𝛼(𝑥) = 0, no matter how predetermined a positive 

number ε, which can be arbitrarily small, is and there is such 

a positive number δ that for all x, satisfying the inequalities 

|x – a| < δ, the requirement holds |α(x)| < ε. 

Theorem 3. If the function y = f (x) is represented as 

the sum of the constant number b and the infinitesimal α (for 

x → a or for x → ∞) 

y = a + b, 

then write lim
𝑥→a

𝑦 = 𝑏 or lim
𝑥→a

𝑦 = 𝑏. 

Theorem 4. If α = α(x) → 0 for x → a (or for x → ∞) 

and does not turn to zero, then 𝑦 =
1

𝛼
→ ∞. 

Theorem 5. The algebraic sum of the finite number 

of infinitesimals is a function of infinitesimal. 

Theorem 6. The product α (x) · Z (x), where α (x) is 

an infinitesimal and Z (x) is a bounded function for x → a (or 

for x → ∞), is an infinitesimal function. 
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Theorem 7. The fraction 
𝛼(𝑥)

𝑍(𝑥)
, where lim

𝑥→𝑎
(𝑥→∞)

𝛼(𝑥) = 0 

and lim
𝑥→𝑎

(𝑥→∞)

𝑍(𝑥) ≠ 0, is an infinitesimal function. 

4.   Basic theorems on boundaries 

Theorem 8. The boundary of the algebraic sum of a 

finite number of functions is equal to the algebraic sum of the 

boundaries of these functions 

lim
𝑥→𝑎

∑ 𝑈𝑘(𝑥) = ∑ lim
𝑥→𝑎

𝑈𝑘(𝑥)𝑛
𝑘=1

𝑛
𝑘=1 . 

Theorem 9. The boundary of the product of a finite 

number of functions is equal to the product of the boundaries 

of these functions 

lim
𝑥→𝑎

∏ 𝑈𝑘(𝑥) =𝑛
𝑘=1 ∏ lim

𝑥→𝑎
𝑈𝑘(𝑥)𝑛

𝑘=1 . 

Theorem 10. The boundary of the fraction of two 

functions is equal to the fraction of the boundaries of these 

functions if the limit of the denominator is nonzero  

lim
𝑥→𝑎

lim
𝑥→𝑎

𝑈(𝑥)

lim
𝑥→𝑎

𝑉(𝑥)
(lim

𝑥→𝑎
𝑉(𝑥) ≠ 0). 

Theorem 11. If between the corresponding values of 

three functions U (x), V (x), Z (x) the inequalities 

U (x) ≤ Z (x) ≤ V (x) holding U (x) and V (x) for x → a go to 
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the same boundary b, then Z (x) for x → a goes to the same 

boundary b. 

Theorem 12. If for x → a the function y (x) acquires 

non-negative values of y (x) ≥ 0 and thus goes to the 

boundary b, then b is a non-negative number (b ≥ 0). 

Theorem 13. If the inequality V (x) ≥ U (x) holds 

between the corresponding values of two functions U (x) and 

V (x) that go to the boundaries at x → a, then the inequality 

lim
𝑥→𝑎

𝑉(𝑥) ≥ lim
𝑥→𝑎

𝑈(𝑥) holds. 

Theorem14. Each variable of limited increasing 

value has a limit. 

Theorem 15. Each variable bounded by a decreasing 

value has a limit. 

4.1.   The First remarkable limit 

Theorem 16. lim
𝑥→0

sin 𝑥

𝑥
= 1 is called the first 

remarkable boundary. 

4.2.   The Second remarkable limit 

Theorem 17. The variable (1 +
1

𝑛
)

𝑛

 for n → ∞ has a 

boundary between the numbers of 2 and 3. 
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Definition. The limit of the variable (1 +
1

𝑛
)

𝑛

 for 

n → ∞ is called number e: 

lim
𝑛→∞

(1 +
1

𝑛
)

𝑛

= 𝑒. 

By theorem 17 

2≤ e ≤3. 

The number e is a transcendental number, first 

proved by S. Hermit in 1873. Therefore, e = 2,718 281 828 

459 045 ... 

Theorem 18. lim
𝑥→∞

(1 +
1

𝑥
)

𝑥

= 𝑒 is called the second 

remarkable limit. 

5.   Infinitesimal differences 

Let α (x) and β (x) be infinitesimals for x → a 

(x → ∞). 

Definition 1. If lim
𝑥→𝑎

(𝑥→∞)

𝛼(𝑥)

𝛽(𝑥)
= 𝐴 ≠ 0 (A is a finite 

number), then infinitely small α (x) and β (x) are called 

infinitesimals of the same order. 
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Definition 2. If lim
𝑥→𝑎

(𝑥→∞)

𝛼(𝑥)

𝛽(𝑥)
= 0 ( lim

𝑥→𝑎
(𝑥→∞)

𝛽(𝑥)

𝛼(𝑥)
= ∞), 

then α (x) is called a small value of a higher order than the 

order of β (x). 

Definition 3. An infinitesimal quantity α (x) is called 

an infinitesimal of k-th order with respect to β (x), if α (x) and 

β k (x) are infinitesimal quantities of the same order, then 

lim
𝑥→𝑎

(𝑥→∞)

𝛼(𝑥)

𝛽(𝑥)
= 𝐴 ≠ 0. 

Definition 4. If lim
𝑥→𝑎

(𝑥→∞)

𝛼(𝑥)

𝛽(𝑥)
= 1, then α (x) and β (x) 

are called equivalent to infinitesimal quantities and should be 

as written α (x) ~ β (x). 

Theorem 19. If α (x) ~ β (x) for x → a or x → ∞, 

then (α (x) – β (x)) - infinitesimal value of higher order then 

α (x), and then β (x). 

Theorem 20. If lim
𝑥→𝑎

(𝑥→∞)

𝛼(𝑥) = 0, lim
𝑥→𝑎

(𝑥→∞)

𝑏(𝑥) = 0 and 

(α (x) – β (x)) is an infinite a small value of the order higher 

then α (x), or β (x), then α (x) ~ β (x). 

