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1. Preliminaries 

 

An ordinary differential equation is an equation containing 

the derivatives of an unknown function 𝑥(𝑡), with 𝑡a real variable, 

and possibly containing the unknown function itself, the 

independent variable 𝑡, and given functions. In addition, initial 

conditions, which the unknown function is required to satisfy, 

may be given. With such an equation, the object is two-fold:  

(i) to find the unknown function or class of functions satisfying 

the equation,  

(ii) whether (i) is possible or not, to gain some information about 

the behavior of any function satisfying the equation. 
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2. The Notion of Stability 

 

A system is called stable if its long-termbehavior does not 

depend significantly on the initial conditions.  

In terms of differential equations, the simplest system is 

represented by an ODE of the form  

𝑎0𝑦′′ + 𝑎1𝑦′ + 𝑎2𝑦 = 𝑓(𝑡)                                        (1) 

The general solution to (1) has the form  

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 + 𝑦𝑝,                                          (2) 

where 𝐶1 , 𝐶2  – arbitrary constants, 𝑦𝑝 is a particular solution to 

(1), and 𝐶1𝑦1 + 𝐶2𝑦2 is the complementary function, i. e., the 

general solution to the associated homogeneous equation (the one 

having 𝑓(𝑡) = 0).  

The initial conditions determine the exact values of 𝐶1 and 𝐶2. 

So from (2), the system modeled by (1) is stable if and only if for 

every choice of 𝐶1, 𝐶2   𝐶1𝑦1 + 𝐶2𝑦2 → 0 as 𝑡 → ∞. 

If the ODE (1) is stable, the two parts of the solution (2) are 

named: 𝑦𝑝 – steady-state solution; 𝐶1𝑦1 + 𝐶2𝑦2–transient. 

Let we have the system of 𝑛 differential equations 

𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑡, 𝑥1 , 𝑥2 , … , 𝑥𝑛),           𝑖 = 1, 2, … , 𝑛 

with initial conditions 

𝑥𝑖(𝑡0) = 𝑥𝑖0 ,          𝑖 = 1, 2, … , 𝑛. 

We assume that the functions 𝑓𝑖(𝑡, 𝑥1 , 𝑥2 , … , 𝑥𝑛) are defined and 

continuous together with its partial derivatives on the set {𝑡 ∈

[𝑡0, +∞), 𝑥𝑖 ∈ 𝑅𝑛}. Then without loss of generality we may 

assume that the initial time is zero: 𝑡0 = 0. 

It is convenient to write the system of differential 

equations in vector form: 
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𝑿′ = 𝒇(𝑡, 𝑿), 

where   𝑿 = (𝑥1 , 𝑥2 , … , 𝑥𝑛),   𝒇 = (𝑓1 , 𝑓2 , … , 𝑓𝑛). 

In real systems, the initial conditions are specified with 

some precision. This raises the obvious question: how small 

changes in initial conditions affect the behavior of solutions for 

large time – in the extreme case when 𝑡 → ∞? 

If the trajectory of the system varies little under small 

perturbations of the initial position, we say that the motion of the 

system is stable. 

A mathematically rigorous definition of stability using 𝜀 −

𝛿-notation was proposed in 1892 by the Russian mathematician  

A. M. Lyapunov (1857−1918). Let us consider in more detail the 

concept of stability introduced by Lyapunov. 

 

2.1. Lyapunov Stability 

 

The solution 𝜑(𝑡) of the system of differential equations 

𝑿′ = 𝒇(𝑡, 𝑿) 

with initial conditions 

𝑿(0) = 𝑿0 

is stable (in the sense of Lyapunov) if for any 𝜀 > 0 there 

exists 𝛿 = 𝛿(𝜀) > 0, such that if 

|𝑿(0) − 𝜑(0)| < 𝛿,     then  |𝑿(𝑡) − 𝜑(𝑡)| < 𝜀 
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for all values 𝑡 ≥ 0. Otherwise, the solution 𝜑(𝑡) is said to 

be unstable. 

As the norm for measuring the distance between two 

points one can use, for example, the Euclidean metric ‖𝑥𝑒‖: 

‖𝑥𝑒‖ = √∑|𝑥𝑖|2

𝑛

𝑖=1

  . 

In the case 𝑛 = 2, Lyapunov stability means that any 

trajectory 𝑿(𝑡), which starts at 𝛿(𝜀)-neighborhood of the 

point 𝜑(0), remains inside the tube with a maximum radius 𝜀 for 

all 𝑡 ≥ 0 (Figure 1). 

 

Figure 1 
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2.2. Asymptotic and Exponential Stability 

 

If the solution 𝜑(𝑡)  of the system of differential equations 

is not only stable in the sense of Lyapunov, but also satisfies the 

relationship 

lim
𝑡→∞

|𝑿(𝑡) − 𝜑(𝑡)| = 0 

provided that 

|𝑿(0) − 𝜑(0)| < 𝛿, 

then we say that the solution 𝜑(𝑡)  is asymptotically stable. 

