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1. Preliminaries

An ordinary differential equation is an equation containing
the derivatives of an unknown function x(t), with ta real variable,
and possibly containing the unknown function itself, the
independent variable ¢, and given functions. In addition, initial
conditions, which the unknown function is required to satisfy,
may be given. With such an equation, the object is two-fold:

(i) to find the unknown function or class of functions satisfying
the equation,

(if) whether (i) is possible or not, to gain some information about
the behavior of any function satisfying the equation.



2. The Notion of Stability

A system is called stable if its long-termbehavior does not
depend significantly on the initial conditions.

In terms of differential equations, the simplest system is
represented by an ODE of the form

apy"” + al_y, +ay = f(0) 1)
The general solution to (1) has the form
y =0y, + Gy, +yp, 2)

where C;, C, — arbitrary constants, y, is a particular solution to

(1), and C;y, + C,y, is the complementary function, i. e., the
general solution to the associated homogeneous equation (the one

having f(t) = 0).
The initial conditions determine the exact values of C; and C,.
So from (2), the system modeled by (1) is stable if and only if for
every choice of C;, C, Cyy; + C,y, » 0ast — oo,
If the ODE (1) is stable, the two parts of the solution (2) are
named: y, — steady-state solution; C;y,; + C,y,—transient.
Let we have the system of n differential equations

dxi ]
E=ﬁ(tix1)x21"';xn); l=1,2,...,n

with initial conditions
x;(ty) = X;io, i=12..,n.
We assume that the functions f;(¢t, x; , x5 , ..., x,,) are defined and
continuous together with its partial derivatives on the set {t €
[tg, +0),x; € R™}. Then without loss of generality we may
assume that the initial time is zero: t, = 0.
It is convenient to write the system of differential

equations in vector form:



X' =f(tX),
where X = (x1,x5, ..., %), =11 o000 fn)

In real systems, the initial conditions are specified with
some precision. This raises the obvious question: how small
changes in initial conditions affect the behavior of solutions for
large time — in the extreme case when t — ?

If the trajectory of the system varies little under small
perturbations of the initial position, we say that the motion of the
system is stable.

A mathematically rigorous definition of stability using € —
&-notation was proposed in 1892 by the Russian mathematician
A. M. Lyapunov (1857—1918). Let us consider in more detail the
concept of stability introduced by Lyapunov.

2.1. Lyapunov Stability

The solution ¢ (t) of the system of differential equations

X'=f(t,X)

with initial conditions
X(0) =X,

is stable (in the sense of Lyapunov) if for any &> 0 there

exists § = &(g) > 0, such that if

1X(0) —(0)| <6, then [X() — ()] <e
6



for all values t > 0.Otherwise, the solution ¢(t)is said to
be unstable.
As the norm for measuring the distance between two

points one can use, for example, the Euclidean metric ||x,||:

n
§:|Xi|2 .
i=1

In the casen = 2, Lyapunov stability means that any

llxell =

trajectory X(t), which starts at §(&)-neighborhood of the
point ¢ (0), remains inside the tube with a maximum radius ¢ for
all t > 0 (Figure 1).

Stability in the sense of Lyapunov

Figure 1



2.2. Asymptotic and Exponential Stability

If the solution ¢ (t) of the system of differential equations
is not only stable in the sense of Lyapunov, but also satisfies the
relationship

lim|X(6) — ()] = 0
provided that
1X(0) — ¢(0)| <6,
then we say that the solution ¢(t) is asymptotically stable.

In this case, all solutions that are sufficiently close

to ¢(0) at the initial time, gradually converge to ¢(t) with

increasing t. Schematically, this is shown in Figure 2.

Asymptotic stability

Figure 2



If the solution ¢(t) is asymptotically stable and, in

addition, from the condition
1X(0) —(0)| <6
it follows that
1X(t) — o] < a|X(0) — p(0)|e~F*

for all t = 0, we say that the solution ¢(t) is exponentially stable.
In this case all solutions that are close to ¢(0) at the initial time
converge to ¢(t) with the rate (greater than or equal), which is

determined by an exponential function with parameters «,
(Fig. 3).

Exponential stability

Figure 3
The general theory of stability, in addition to stability in

the sense of Lyapunov, contains many other concepts and



definitions of stable movement. In particular, the concepts

of orbital and structural stability are important.