6.   Table of equivalent infinitesimals 

Let α (x) → 0 for x → 0. 
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 sin 𝛼(𝑥)~𝛼(𝑥) 

 tan 𝛼(𝑥)~𝛼(𝑥) 

 1 − cos 𝛼(𝑥)~
1

2
(𝛼(𝑥))2 

 arccos 𝛼(𝑥)~𝛼(𝑥) 

 arctan 𝛼(𝑥)~𝛼(𝑥) 

 ln(1 + 𝛼(𝑥))~𝛼(𝑥) 

 𝑎𝛼(𝑥) − 1~𝛼(𝑥) ln 𝑎     (𝑎 > 0) 

 𝑒𝛼(𝑥) − 1~𝛼(𝑥)  (special case 7°, when 𝑎 = 𝑒) 

 (1 + 𝛼(𝑥))
𝑝

− 1~𝑝𝛼(𝑥) 

 √1 + 𝛼(𝑥)
𝑛

− 1~
𝛼(𝑋)

𝑛
(special case 9°, when 𝑝 =

1

𝑛
) 

7.   Continuity of functions 

Let a function y = f (x) be defined at some point 

x = x0 and in its vicinity. Let us denote y0 = f (x0). We give an 

increment ∆x of the argument x and obtain x = x0+∆x. Then 

the function y = f (x) will increase ∆y = f (x0+∆x) – f (x0).  

Definition. The function y = f (x) is said to be 

continuous at the point x0 (or at a value x = x0) if it is defined 

in some neighborhood, then 

lim
∆𝑥→0

∆𝑦 = 0, 
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or 

lim
∆𝑥→0

(𝑓 (𝑥0 + ∆𝑥) –  𝑓 (𝑥0)) = 0. 

The condition of continuity can be written as follows: 

lim
∆𝑥→0

𝑓 (𝑥0 + ∆𝑥) = 𝑓 (𝑥0). 

Let x = x0+∆x. Then, x → x0 when ∆x → 0 that is, 

𝑥0 = lim
∆𝑥→0

𝑥 = lim
𝑥→ lim

𝑥→𝑥0

𝑥. 

Thus, it is possible to rewrite the condition of continuity in a 

new form: 

lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓 ( lim
𝑥→𝑥0

). 

Therefore, if the function f (x) is continuous at x → x0, the 

notations lim and f may be swapped. 

 

 

Figure 6 – Continuity of the function 
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Geometrically, the continuity of the function at a 

given point means that the difference of the ordinates in the 

graph of the function y = f (x) at the points x0+∆x and x0∆y 

will be arbitrarily small in absolute value if |∆x| is small 

enough (Fig. 6). 

Theorem 21. If the functions f1 (x) and f2 (x) are 

continuous at the point x0, then the function 

φ (x) = f1 (x) + f2 (x) is also continuous at the point x0. 

Theorem 22. The product of two continuous 

functions at the point x0 is a continuous function at the point 

x0. 

Theorem 23. The fraction of two continuous 

functions at the point x0 is a function continuous at the point 

x0 if the denominator at the point x0 is not zero. 

Theorem 24. If a function u = φ (x) is continuous at 

the point x = x0 and a function y = f (u) is continuous at the 

point u = u0 and u0 = φ (x), then a complex function 

y = f (φ (x)) is continuous at the point x = x0. 

Definition. If the function f (x) is continuous at each 

point of the interval (a, b), where a < b, then the function f (x) 

is called to be continuous in the interval (a, b). 
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Definition. If the function f (x) is defined for x = a 

and lim
𝑥→𝑎+0

𝑓(𝑥) = 𝑓(𝑎), then the function f (x) is right 

continuous at the point x = a. 

Definition. If the function f (x) is defined for x = b 

and lim
𝑥→𝑏−0

𝑓(𝑥) = 𝑓(𝑏), then the function f (x) is left 

continuous at the point x = b. 

Definition. If the function f (x) is continuous in the 

interval (a, b), right continuous on the at the point x = a and 

left continuous at the point x = b, then the function f (x) is 

called to be continuous in the segment [a, b]. 

Definition. If at any point x = x* for the function 

y = f (x) at least one of the conditions of continuity is not 

satisfied, that is if 1) the function is indefinite for x = x*; 2) 

the function f (x) is defined for x = x*, but there is no 

lim
𝑥 → 𝑥∗

𝑓(𝑥); and 3) the function f (x) is defined for x = x*, there 

is lim
𝑥 → 𝑥∗

𝑓(𝑥), but lim
𝑥 → 𝑥∗

𝑓(𝑥) ≠ lim
𝑥 → 𝑥∗

𝑓(𝑥∗), than for x = x*. 

The function f (x) is called discontinuous and the point x = x* 

is called the breakpoint of the function f (x). 

8.   Properties of continuous functions in closed interval 

Property 1. If the function f (x) is continuous in the 

segment [a, b] where a < b, then there is at least one point 
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𝑥 = 𝑥̅ on this segment that the value of the function f (x) at 

this point will not exceed the value of f (x) at other points of 

the segment [a, b], that is 𝑓(𝑥̅) ≤ 𝑓(𝑥), 𝑥 ∈ [𝑎, 𝑏], and there 

is at least one point 𝑥 = 𝑥̿ that the value of f (x) at this point 

will be not less than the value of f (x) at other points of the 

segment [a, b], that is 𝑓(𝑥̿) ≥ 𝑓(𝑥), 𝑥 ∈ [𝑎, 𝑏]. 

Definition. The value of 𝑓(𝑥̅) is called the smallest 

value of the function f (x) in the segment [a, b] and is denoted 

by m, the value of 𝑓(𝑥̿) is called the largest value of the 

function f (x) in the segment [a, b] and is denoted by M. 

Then property 1 can be formulated as follows: 

The function f (x), continuous in the interval [a, b], reaches 

its smallest and largest values on this segment. 

Conclusion from property 1: If the function f (x) is 

continuous in the interval [a, b], then it is bounded on this 

segment. 

Property 2. If the function f (x) is continuous in the 

segment [a, b] and at its ends the function has the values with 

different signs, that is f (a) · f (b) < 0, then inside the segment 

there is at least one-point x = x0 (a < x0 < b) that the value of 

the function at this point is zero, that is f (x0) = 0. 

Geometrically, this means that the graph of the 

function y = f (x) intersects the axis Ox if the points of the 
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graph of the function y = f (x) lie on different sides of the axis 

Ox (Fig. 7). 