In this case, all solutions that are sufficiently close 

to 𝜑(0)  at the initial time, gradually converge to 𝜑(𝑡)  with 

increasing 𝑡. Schematically, this is shown in Figure 2. 

 

Figure 2 
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If the solution 𝜑(𝑡)  is asymptotically stable and, in 

addition, from the condition 

|𝑿(0) − 𝜑(0)| < 𝛿 

it follows that 

|𝑿(𝑡) − 𝜑(𝑡)| < 𝛼|𝑿(0) − 𝜑(0)|𝑒−𝛽𝑡 

for all 𝑡 ≥ 0, we say that the solution 𝜑(𝑡) is exponentially stable. 

In this case all solutions that are close to 𝜑(0) at the initial time 

converge to 𝜑(𝑡) with the rate (greater than or equal), which is 

determined by an exponential function with parameters  𝛼,  𝛽  

(Fig. 3).  

 

Figure 3 

The general theory of stability, in addition to stability in 

the sense of Lyapunov, contains many other concepts and 
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definitions of stable movement. In particular, the concepts 

of orbital and structural stability are important. 

 

2.3. Orbital Stability 

 

Orbital stability describes the behavior of a closed 

trajectory (orbit) under the action of small external perturbations. 

Consider the autonomous system 

𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑡, 𝑥1 , 𝑥2 , … , 𝑥𝑛),         𝑥𝑖(𝑡0) = 𝑥𝑖0 ,          𝑖 = 1, 2, … , 𝑛, 

that is the system of equations, the right hand side of which does 

not contain the independent variable 𝑡. In vector form, the 

autonomous system is written as 

𝑿′ = 𝒇(𝑿),   where   𝑿 = (𝑥1 , 𝑥2 , … , 𝑥𝑛),   𝒇 = (𝑓1 , 𝑓2 , … , 𝑓𝑛) 

Let 𝜑(𝑡) be a periodic solution of the given autonomous 

system, that is has the form of a closed trajectory (orbit). 

If for any 𝜀 > 0 there is a constant 𝛿 = 𝛿(𝜀) > 0 such that the 

trajectory of any solution 𝑿(𝑡) starting at the 𝛿-neighborhood of 

the trajectory 𝜑(𝑡) remains in the 𝜀-neighborhood of the 

trajectory 𝜑(𝑡) forall 𝑡 ≥ 0, then the trajectory 𝜑(𝑡) is called 

orbitally stable (Fig. 4). 
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Figure 4 

By analogy with the asymptotic stability in the sense of 

Lyapunov, one can also introduce the concept of asymptotic 

orbital stability. This type of motion occurs, for example, in 

systems with a limit cycle. 

 

2.4. Structural Stability 

 

Suppose that we have two autonomous systems with 

similar properties − in the sense that their phase portraits have the 

same singular points and geometrically similar trajectories. Such 

systems can be called structurally stable. 
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In the strict definition, it is required that these systems 

are orbitally topologically equivalent, i. e. there must be 

a homeomorphism (this means one-to-one continuous mapping), 

which converts the family of trajectories of the first system into 

the family of trajectories of the second system while preserving 

the direction of motion. In these terms, the structural stability is 

defined as follows. 

Consider an autonomous system, which in the unperturbed 

and perturbed state is described, respectively, by two equations: 

𝑿′ = 𝒇(𝑿), 

𝑿′ = 𝒇(𝑿) + 𝜀𝒈(𝑿). 

If for any bounded and continuously differentiable vector 

function 𝒈(𝑿) there exists a number 𝜀 > 0 such that the 

trajectories of the unperturbed and perturbed systems are orbitally 

topologically equivalent, then the system is called structurally 

stable. 

 

3. Reduction to the Problem of Stability 

 of the Zero Solution 

 

Let an arbitrary non-autonomous system 

𝑿′ = 𝒇(𝑡, 𝑿) 
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be given with the initial condition 𝑿(0) = 𝑿0 (Cauchy problem). 

Here the vector-valued function 𝒇 is defined on the set {𝑡 ∈

           ∈ [𝑡0, +∞), 𝑥𝑖 ∈ 𝑅𝑛}. 

Suppose that the system has a solution 𝜑(𝑡), the stability 

of which is to be examined. The stability analysis is simplified if 

we consider perturbations 

𝒁(𝑡) = 𝑿(𝑡) − 𝜑(𝑡), 
for which we obtain the differential equation 

𝒁′(𝑡) = 𝒇(𝑡, 𝒁). 
Obviously, the last equation is satisfied by the trivial solution 

𝒁(𝑡, 0) ≡ 0, 

which corresponds to the identity 

𝑿(𝑡) ≡ 𝜑(𝑡). 
Thus, the study of stability of the solution 𝜑(𝑡) can be 

replaced by the study of stability of the function 𝒁(𝑡) near the 

point 𝒁 = 0. 