2.3. Orbital Stability

Orbital stability describes the behavior of a closed
trajectory (orbit) under the action of small external perturbations.
Consider the autonomous system

dx; .
It = fi(t,x1,%5, e, Xp), x;(ty) = X0, i=12,..,n,

that is the system of equations, the right hand side of which does

not contain the independent variable t. In vector form, the

autonomous system is written as

X' =f(X), where X =(x1,%3,....xn), f={1.f2,,fn)

Let ¢(t) be a periodic solution of the given autonomous

system, that is has the form of a closed trajectory (orbit).

If for any € > 0 there is a constant § = §(¢) > 0 such that the

trajectory of any solution X(t) starting at the §-neighborhood of

the trajectory ¢ (t) remains in the e-neighborhood of the

trajectory ¢ (t) forall t > 0, then the trajectory ¢(t) is called

orbitally stable (Fig. 4).

10



Orbital stability
\d<d
X(t
d<e
-
0 X,
Figure 4

By analogy with the asymptotic stability in the sense of
Lyapunov, one can also introduce the concept of asymptotic
orbital stability. This type of motion occurs, for example, in

systems with a limit cycle.

2.4. Structural Stability

Suppose that we have two autonomous systems with
similar properties — in the sense that their phase portraits have the
same singular points and geometrically similar trajectories. Such

systems can be called structurally stable.

11



In the strict definition, it is required that these systems
are orbitally topologically equivalent, i. e. there must be
a homeomorphism (this means one-to-one continuous mapping),
which converts the family of trajectories of the first system into
the family of trajectories of the second system while preserving
the direction of motion. In these terms, the structural stability is
defined as follows.

Consider an autonomous system, which in the unperturbed
and perturbed state is described, respectively, by two equations:
X' =fX),
X' =f(X)+eg(X).

If for any bounded and continuously differentiable vector
function g(X) there exists a number e > 0such that the
trajectories of the unperturbed and perturbed systems are orbitally
topologically equivalent, then the system is called structurally
stable.

3. Reduction to the Problem of Stability
of the Zero Solution

Let an arbitrary non-autonomous system
X' =f(tX)

12



be given with the initial condition X(0) = X, (Cauchy problem).
Here the vector-valued function f is defined on the set {t €
€ [to, +0),x; € R™}.
Suppose that the system has a solution ¢(t), the stability

of which is to be examined. The stability analysis is simplified if
we consider perturbations

Z(t) = X(t) — (1),
for which we obtain the differential equation

Z'(t) = f(t,2).

Obviously, the last equation is satisfied by the trivial solution

Z(t,0) =0,
which corresponds to the identity
X(t) = o(0).

Thus, the study of stability of the solution ¢(t) can be
replaced by the study of stability of the function Z(t) near the
point Z = 0.

4. Stability of Linear Systems

The linear system
X' =A0)X+f(t)
is said to be stable if all its solutions are stable in the sense of
Lyapunov.

It turns out that the non-homogeneous linear system is
stable with any free term f(t)if the zero solution of the associated
homogeneous system

X =A()X
is stable. Therefore, when investigating stability in the class of
linear systems, it is sufficient to analyze the homogeneous
differential systems. In the simplest case, when the coefficient
matrix A is constant, the stability conditions are formulated in
terms of the eigenvalues of the matrix A.

13



Consider the homogeneous linear system
X' = AX,

where A is a constant matrix of size n X n. Such a system (which
is also autonomous) has the zero solution X(t) = 0. The stability
of this solution is determined by the following theorems.

Let A; be the eigenvalues of A.
Theorem 1. A linear homogeneous system with constant

coefficients is stable in the sense of Lyapunov if and only
if all eigenvalues A; of A satisfy the condition

Re[2;]<0 (i=1,2,..,n).

If the real part of an eigenvalue is equal to zero, the algebraic and
geometric multiplicity of the eigenvalue must be the same (i.e. the
corresponding Jordan block must be of size 1 x 1).

Theorem 2. A linear homogeneous system with constant

coefficients is asymptotically stable if and only if all
eigenvalues 4; have negative real parts:

Re[A;]] <0 (i=1,2,..,n).