 

 

Figure 7 – The zeros of a function 

 

Figure 7 shows three such points: x01, x02, x03. 

Property 3. If the function f (x) is continuous in the 

intervals [a, b] and m and M are the smallest and largest 

values of the function f (x), respectively, then for any number 

μ that satisfies the inequality  

m < μ <M 

in the segment [a, b], there is at least one point x = x* that 

satisfies f (x*) = μ. 
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Figure 8 – The largest and smallest values of the function  

on the segment 

 

There are three such points in Fig. 8: x*1, x*2, x*3. 
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Differential Calculus: 

 Functions of a Single Variable 

 

9.   Definition of a derivative. Geometrical and 

mechanical interpretation of the derivative 

Suppose that the function y = b (x) is given on some 

interval (a; b). Take any point x (a; b) and give x an arbitrary 

increment ∆ x such that the point x + ∆ x also belongs to the 

interval (a; b). Find the derivative of the function: ∆ y = f 

(x + ∆ x) – f (x). 

Definition. The derivative of the function y = f (x) at 

the point x is the limit of the ratio of the increment of the 

function ∆ y at this point to the increment of the argument 

∆ x, when the increment of the argument goes to zero in any 

way. 

The derivative of the function y = f (x) at the point x 

is denoted by one of the following symbols: 

𝑓′(𝑥); 𝑦′;  
𝑑𝑓

𝑑𝑥
;  

𝑑𝑦

𝑑𝑥
;  𝑦𝑥

′ . Thus, by definition 

𝑓𝑥
′ = lim

∆𝑥→0

∆𝑦

∆𝑥
= lim

∆𝑥→0

𝑓(𝑥+∆𝑥∆)−𝑓(𝑥)

∆𝑥
. 
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For each value x, the derivative f ‘ (x) is a complete 

value, i.e the derivative is also a function depending on x. 

If the limit lim
∆𝑥→0

∆𝑦

∆𝑥
 at some point x does not exist, 

then derivative f ‘ (x) does not exist at this point either. 

The operation of finding the derivative of the 

function f (x) is called differentiation of this function. 

In general, if the function y = f (x) describes some 

process, then the derivative y  f  (x) is the rate of change of 

this process. Now define unilateral derivatives. Let the 

function y = f (x) be defined around x. 

Definition. If there is a limit 

lim
∆𝑥→0
∆𝑥>0

∆𝑦

∆𝑥
= lim

∆𝑥→0
∆𝑥>0

𝑓(𝑥+∆𝑥)−𝑓(𝑥)

∆𝑥
, 

then it is called the right derivative of f (x) at the point x and 

it is denoted by 

𝑓+
′ = lim

∆𝑥→0
∆𝑥>0

∆𝑦

∆𝑥
= lim

∆𝑥→0
∆𝑥>0

𝑓(𝑥+∆𝑥)−𝑓(𝑥)

∆𝑥
. 

Similarly, the left derivative is determined: 

𝑓−
′ = lim

∆𝑥→0
∆𝑥>0

∆𝑦

∆𝑥
= lim

∆𝑥→0
∆𝑥>0

𝑓(𝑥+∆𝑥)−𝑓(𝑥)

∆𝑥
. 
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If the function f (x) is given on the segment [a, b], 

then the derivative at point a means the right derivative, and 

at point b–the left derivative. 

10.    Differentiation of functions 

Definition. The function y = f (x) is said to be 

differentiated when x = x0 if the function f (x) has a derivative 

at the point x = x0, i.e if it exists: 

lim
∆𝑥→0

∆𝑦

∆𝑥
= lim

∆𝑥→0

𝑓(𝑥0+∆𝑥)−𝑓(𝑥)

∆𝑥
= 𝑓′(𝑥0). 

Definition. The function y = f (x) is said to be 

differentiated on the segment [a, b] (intervals (a, b)) if it is 

differentiated at each point of this segment (interval). 

Theorem 25. If the function y = f (x) is differentiated 

at the point x0, then it is continuous at this point. 

It follows from this theorem that at breakpoints the 

function has no derivative. 

The inverse statement is incorrect, i.e there are 

continuous functions that at some points are not 

differentiated. 
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11.    Rules for differentiation of functions 

Theorem 26. If y = C where C is a constant number, 

then y’ = C’ = 0. 

Theorem 27. If y = x, then y’ = x’ = 1. 

Theorem 28. If the functions U = U (x) and V = V (x) 

are differentiated at the point x, then the function U + V is 

also differentiated at this point and the formula is valid: 

(𝑈′ + 𝑉′) = 𝑈′ + 𝑉′. 

Theorem 29. If the functions U = U (x) and V = V (x) 

are differentiated at the point x, the function U (x) · V (x) is 

also differentiated at this point and is the formula valid: 

(𝑈′ ∙ 𝑉′) = 𝑈′𝑉 ∙ 𝑉′𝑈. 

Theorem 30. The constant factor can be taken out as 

a sign of the derivative, i.e 

(𝐶 ∙ 𝑈′) = 𝐶 ∙ 𝑈′. 

Theorem 31. If the functions U = U (x) and V = V (x) 

are differentiated at the point x, then the function 
𝑈(𝑥)

𝑉(𝑥)
(𝑉(𝑥) ≠

≠ 0) is also differenced at this point and the formula is valid: 

(
𝑈

𝑉
)

′
=

𝑈′∙𝑉−𝑈∙𝑉′

𝑉2
. 
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Theorem 32. (Derivative of a compound function). 

If the function U = φ (x) has the derivative U’x at the point x 

and the function y = f (U) has the derivative y’U at the 

corresponding point U, then the composite function 

y = f (φ (x)) has the derivative y’x at the point x and the valid 

formula y’x = y’U · U’x is valid. 

12.    Differentiation of trigonometric functions 

Theorem 33. Derivatives of trigonometric functions 

are found by the formulas: 

(sin 𝑥)′ = cos 𝑥; 

(cos 𝑥)′ = −sin 𝑥; 

(tg 𝑥)′ =
1

cos2𝑥
 ,         𝑥 ≠

𝜋

2
+ 𝜋𝑛,     𝑛 ∈ 𝑍; 

(ctg 𝑥)′ = −
1

sin2𝑥
 ,         𝑥 ≠ 𝜋𝑘,     𝑘 ∈ 𝑍. 