 

4. Stability of Linear Systems 

 

The linear system 

𝑿′ = 𝐴(𝑡)𝑿 + 𝒇(𝑡) 
is said to be stable if all its solutions are stable in the sense of 

Lyapunov. 

It turns out that the non-homogeneous linear system is 

stable with any free term 𝒇(𝑡)if the zero solution of the associated 

homogeneous system 

𝑿′ = 𝐴(𝑡)𝑿 
is stable. Therefore, when investigating stability in the class of 

linear systems, it is sufficient to analyze the homogeneous 

differential systems. In the simplest case, when the coefficient 

matrix 𝐴 is constant, the stability conditions are formulated in 

terms of the eigenvalues of the matrix 𝐴. 
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Consider the homogeneous linear system 

 

𝑿′ = 𝐴𝑿, 
 

where 𝐴 is a constant matrix of size 𝑛 × 𝑛. Such a system (which 

is also autonomous) has the zero solution 𝑿(𝑡) = 0. The stability 

of this solution is determined by the following theorems. 

Let 𝜆𝑖 be the eigenvalues of 𝐴. 

Theorem 1. A linear homogeneous system with constant 

coefficients is stable in the sense of Lyapunov if and only 

if all eigenvalues 𝝀𝒊 of 𝑨 satisfy the condition 

 

𝑹𝒆[𝝀𝒊] ≤ 𝟎      (𝒊 = 𝟏, 𝟐, … , 𝒏). 

 

If the real part of an eigenvalue is equal to zero, the algebraic and 

geometric multiplicity of the eigenvalue must be the same (i.e. the 

corresponding Jordan block must be of size 1 × 1). 

Theorem 2. A linear homogeneous system with constant 

coefficients is asymptotically stable if and only if all 

eigenvalues 𝝀𝒊 have negative real parts: 

 

𝑹𝒆[𝝀𝒊] < 𝟎      (𝒊 = 𝟏, 𝟐, … , 𝒏). 

 

Theorem 3. A linear homogeneous system with constant 

coefficients is unstable if at least one of the conditions is 

satisfied: 

o The matrix 𝑨 has an eigenvalue 𝝀𝒊 with a positive real 

part; 

o The matrix 𝐴 has an eigenvalue 𝜆𝑖 with zero real part, and 

the geometric multiplicity of the eigenvalue 𝜆𝑖 is less than 

its algebraic multiplicity. 
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5.  Equilibrium Points of Linear Autonomous Systems 

 

Let a second order linear homogeneous system with 

constant coefficients be given: 

{

𝑑𝑥

𝑑𝑡
= 𝑎11𝑥 + 𝑎12𝑦

𝑑𝑦

𝑑𝑡
= 𝑎21𝑥 + 𝑎22𝑦

 

This system of equations is autonomous since the right 

hand sides of the equations do not explicitly contain the 

independent variable 𝑡. 

In matrix form, the system of equations can be written as 

𝑿′ = 𝐴𝑿,where𝑿 = [
𝒙
𝒚] ,   𝑨 = [

𝒂𝟏𝟏  𝒂𝟏𝟐

𝒂𝟐𝟏  𝒂𝟐𝟐
] . 

The equilibrium positions can be found by solving the 

stationary equation 

𝐴𝑿 = 0 . 

This equation has the unique solution  𝑿 = 0  if the 

matrix 𝐴 is nonsingular, i. e. provided that det 𝐴 ≠ 0. In the case 

of a singular matrix, the system has an infinite number of 

equilibrium points. 

Classification of equilibrium points is determined by the 

eigenvalues 𝝀1, 𝝀2 of the matrix 𝐴. The numbers 𝝀1, 𝝀2can be 

found by solving the auxiliary equation 

 

𝝀2 − (𝑎11 + 𝑎22)𝝀 +𝑎11𝑎22 − 𝑎12𝑎21 = 0. 
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In general, when the matrix 𝐴 is nonsingular, there are 4 different 

types of equilibrium points: 

№ Equilibrium 

Point 
Eigenvalues𝝀1, 𝝀2 

1 Node 𝝀1, 𝝀2 are real numbers of the same sign 

(𝝀1 ∙ 𝝀2 > 0) 

2 Saddle 𝝀1, 𝝀2 are real numbers and non-zero   

of opposite sign (𝝀1 ∙ 𝝀2 < 0) 

3 Focus 𝝀1, 𝝀2 are complex numbers, the real 

parts are equal and non-zero 

(𝑅𝑒 𝝀1 = 𝑅𝑒 𝝀2 ≠ 0) 

4 Center 𝝀1, 𝝀2 are purely imaginary numbers  

(𝑅𝑒 𝝀1 = 𝑅𝑒 𝝀2 = 0) 

The stability of equilibrium points is determined by 

the general theorems on stability (see chapter 1). So, if the real 

eigenvalues (or real parts of complex eigenvalues) are negative, 

then the equilibrium point is asymptotically stable. Examples of 

such equilibrium positions are stable node and stable focus. 