Theorem 3. A linear homogeneous system with constant
coefficients is unstable if at least one of the conditions is
satisfied:

o The matrix A has an eigenvalue 4; with a positive real
part;
o The matrix A has an eigenvalue A; with zero real part, and

the geometric multiplicity of the eigenvalue 4; is less than
its algebraic multiplicity.

14



5. Equilibrium Points of Linear Autonomous Systems

Let a second order linear homogeneous system with
constant coefficients be given:

dx N
—=ax+a

dt 11 12Y
—=a,x+a

dt 21 22Y

This system of equations is autonomous since the right
hand sides of the equations do not explicitly contain the
independent variable t.

In matrix form, the system of equations can be written as

' _* _[Q11 Q12
X' = AXwhereX = [y] A= [a21 azz] .
The equilibrium positions can be found by solving the
stationary equation

AX=0.

This equation has the wunique solution X =0 if the
matrix A is nonsingular, i. e. provided that det A # 0. In the case
of a singular matrix, the system has an infinite number of
equilibrium points.

Classification of equilibrium points is determined by the
eigenvalues 4,, 4, of the matrix A. The numbers 4,, 4,can be
found by solving the auxiliary equation

2
A" —(a11 + az)Ad +a,,a,; — a0, = 0.

15



In general, when the matrix A is nonsingular, there are 4 different
types of equilibrium points:

Ne Equilibrium Eigenvalues4,, 4,
Point

1 Node A4, A, are real numbers of the same sign
(41 -4, >0)

2 Saddle Ay, A, are real numbers and non-zero
of opposite sign (4, - 4, < 0)

3 Focus Ay, A, are complex numbers, the real
parts are equal and non-zero
(ReAy =Re 1, #0)

4 Center Ay, 4, are purely imaginary numbers
(ReAd; =Re A, =0)

The stability of equilibrium points is determined by
the general theorems on stability (see chapter 1). So, if the real
eigenvalues (or real parts of complex eigenvalues) are negative,
then the equilibrium point is asymptotically stable. Examples of
such equilibrium positions are stable node and stable focus.

If the real part of at least one eigenvalue is positive, the
corresponding equilibrium point is unstable. For example, it may
be a saddle.

Finally, in the case of purely imaginary roots (when the
equilibrium point is acenter), we are dealing with the
classical stability in the sense of Lyapunov.

Our next goal is to study the behavior of solutions near the
equilibrium positions. For second order systems, it is convenient
to do this graphically using the phase portrait, which is a set
of phase trajectories in the coordinate plane. The arrows on the
phase trajectories show the direction of movement of the point
(i.e., a particular state of the system) over time.

Let’s consider each type of equilibrium point.

16




Stable and Unstable Node

The eigenvalues 4,, 4, of the points of type “node” satisfy
the conditions:
A, A2, ER A,-2,>0.
The following particular cases may arise here.

o The rootsAq, Ayare distinct (A # A;)and negative

(A'l < 0, A’Z < 0)

Draw a schematic phase portrait for this system. Suppose for
definiteness that|4,| < |4,]. The general solution has the form
X(t) = CeMtV, + Cret2tv,,
where V; = (V,,V,)T,  V, = (V,,V,,)Tare  eigenvectors
corresponding to the eigenvalues 4;, 4, and C;, C, are arbitrary
constants.

Since both eigenvalues are negative, then the solution X =
= 0 is asymptotically stable. Such an equilibrium point is
called stable node. Ast — oo, the phase curves tend to the
origin X = 0.

Specify the direction of the phase trajectories. Since

x(t) = ClVlle}‘lt + szlzelzt, y(t) = CIVZIellt +
+ CyVppetet |

the derivative Z—z is
dy CiVydieMt + C,V,,4,e%2t
dx CiVi1A et + C,V 4,42t
Divide the numerator and denominator by e#1t:
dy  CiVadi+ CVph,ePe)t
dx  CiVi A+ CoVyph,eGa—Ant

17



In this case, 4, — A4; < 0. Therefore, the terms with the
exponential function tend to zero ast — oc.As a result,
at  C; # 0, we obtain:

m d—y = @
toodx Vi;
that is the phase trajectories become parallel to the
eigenvector V; ast — oo.
If C; = 0, the derivative at any t equals
dy _Var
dx V'
i. e. the phase trajectory lies on a line directed along the
eigenvector V,.