13.   Derivative of a logarithmic function 

𝑦 = log𝑎 𝑥    (𝑎 > 0,    𝑎 ≠ 1)   and  𝑦 = ln|𝑥|. 

Theorem 34. Valid formulas: 
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          (log𝑎 𝑥)′ =
1

𝑥
log𝑎 𝑒    or   (log𝑎 𝑥)′ =

1

𝑥 ln 𝑎
 ,

𝑥 > 0,    𝑎 > 0,   𝑎 ≠ 1;   

 (ln|𝑥|)′,   𝑥 ≠ 0. 

14.    Differentiation of inverse functions 

Theorem 35. If there is an inverse function y = y (x) 

for the function x = x (y) (i.e both functions are strictly 

monotonic at some intervals) and the function x = x (y) has a 

nonzero derivative x'y at the point y, then y corresponds to the 

point x, the function y = y (x) has a derivative y'x, and 

𝑦𝑥
′ =

1

𝑥𝑦
′ . 

Now consider the function 𝑦 = arcsin 𝑥  (|𝑥| < 1,

|𝑦| <
𝜋

2
). 

This is the inverse function for the function x = sin y. 

By theorem we have 

            (arcsin 𝑥)𝑥
′ = 𝑦𝑥

′ =
1

(sin 𝑦)𝑦
′ =

1

cos 𝑦
=

1

√1 − sin2𝑦
=  

=
1

√1−𝑥2
, 
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because cos y = 0 for |𝑦| <
𝜋

2
. 

Thus, we obtain the formula: 

(arcsin 𝑥)′ =
1

√1 − 𝑥2
,    for    |𝑥| < 1. 

Now consider the function 𝑦 = arccos 𝑥  (|𝑥| < 1,         

 0 < 𝑦 < 𝜋) – the inverse function for the function x = cos y. 

According to theorem 

            (arccos 𝑥)𝑥
′ = 𝑦𝑥

′ =
1

(cos 𝑦)𝑦
′ =

1

− sin 𝑥
= −

1

√1−cos2𝑦
=

= −
1

√1−𝑥2
 , 

because siny > 0 for 0 < y < π. 

Another equality is proved: 

(arccos 𝑥)′ = −
1

√1 − 𝑥2
,    for    |𝑥| < 1. 

Function  𝑦 = 𝑎𝑟𝑐𝑡𝑔 𝑥  (−∞ < 𝑥 < +∞,     −
𝜋

2
< 𝑦 <

𝜋

2
 

is an inverse function for the function x = tg x. Then 

(𝑎𝑟𝑐𝑡𝑔 𝑥)𝑥
′ =

1

(𝑡𝑔 𝑦)𝑦
′

= 𝑐𝑜𝑠2𝑥 =
1

1 + 𝑥2
. 

So, (𝑎𝑟𝑐𝑡𝑔 𝑥)′ =
1

1+𝑥2
. 
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Function  𝑦 = 𝑎𝑟𝑐𝑡𝑔 𝑥  (−∞ < 𝑥 < +∞,     0 < 𝑦 < 𝜋) 

is an inverse function for the function x = ctg x.  

(𝑎𝑟𝑐𝑐𝑡𝑔 𝑥)𝑥
′ =

1

(𝑐𝑡𝑔 𝑦)𝑦
′

= −𝑠𝑖𝑛2𝑥 = −
1

1 + 𝑥2
. 

We have proved that (𝑎𝑟𝑐𝑐𝑡𝑔 𝑥)′ = −
1

1+𝑥2
. 

15.    Differentiation of hyperbolic functions 

Definition. Hyperbolic sine sh x, cosine ch x, tangent 

thx and cotangent cth x are functions that are determined by 

the following formulas: 

𝑠ℎ𝑥 =
𝑒𝑥 − 𝑒−𝑥

2
 

 



32 

𝑐ℎ𝑥 =
𝑒𝑥 + 𝑒−𝑥

2
 

 

 

𝑡ℎ𝑥 =
𝑠ℎ𝑥

𝑐ℎ𝑥
=

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
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𝑐𝑡ℎ𝑥 =
𝑐ℎ𝑥

𝑠ℎ𝑥
=

𝑒𝑥 + 𝑒−𝑥

𝑒𝑥 − 𝑒−𝑥
    𝑥 ≠ 0 

 

 

The functions y = sh x, y = ch x, y = th x are defined 

for all real x, and the function y = cth x for all real x except 

x = 0. 

Hyperbolic functions are related by as follows: 

1. 𝑐ℎ2𝑥 − 𝑠ℎ2𝑥 = 1; 

2. 𝑠ℎ(𝑎 + 𝑏) = 𝑠ℎ𝑎 ∙ 𝑐ℎ𝑏 + 𝑐ℎ𝑏 ∙ 𝑠ℎ𝑎; 

3. 𝑠ℎ(𝑎 − 𝑏) = 𝑠ℎ𝑎 ∙ 𝑐ℎ𝑏 − 𝑐ℎ𝑏 ∙ 𝑠ℎ𝑎; 

4. 𝑐ℎ(𝑎 + 𝑏) = 𝑐ℎ𝑎 ∙ 𝑐ℎ𝑏 + 𝑠ℎ𝑎 ∙ 𝑠ℎ𝑏; 

5. 𝑐ℎ(𝑎 − 𝑏) = 𝑐ℎ𝑎 ∙ 𝑐ℎ𝑏 − 𝑠ℎ𝑎 ∙ 𝑠ℎ𝑏; 
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6. 𝑠ℎ2𝑥 = 2𝑠ℎ𝑥 ∙ 𝑐ℎ𝑥; 

7. 𝑐ℎ2𝑥 = 𝑐ℎ2𝑥 + 𝑠ℎ2𝑥; 

8. 𝑡ℎ(𝑎 + 𝑏) =
𝑡ℎ𝑎+𝑡ℎ𝑏

1+𝑡ℎ𝑎∙𝑡ℎ𝑏
; 

9. 𝑡ℎ(𝑎 − 𝑏) =
𝑡ℎ𝑎−𝑡ℎ𝑏

1−𝑡ℎ𝑎∙𝑡ℎ𝑏
; 

10. 𝑐ℎ(𝑎 + 𝑏) =
1+𝑐ℎ𝑎∙𝑐ℎ𝑏

𝑐ℎ𝑎+𝑐ℎ𝑏
; 

11. 𝑐ℎ(𝑎 − 𝑏) =
1−𝑐ℎ𝑎∙𝑐ℎ𝑏

𝑐ℎ𝑎−𝑐ℎ𝑏
; 

12. 1 − 𝑡ℎ2𝑥 =
1

𝑐ℎ2𝑥
; 

13. 1 − 𝑐ℎ2𝑥 = −
1

𝑠ℎ2𝑥
. 