Now we consider the behavior of the phase trajectories

as t » —oo. Obviously, the coordinates x(t), y(t)tend to infinity,

and the derivative Z—Z at C, # 0 takes the following form:
dy C1Vo1de®1™128 4 01552, _Va
dx  C Vi die@=2t + C, V4, Vi, '

that is the phase curves at the points at infinity become parallel to
the vector V,.
Accordingly, when C, = 0, the derivative is
dy _Vax
dx  Viq
In this case, the phase trajectory is determined by the direction of
the eigenvector V; .
Given the above properties of the phase trajectories, the
phase portrait of a stable node is shown schematically in Figure 5.

18



Stable Node Unstable Node
YA YA

Figure 5 Figure 6
Similarly, we can study the behavior of the phase
trajectories for other types of equilibrium points. Furthermore,
omitting the detailed analysis, we consider basic qualitative
characteristics of the other equilibrium points.
o The roots A;, A,are distinct (A4; # 1,) and positive
(41 >0, 1, > 0).

In this case, the point X = 0 is an unstable node. Its phase
portrait is shown in Figure 6.

Note that in the case of both stable and unstable node, the
phase trajectories touch the line, which is directed along the
eigenvector corresponding to the smallest (in absolute value)
eigenvalue A.

Dicritical Node

Let the auxiliary equation have one zero root of
multiplicity 2, i. e. consider the case 1, = 4, = 1 # 0. The system
has a basis of two eigenvectors, i. e. the geometric multiplicity of
the eigenvalue 4 is 2. In terms of the linear algebra, this means

19



that the dimension of the eigenspace of Ais equal
to 2: dimker A = 2. This situation occurs in systems of the form
dx _1 dy -1
o e .
The direction of the phase trajectories depends on the sign

ofA. Here the following two cases can arise:

o Cased; =24, =A<0.
Such an equilibrium position is called astable dicritical
node (Fig. 7).

o Cased; =24, =1>0.
This combination of eigenvalues corresponds to an unstable
dicritical node (Fig. 8).

Stable Dicritical Node Unstable Dicritical Node
YA YA

=Y

Figure 7 Figure 8

Singular Node

Let the eigenvalues of A be again coincident: 4, = 4, =

= A1 # 0. Unlike the previous case, we assume that the
geometric multiplicity of the eigenvalue (or in other words, the
dimension of the eigenspace) is now 1. This means that the
matrix A has only one eigenvector V;. The second linearly

20



independent vector required for the basis is defined as a
generalized eigenvector W; connected to V;.

o Cased; =24, =A<0.
The equilibrium point is called stable singular node (Fig. 9).

o Cased; =24, =2>0.
The equilibrium  position is called unstable  singular
node (Fig. 10).

Stable Singular Node Unstable Singular Node

Figure 9 Figure 10
Saddle

The equilibrium point is asaddle under the following
condition:

A,A2, ER A,-2,<0.

Since one of the eigenvalues is positive, the saddle is an
unstable equilibrium point. Suppose, for example, 4; < 0,4, > 0.
The eigenvalues 4, and 4, are associated with the corresponding
eigenvectors V; and V,. The straight lines directed along the
eigenvectors V;, V,, are called separatrices. These are the
asymptotes of other phase trajectories that have the form of a
hyperbola. Each of the separatrices can be associated with a
certain direction of motion.

21



If the separatrix is associated with a negative eigenvalue

A1 <0, 1. e. in our case is directed along the vector V,, the

movement along it occurs towards the equilibrium point X =

= 0. And conversely, at 4, > 0,i. e. for the separatrix

associated with the vector V,, the movement is directed from the

origin. The phase portrait of the saddle is shown schematically
in Figure 11.

Saddle

Figure 11

Stable and Unstable Focus

Now suppose that the eigenvalues 4,, A, are complex
numbers whose real parts are non-zero. If the matrix A4 is
composed of real numbers, the complex roots will be presented in
the form of complex conjugate numbers:

A, =axif.
Find out what kind of phase trajectories are in the neighborhood
of the origin. Construct a complex solution X (t) corresponding
to the eigenvalue 4, = a + if:
X, (t) = ehty, = @Bty 4+ jW),

22



where V; = U + iW is the complex-valued eigenvector associated

with the eigenvalue 4,, U and W are real vector functions. As a

result, we obtain:

X, (t) = e ePt(U + iW) = e*(cos St + i sin Bt )(U + iW) =

= e (Ucospt +iUsinpBt + i W cos ft —W sin St )=
= e% (U cos Bt —W sin Bt) + ie* (U sin St + W cos fit) .

The real and imaginary parts in the last expression form

the general solution of the type

X(t) = C1Re[X1(D)] + C.Im[X4(D)] =
= e“[C; (U cos ft —W sin ft) + C,(U sin ft + W cos fit)] =
= e [U (C,cos Bt + C,sin ft) + W (C,cos it + C;sin fit) .

We represent the constant C,,C, as
C; =Csiné, C,=Ccos?d,

where § is an auxiliary angle. Then the solution is written as

X(t) = Ce*[U (sin & cos Bt +cos & sin ft) + W (cos & cos it —
— sin & sin Bt)] = Ce**[Usin(Bt + §) + W cos(Bt + 8)].

Thus, the solution X(t) can be expanded in the basis of the
vectors U and W:
X(t) = u(®OU +n®OW,
where the coefficients u(t), n(t) are given by
u(t) = Ce*sin(Bt + &§), n(t) = Ce*cos(Bt + ).

This shows that the phase trajectories are spirals. When a < 0, the
spirals twist approaching the origin. Such an equilibrium position

23



is called stable focus. Accordingly, when a > 0, we have
an unstable focus.

The direction of twist can be identified by the sign of the
coefficient a,; in the original matrix A. Indeed, consider the

derivative %, for example, at the point (1,0):

dy
E(LO) =az1 1+ az; -0 =ay.

The positive coefficient a,; > 0 corresponds to the twist
counterclockwise as shown in Figure 12. When a,; < 0, the
spirals will twist in a clockwise direction (Fig. 13).

Thus, taking into account the direction of twist, there are
only 4 different types of focus. Schematically, they are shown in
Figures 12—15.

Stable Focus Stable Focus
YA YA
a,>0 a, <0
- o . >
0 X 0 X
Figure 12 Figure 13
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Unstable Focus Unstable Focus

YA 17
a,<0 a,>0
0 X I X
Figure 14 Figure 15

Center

If the eigenvalues of the matrix A are purely imaginary
numbers, then this equilibrium point is called a center. For a
matrix with real elements, the imaginary eigenvalues are complex
conjugate pairs. In the case of a center, the phase trajectories are
formally obtained from the equation of spirals ata =0
are ellipses, i. e. they describe periodic motion of a point in the
phase space. A center equilibrium position is stable in the sense of
Lyapunov.

There are two types of centers, which differ in the
direction of movement of the points (Fig. 16, 17). As in the case
of focus, the direction of movement can be determined by the sign

of the derivative % at some point. If we take the point (1.0), then

dy

dt (1.0) = ay;.
that is the direction of rotation is determined by the sign of the
coefficient a,;

25



Center Center

YA YA

a,<0 a,,>0

=Y
xY

Figure 16 Figure 17

Thus, we have considered different types of equilibrium
points in the case of a non-singular matrix A (det A # 0). Taking
into account the direction of phase trajectories, there are
total 13 different phase portraits (shown, respectively, in
Figures 2—17).

We now turn to the case of a singular matrix A.

Singular Matrix
If the matrix is singular, then it has one or both

eigenvalues equal to zero. In this case, there are the following
special cases:

o Cased; #0,A, =0.
Here, the general solution has the form

X(t) = Clelltvl + CZVZ,

26



where V; = (Vy,,V,)T, V, = (Vy,,V,,)T, are the eigenvectors
corresponding to the eigenvalues A;and 4,. It turns out that in this
case the whole line passing through the origin and directed along
the vector V, consists of the equilibrium points (these points do
not have a special name). The phase trajectories are rays parallel
to the other eigenvector V;. Depending on the sign of 4, the
motion at t — oooccurs either in the direction of the
line V, (Figure 18), or away from it (Fig. 19).