Theorem 36. Derivatives of hyperbolic functions are 

determined by formulas: 

(𝑠ℎ 𝑥)′ = 𝑐ℎ 𝑥; 

(𝑐ℎ 𝑥)′ = 𝑠ℎ 𝑥; 

(𝑡ℎ 𝑥)′ =
1

𝑐ℎ 2𝑥
; 

(𝑐ℎ 𝑥)′ = −
1

𝑠ℎ 2𝑥
,    𝑥 ≠ 0. 



35 

16.    Table of derivatives 

The previous paragraphs provide formulas by which 

you can find derivatives without using the definitions of the 

derivative. 

We assume that U = U (x) and V = V (x) are 

differentiated functions, and C – a constant value. 

We write down the rules of differentiation and 

derivatives of basic elementary functions in the table: 

1. (𝑢 + 𝑣)′ = 𝑢′ + 𝑣′; 

2. (𝑢 ∙ 𝑣)′ = 𝑢′𝑣 + 𝑢𝑣′; 

3. (𝐶 ∙ 𝑢)′ = 𝐶 ∙ (𝑢)′; 

4. (
𝑢

𝑣
)

′
=

𝑢′𝑣−𝑢𝑣′

𝑣2 ,    𝑣 ≠ 0; 

5. 𝑦𝑥
′ = 𝑦𝑢

′ ∙ 𝑢𝑥
′ ,     if 𝑦 = 𝑓(𝑢)  and  𝑢 = 𝑢(𝑥); 

6. 𝐶′ = 0; 

7. 𝑥′ = 1; 

8. (𝑢𝛼)′ = 𝛼 ∙ 𝑢𝛼−1 ∙ 𝑢′; 

9. (𝑎𝑢)′ = 𝑎𝑢 ∙ ln 𝑎 ∙ 𝑢′,    𝑎 > 0,   𝑎 ≠ 1; 

10. (𝑒𝑢)′ = 𝑒𝑢 ∙ 𝑢′; 
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11. (log𝑎 𝑢)′ =
1

𝑢 ln 𝑎
∙ 𝑢′, 𝑎 > 0,   𝑎 ≠ 1 ; 

12. (ln 𝑢)′ =
1

𝑢
∙ 𝑢′; 

13. (sin 𝑢)′ = cos 𝑢 ∙ 𝑢′; 

14. (cos 𝑢)′ = −sin 𝑢 ∙ 𝑢′; 

15. (tg 𝑢)′ =
1

cos2 𝑢
∙ 𝑢′; 

16. (ctg 𝑢)′ = −
1

sin2 𝑢
∙ 𝑢′; 

17. (sh 𝑢)′ = ch 𝑢 ∙ 𝑢′; 

18. (ch 𝑢)′ = sh 𝑢 ∙ 𝑢′; 

19. (th 𝑢)′ =
1

ch2 𝑢
∙ 𝑢′; 

20. (cth 𝑢)′ = −
1

sh2 𝑢
∙ 𝑢′; 

21. (arcsin 𝑢)′ =
1

√1−𝑢2
∙ 𝑢′; 

22. (arccos 𝑢)′ = −
1

√1−𝑢2
∙ 𝑢′; 

23. (arctg 𝑢)′ =
1

1+𝑢2 ∙ 𝑢′; 

24. (arcctg 𝑢)′ = −
1

1+𝑢2 ∙ 𝑢′. 
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17.    Implicit differentiation  

Let the differentiated function y (x) be given 

implicitly by the equation: 

F (x, y) = 0. 

To differentiate an implicit function, we need to take 

the derivative of x from both parts of this equation, assuming 

that y is a function of x, and solve the resulting equation with 

respect to y’. 

18.    Parametric differentiation 

Let the differentiated function y from the variable x 

be given by parametric equations: 

{
𝑥 = 𝜑(𝑡)

𝑦 = 𝜓(𝑡),
    𝛼 < 𝑡 < 𝛽 . 

Suppose that the functions 𝑥 = 𝜑(𝑡) and 𝑦 = 𝜓(𝑡) 

have derivatives of the variable t, and the function 𝑥 = 𝜑(𝑡) 

has an inverse function 𝑡 = Φ(𝑥) which also has a derivative 

(of the variable x). Then the parametrically given function y 

of x can be considered as a composite function 𝑦 = Ψ(𝑡), 

where 𝑡 = Φ(𝑥) and 𝑦𝑥
′ = 𝑦𝑡 

′ ∙ 𝑡𝑥
′ = 𝑦𝑡

′ ∙
1

𝑥𝑡
′ =

𝑦𝑡
′

𝑥𝑡
′. Therefore 

𝑦𝑥
′ =

𝑦𝑡
′

𝑥𝑡
′. 
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19.    Differential of a function. Properties of the 

differential 

Let the function y = f (x) be differentiated at the 

point 𝑥 ∈ [𝑎, 𝑏], i.e at this point it has a derivative: 

𝑦′(𝑥) = lim
∆𝑥→0

∆𝑦

∆𝑥
, 

where 

∆𝑦

∆𝑥
= 𝑦′(𝑥) + 𝛼,   𝛼 → 0   at   ∆𝑥 → 0,    

or 

∆𝑦 = 𝑦′(𝑥) + ∆𝑥 + 𝛼 ∙ ∆𝑥. 

The first of the terms is linear with respect to ∆ x and 

for ∆ x → 0 and 𝑓′(𝑥) ≠ 0 is infinitesimally small of the 

same order of ∆ x, because lim
∆𝑥→0

𝑓′(𝑥)

∆𝑥
= 𝑓′(𝑥); and the second 

term is infinitely small of a higher order than ∆ x, because 

lim
∆𝑥→0

𝛼∙∆𝑥

∆𝑥
= lim

∆𝑥→0
2 = 0. Thus, the first term is the main part 

of the increment of the function, linear with respect to the 

increment of the argument. 

Definition. The differential dy of the function 

y = y (x) at the point x is called the principal, linear with 
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respect to ∆ x, part of the increment of the function y (x) at 

this point: 

𝑑𝑦 = 𝑦′(𝑥) ∙ ∆𝑥. 

The differential dy is also called a first-order 

differential. 

If y = x, then y’ = x’ = 1, so dy = dx = ∆ x, i.e the 

differential dx of the independent variable x coincides with its 

increment ∆ x. Therefore, the differential dy can be written 

as: dy = y’ (x) dx. 

Let's find out the geometric interpretation of the 

differential 

 

Figure 9 – Differential of a function 

𝐴𝐶 = ∆𝑦, from ∆𝐴𝑀𝐵 ∶  
𝐴𝐵

𝐴𝑀
= 𝑡𝑔𝛼 

⟹ 𝐴𝐵 = 𝐴𝑀 ∙ 𝑡𝑔𝛼 = ∆𝑥 ∙ 𝑦′(𝑥) = 𝑦′(𝑥)𝑑𝑥 = 𝑑𝑦, 
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when it is clear that the differential of the function y (x) at 

given values of x is equal to the increment of the ordinate 

tangent to the curve y = y (x) at the point x. The increment of 

the function is equal to the increment of the ordinate of the 

curve (Fig. 9). 

Since the differential of the function is equal to the 

product of its derivative and the differential of the 

independent variable, the properties of the differential 

immediately follow from the corresponding properties of the 

derivative (differentiation rules). If u and v are differentiated 

functions from x, C is a constant, then we write down the rules 

for finding differentials: 

1. 𝑑𝐶 = 0; 

2. 𝑑(𝑢 + 𝑣) = 𝑑𝑢 + 𝑑𝑣; 

3. 𝑑(𝑢 ∙ 𝑣) = 𝑣 ∙ 𝑑𝑢 + 𝑢 ∙ 𝑑𝑣; 

4. 𝑑(𝐶 ∙ 𝑢) = 𝐶 ∙ 𝑑𝑢; 

5. 𝑑 (
𝑢

𝑣
) =

𝑣∙𝑑𝑢−𝑢∙𝑑𝑣

𝑣2 . 

If y = y (u) is a complex function, where u = u (x), 

and y (u), u (x) are differentiated at points u and x, then there 

is a derivative 𝑦𝑥
′ = 𝑦𝑢

′ ∙ 𝑢𝑥
′ . Hence, there is a differential 

𝑑𝑦 = 𝑦𝑥
′ ∙ 𝑑𝑥 = 𝑦𝑢

′ ∙ 𝑢𝑥
′ ∙ 𝑑𝑥 = 𝑦𝑢

′ ∙ 𝑑𝑢, i.e 𝑑𝑦 = 𝑦𝑢
′ ∙ 𝑑𝑢. 
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We see that the first-order differential of the function 

is determined by the same formula, regardless of whether the 

variable function is an independent variable or it is a function 

of another variable. This property of the differential is called 

the form invariance (invariance) of differential equation. 

Now consider the application of the differential in 

approximate calculations. Since the differential dy of the 

function y = y (x) at the point x is the principal, linear with 

respect to ∆ x, then the part of the increment of the function 

y (x) at this point: 

∆𝑦 ≈ 𝑑𝑦, 

or 

𝑦(𝑥 + ∆𝑥) − 𝑦(𝑥) ≈ 𝑦′(𝑥) ∙ 𝑑𝑥, 

where 

𝑦(𝑥 + ∆𝑥) ≈ 𝑦(𝑥) + 𝑦′(𝑥) ∙ ∆𝑥. 

This is the formula for approximate calculations. 

20.    Higher–order derivatives and differentials 

Let the function y = y (x) be differentiated on the 

interval (a; b). Then its derivative y’ (x) (first-order 

derivative) is also a function of x. If the function y’ (x) also 

has a derivative in the interval (a; b) or at some point x is (a; 
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b), then this last derivative is called a second-order derivative 

and is denoted as follows: 

𝑦′′ ,       
𝑑2𝑦

𝑑𝑥2
,

𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑥
).  

A derivative of a second-order derivative, if it exists, 

is called of derivative of the third order and it is denoted as 

follows: 

𝑦′′′ ,       
𝑑3𝑦

𝑑𝑥3
,

𝑑

𝑑𝑥
(

𝑑2𝑦

𝑑𝑥2
).  

The derivative of the n–th order of the function 

y = y (x) is called the derivative of the first order, if it exists, 

from the derivative of the (n–1) – th order and is denoted as 

follows: 

𝑦(𝑛) ,       
𝑑(𝑛)𝑦

𝑑𝑥(𝑛)
,

𝑑

𝑑𝑥
(

𝑑(𝑛−1)𝑦

𝑑𝑥(𝑛−1)
).  

Derivatives of the order above the first order are 

called the derivatives of the higher order. 

For n-th derivatives there are formulas: 

1. (𝑢 + 𝑣)(𝑛) = 𝑢(𝑛) + 𝑣(𝑛); 

2. (𝐶 ∙ 𝑢)(𝑛) = 𝐶 ∙ 𝑢(𝑛) 
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3. (𝑢 ∙ 𝑣)(𝑛) = 𝑢(𝑛) ∙ 𝑣 + 𝑛 ∙ 𝑢(𝑛−1) ∙ 𝑣′ +
𝑛(𝑛−1)

2!
𝑢(𝑛−2) ∙

𝑣′′ +
𝑛(𝑛−1)(𝑛−2)

3!
𝑢(𝑛−3) ∙ 𝑣′′′ + ⋯ + 𝑛𝑢′𝑣(𝑛−1) + 𝑢 ∙

𝑣(𝑛). 

Formula (3) is called the Leibniz formula. 

If the function y = y (x) is implicitly given by the 

equality F (x; y) = 0, differentiating this equality by x and 

solving the obtained equation with respect to y’, we find a 

derivative of the first order. To find the derivative of the 

second order, it is necessary to differentiate by x the 

derivative of the first order and to substitute its value in the 

received relation. Continuing the differentiation, you can find 

one after another successive derivative of any order. All of 

them will be expressed through the independent variable x 

and the function y itself. 