Singufar Matrix: &;#0,A;=0 Singular Matrix: 3.,#0,,=0

Figure 18 Figure 19

o Cased; =24, =0,dimkerA = 2.

In this case, the dimension of the eigenspace of the matrix is
equal to 2 and, therefore, there are two eigenvectors V; and
V,. This may happen when A is the zero matrix. The general
solution is given by

X(t) =V, + C,V,.
It follows that every point in the plane is an equilibrium position
of the system.

27



o Cased; =24, =0,dimkerA =1.

This case is different from the previous one in that there is
only one eigenvector (the matrix A will then be non-zero). To
construct a basis, we can take the generalized eigenvector
W, connected to V; as a second linearly independent vector. The
general solution can be written as

X(t) = (C1+Crt)V; + C,W; .
Here, all points of the straight line passing through the origin and
directed along the eigenvector V; are unstable equilibrium
positions. The phase trajectories are straight lines parallel
to V;. The direction of movement along these lines ast —
oo depends on the constant C,: with C, < 0, the motion is from
left to right, and with C, > 0 — in the opposite direction (Fig. 20).

Singular Matrix:
A= ho=0, dim ker A =1

YA
v,
/ i
X
Figure 20

As seen, there are 4 different phase portraits in the case of a
singular matrix. Therefore, the linear second order autonomous
system allows total 17 different phase portraits.

28



Bifurcation Diagram

In the above, we have reviewed the classification of
equilibrium points of a linear system based on the eigenvalues.
However, the type of an equilibrium point can be determined
without computing the eigenvalues A4,A,, knowing only the
determinant of the matrix det A and its trace tr A.

Recall that the trace of the matrix is the number equal to
the sum of the diagonal elements:

a;1a
= (aziazz) ) trd = aiq + ar, ,
detA = a;1a5, — 4,057 .
Indeed, the auxiliary equation of the matrix is

A% —(agq + az)A+ ay1a5; — a0, = 0.

It can be written in terms of the determinant and the trace of the
matrix:

A2 —trA-A+detA=0.
The discriminant of this quadratic equation is given by
D = (tr A)? — 4det A.

Thus, the bifurcation curve delineating the different stability
modes is a parabola in the plane (tr 4, det A)(Fig. 21):

det A = (tr A)Z

e = ) .

29



det A

@ Center

Stable Unstable
Focus Focus

Unstable
Node

»1rA

Stable
Node

Qﬁ‘%’

Saddle

Figure 21

The equilibrium points of the type “focus” and “center” are
above the parabola. The points of the type “center” are located on
the positive y-axis, i. e. provided that tr A = 0. The “nodes” and
“saddles” are below the parabola. The parabola itself contains
dicritical or singular nodes.

Stable modes of motion exist in the upper left quadrant of
the bifurcation diagram. The other three quadrants correspond to
unstable equilibrium positions.

6. How to Sketch a Phase Portrait

To draw the phase portrait of a second order linear autonomous
system with constant coefficients

a2 e

it is necessary to do the following steps:

30



Hint:

oo

Find the eigenvalues of the matrix by solving the auxiliary
equation
A — (a1 + a)A + ay10y; — A12a; = 0.

Determine the type of the equilibrium point and the character
of stability.

The type of the equilibrium position can also be determined

based on the bifurcation diagram (Fig. 18), knowing the trace

and the determinant of the matrix:

trA = a11 + azz detA - |a11 alz
’ Az1 Az

Find the equations of the isoclines:

d . . .
—::anx + a,,y(vertical isocline),

d
Z—Jt’:amx + a,,y(horizontal isocline).
If the equilibrium position is anodeor asaddle, it is
necessary to compute the eigenvectors and draw the
asymptotes parallel to the eigenvectors and passing through
the origin.

Schematically draw the phase portrait.

Show the direction of motion along the phase trajectories
(this depends on the stability or instability of the equilibrium
point). In the case of afocus, one should determine the

direction of trajectories twisting. This can be done by
calculating the velocity vector (%,Z—D at any point, for

example, at the point (1.0). Similarly, we can determine the
direction of movement if the equilibrium position is a center.

| = QA11022 — Aq2021.

The algorithm described here is not a rigid scheme. In the study
of a particular system, other tricks and techniques are acceptable
in order to draw up the phase portrait.
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