If the function y = y (x) is given parametrically by 

equations {
𝑥 = 𝑥(𝑡)

𝑦 = 𝑦(𝑡)
,    𝑡 ∈ (𝛼; 𝛽)  and has a derivative of the 

first order 
𝑑𝑦

𝑑𝑥
=

𝑦𝑡
′

𝑥𝑡
′, then the derivative of the second order 

from the function y = y (x), if it exists, is determined by the 

formula 
𝑑2𝑦

𝑑𝑥2
=

(
𝑑𝑦

𝑑𝑥
)

𝑡

′

𝑥𝑡
′   
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(really,
𝑑2𝑦

𝑑𝑥2
= (

𝑑𝑦

𝑑𝑥
)

𝑥

′

= (
𝑑𝑦

𝑑𝑥
)

𝑡

′

∙ 𝑡𝑥
′ =

(
𝑑𝑦

𝑑𝑥
)

𝑡

′

𝑥𝑡
′ ) . 

Similarly, find the derivative of the n-th order 

(n > 2); 

𝑑𝑛𝑦

𝑑𝑥𝑛
=

(
𝑑(𝑛−1)𝑦

𝑑𝑥(𝑛−1))
𝑡

′

𝑥𝑡
′  . 

The differential of the second order d 2 y of the twice 

differentiated function y = y (x) is called the differential from 

the differential of the first order: 

𝑑2𝑦 = 𝑑(𝑑𝑦). 

Since dx does not depend on x, then when 

differentiating the first-order differential dx can be taken as 

the sign of the derivative. Therefore, we have 

𝑑2𝑦 = 𝑑(𝑑𝑦) = 𝑑(𝑦′(𝑥)𝑑𝑥) = (𝑦′(𝑥)𝑑𝑥)𝑥
′ ∙ 𝑑𝑥

= 𝑦′′(𝑥)𝑑𝑥𝑑𝑥 = 𝑦′′(𝑥)𝑑𝑥2. 

that is 

𝑑2𝑦 = 𝑦′′(𝑥)𝑑𝑥2. 

A third-order differential d 3 y, if it exists, is the 

differential from a second-order differential: 

𝑑3𝑦 = 𝑑(𝑑2𝑦) = 𝑑(𝑦′′(𝑥)𝑑𝑥2) = 𝑦′′′(𝑥)𝑑𝑥3. 
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A differential of the nth order d n y, if it exists, is 

called the differential from differential (n–1)-th order: 

𝑑𝑛𝑦 = 𝑑(𝑑(𝑛−1)𝑦) = 𝑦(𝑛)(𝑥)𝑑𝑥𝑛. 

Higher-order differentials do not have invariant 

properties. We show this by the example of a second-order 

differential. Suppose that a doubly differentiated compound 

function y = y (u) is given, where u = u (x). Find for it a 

second-order differential: 

𝑑2𝑦 = 𝑑(𝑑𝑦) = 𝑑(𝑦𝑢
′ ∙ 𝑑𝑢) =. 𝑑(𝑦𝑢

′ ) ∙ 𝑑𝑢 + 𝑦𝑢
′ 𝑑(𝑑𝑢)

= 𝑦𝑢𝑢
′′ ∙ 𝑑𝑢𝑑𝑢 + 𝑦𝑢

′ ∙ 𝑑2𝑢

= 𝑦𝑢𝑢
′′ ∙ 𝑑𝑢2 + 𝑦𝑢

′ ∙ 𝑢𝑥𝑥
′′ ∙ 𝑑𝑥2, 

that is 

𝑑2𝑦 = 𝑦𝑢𝑢
′′ ∙ 𝑑𝑢2 + 𝑦𝑢

′ ∙ 𝑢𝑥𝑥
′′ ∙ 𝑑𝑥2. 

 

Therefore, the second-order differential has no 

invariant properties. 
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The Study of Functions 

21.    Increasing and decreasing functions. Extreme 

points 

Let the function f (x) be defined on some interval 

(a, b), and x0 is the inner point of this interval. 

Definition. The function f (x) is called ascending at 

the point x0 if there is an environment (x0 – δ; x0 + δ), δ > 0, 

point x0, which is contained in the interval (a, b), and such 

that f (x) < f (x0) for all x ∈  (x0 – δ; x0) and f (x) > f (x0) for all 

x ∈  (x0; x0 + δ). 

Definition. If there is such an environment (x0 – δ; 

x0 + δ), δ > 0 of the point x0 in the interval (a, b) and 

f (x) < f (x0) for all x ∈  (x0 – δ) ∪ (x0 + δ), the point x0 is 

called the point of maximum of the function f (x), and the 

number f (x0) is called the maximum function f (x). 

Definition. If there is such a circle (x0 – δ; x0 + δ), 

δ > 0, point x0, which is contained in the interval (a, b), and 

f (x) < f (x0) for all x ∈  (x0 – δ; x0), and f (x) > f (x0), x ≠ x0, 

then the point x0 is called the minimum point of the function 

f (x), and the number f (x0) is called the minimum of the 

function f (x). 
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Note that the points of maximum and minimum of 

the function are called extreme points or the maximum and 

minimum extremes of the function. 

Definition. If a function is increasing (decreasing) at 

each internal point of the interval (a, b), then it is called 

increasing (decreasing) on this interval. 

Theorem 37. (Sufficient signs of growth (decline) of 

the function at the point). If the function f (x) at the interior 

point x0 of the interval (a, b) has a derivative f ‘ (x0) and 

f ‘ (x0) > 0 (f ‘ (x0) < 0), then the function f (x) at the point x0 

increases (decreases). 

22.    Finding the largest and smallest values of the 

function on the segment 

Suppose that a continuous function f (x) is given on 

the interval (a; b). Then, according to the Weierstrass 

theorem, the function on this segment reaches its largest and 

smallest values. However, the Weierstrass theorem does not 

give a way to define those points of the segment (a; b) in 

which the function reaches its largest (smallest) value. The 

theorem only states that such points exist. This can be both 

the inner points of the segment and its end points. Fig.10 

shows a graph of a continuous function, which at the inner 
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point c1 of the segment (a; b) acquires the largest value, and 

at the inner point c2 – the smallest value. 

Fig. 10.2 shows a graph of the function, which at the 

ends of the segment acquires the smallest and largest values. 

However, it may be that one of the values of the 

function acquires inside the segment, and the other – at one 

end. Thus, Figure 10.3 shows a graph of a continuous 

function, which at the left end of the segment (point a) 

acquires the smallest value, and at the inner point (point c) – 

the largest value. 

If the function acquires the largest (smallest) value 

within the segment, then this largest (smallest) value is both 

the local maximum (minimum) of the given function. Hence 

the way to find the points at which the function acquires the 

largest (smallest) value. 

 

 

Figure 10 – Function graphs 
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To find the largest (smallest) value of a continuous 

function on the segment (a; b), it is necessary to find all local 

maxima (minima) and compare them with the values of the 

function, which it acquires at the ends of the segment. The 

largest (smallest) number among the found numbers will be 

the largest (smallest) value of the function on the segment 

(a; b). 

23. Conditional extremum 

Let the function z = f (x ;y) be definite and continuous 

in a closed domain D. 

Then at some points in this area, it reaches its greatest 

and least importance. 

These values are achieved by the function at the inner 

points of the segment or at points lying on the boundary of 

the region.  

Rule of finding the largest and smallest values of the 

function: 

1) Find all the critical points of the function belonging 

to a given area, and calculate the value of the function in 

them. 

2) Find the largest and smallest values of the function 

at the boundaries of the domain. 
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3) Compare all the found values of the function and 

choose from them the largest and smallest values. 

Conditional Extremum of the Function of Several 

Variables 

The conditional extremum of the function z = f (x; y) 

is the extremum of this function, reached under the condition 

that the arguments x and y are connected by the equation 

g (x; y) = C. 

The equation g (x; y) = C is called the coupling 

equation. 

Geometric interpretation: the choice of the largest 

(smallest) value among the points, lying on the line defined 

by the connection equation. 

To find a conditional extremum, it is necessary to 

express one variable by another from the connection 

equation: y = φ (x). 

Substitute this expression by a function of two 

variables and obtain the function of one variable: 

z = f (x, y) = f (x, φ (x)). 

Its extremum will be the conditional extremum of the 

function z = f (x; y). 
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24. Convexity and concavity of graphs. Inflection 

points 

Let the curve be given by the equation y = f(x), where 

f (x) is a continuous function that has a continuous derivative 

f ’ (x) on some interval [a; b]. Then at each point of such 

curve you can draw a tangent. Such curves are called smooth. 

Take an arbitrary point on the curve M0 (x0;y0), where 

𝑥0 ∈ 〈𝑎; 𝑏〉, y0 = f (x0). 

Definition 1. If there is a circle around 

(𝑥0 –  𝛿;  𝑥0 +  𝛿) ⊂  〈𝑎; 𝑏〉 the point 𝑥0 such that for all 

(𝑥0 − 𝛿;  𝑥0 + 𝛿)(𝑥 ≠ 𝑥0) the corresponding points of the 

curve lie above the tangent drawn to the curve at the point M0, 

then the curve at the point M0 is called concave upwards 

(Fig. 11). 

 

Figure 11 – Concave upwards 
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Definition 2. If there is a circle around 

(𝑥0 –  𝛿;  𝑥0 +  𝛿) ⊂  〈𝑎; 𝑏〉 the point x0 such that for all 

(𝑥0 − 𝛿;  𝑥0 + 𝛿)(𝑥 ≠ 𝑥0) the corresponding points of the 

curve lie below the tangent drawn to the curve at the point 

M0, the curve at the point M0 is called concave downwards 

(Fig. 12). 

 

 

Figure 12 – Concave downwards 

 

Definition 3. A point M0 is called the point of 

inflection of the curve if there is a circle around 

(𝑥0 –  𝛿;  𝑥0 +  𝛿) ⊂ (𝑎; 𝑏) the point X0 such that for all 𝑥 ∈

(𝑥0 ;  𝑥0 +  𝛿) curve concave downwards (upwards) 

(Fig. 13). 

 



53 

 

Figure 13 – Concave upwards 

 

If the curve is given by the equation y = f (x) and is 

concave upwards at each point of some interval, then it is 

called concave on this interval. If the curve at each point of 

the gap is concave downwards, it is called convex at this 

interval. 

Therefore, the curve shown in Fig. 14 is concave. The 

curve shown in Fig. 15 is convex. 

 

 

Figure 14 – Concave curve 
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Figure 15 – Convex curve 

 

The inflection point of the curve is still defined as the 

point at which the curve changes its type of concavity. 

Theorem. Let the curve be given by the equation 

y = f (x) and let there be a circle around (𝑥0 –  𝛿;  𝑥0 +  𝛿) ⊂

⊂  〈𝑎; 𝑏〉 the point x0 such that the function f (x) for each 𝑥 ∈

∈ (𝑥0 –  𝛿;  𝑥0 +  𝛿) has derivatives up to and including the 

second order, and f ’ (x) at the point x0 is a continuous 

function. Then, if f ’’ (x0) > 0, then the curve at the point 

M0 (x0; f (x0)) is concave upwards; if f ’’ (x0) < 0, then the 

curve at the point M0 (x0; f (x0)) is concave downwards. 

So we have the following rule for finding the 

inflection points of the curve given by the equation y = f (x). 

In order to find the inflection points of the curve given 

by the equation y = f (x), we must: 
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1) find the derivative of the second order f ’’ (x) and 

equate this derivative to zero; 

2) among the roots of the equation f ’’ (x) = 0 choose 

only the real roots and those that belong to the domain of the 

function; in the vicinity of each selected root determine the 

sign of the derivative of the second order f ’’ (x), first at values 

of x less than the considered root and then at values of x 

greater than this root. If at the transition x through the selected 

root x0 the derivative f ’’ (x) changes sign, then the point 

M0 (x0; f (x0)) is the inflection point of a given curve. If the 

sign of the second-order derivative does not change when x 

passes through x0, then M0 (x0; f (x0)) is not the inflection 

point of the curve. 

Note that the rule for finding inflection points is 

similar to the first rule for finding extreme points. The only 

difference is that when finding extreme points, the change in 

the sign of the first-order derivative is checked, whereas when 

the inflection points are found, the change in the sign of the 

second-order derivative is checked. 
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