If the real part of at least one eigenvalue is positive, the 

corresponding equilibrium point is unstable. For example, it may 

be a saddle. 

Finally, in the case of purely imaginary roots (when the 

equilibrium point is a center), we are dealing with the 

classical stability in the sense of Lyapunov. 

Our next goal is to study the behavior of solutions near the 

equilibrium positions. For second order systems, it is convenient 

to do this graphically using the phase portrait, which is a set 

of phase trajectories in the coordinate plane. The arrows on the 

phase trajectories show the direction of movement of the point 

(i.e., a particular state of the system) over time.  

Let’s consider each type of equilibrium point. 
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Stable and Unstable Node 

The eigenvalues 𝝀1, 𝝀2 of the points of type “node” satisfy 

the conditions: 

𝝀1, 𝝀2 ∈ 𝑅, 𝝀1 ∙ 𝝀2 > 0 . 
The following particular cases may arise here. 

o The roots 𝛌𝟏, 𝛌𝟐 are distinct (𝛌𝟏 ≠ 𝛌𝟐) and negative  

(𝛌𝟏 < 𝟎, 𝛌𝟐 < 𝟎). 

Draw a schematic phase portrait for this system. Suppose for 

definiteness that|𝝀1| < |𝝀2|. The general solution has the form 

𝐗(𝑡) = 𝐶1𝑒𝝀1𝑡𝐕1 + 𝐶2𝑒𝝀2𝑡𝐕2 , 
where 𝐕1 = (𝑉11 , 𝑉21)𝑇, 𝐕2 = (𝑉12 , 𝑉22)𝑇are eigenvectors 

corresponding to the eigenvalues 𝝀1, 𝝀2 and 𝐶1, 𝐶2 are arbitrary 

constants. 

Since both eigenvalues are negative, then the solution 𝐗 =
= 0 is asymptotically stable. Such an equilibrium point is 

called stable node. As𝑡 → ∞ , the phase curves tend to the 

origin 𝐗 = 0. 

Specify the direction of the phase trajectories. Since 

𝑥(𝑡) = 𝐶1𝑉11𝑒𝝀1𝑡 + 𝐶2𝑉12𝑒𝝀2𝑡,    𝑦(𝑡) = 𝐶1𝑉21𝑒𝝀1𝑡 +
+ 𝐶2𝑉22𝑒𝝀2𝑡  , 

the derivative 
𝑑𝑦

𝑑𝑥
 is 

𝑑𝑦

𝑑𝑥
=

𝐶1𝑉21𝝀1𝑒𝝀1𝑡 + 𝐶2𝑉22𝝀2𝑒𝝀2𝑡

𝐶1𝑉11𝝀1𝑒𝝀1𝑡 + 𝐶2𝑉12𝝀2𝑒𝝀2𝑡
 . 

Divide the numerator and denominator by 𝑒𝝀1𝑡: 

𝑑𝑦

𝑑𝑥
=

𝐶1𝑉21𝝀1+ 𝐶2𝑉22𝝀2𝑒(𝝀2−𝝀1)𝑡

𝐶1𝑉11𝝀1+ 𝐶2𝑉12𝝀2𝑒(𝝀2−𝝀1)𝑡
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In this case, 𝝀2 − 𝝀1 < 0. Therefore, the terms with the 

exponential function tend to zero as 𝑡 → ∞. As a result, 

at       𝐶1 ≠ 0, we obtain: 

lim
𝑡→∞

𝑑𝑦

𝑑𝑥
=

𝑉21

𝑉11
 

that is the phase trajectories become parallel to the 

eigenvector 𝐕1 as 𝑡 → ∞. 

If 𝐶1 = 0, the derivative at any 𝑡 equals 
𝑑𝑦

𝑑𝑥
=

𝑉22

𝑉12
 , 

i. e. the phase trajectory lies on a line directed along the 

eigenvector 𝐕2. 

Now we consider the behavior of the phase trajectories 

as 𝑡 → −∞. Obviously, the coordinates 𝑥(𝑡), 𝑦(𝑡)tend to infinity, 

and the derivative 
𝑑𝑦

𝑑𝑥
 at 𝐶2 ≠ 0 takes the following form: 

𝑑𝑦

𝑑𝑥
=

𝐶1𝑉21𝝀1𝑒(𝝀1−𝝀2)𝑡 + 𝐶2𝑉22𝝀2

𝐶1𝑉11𝝀1𝑒(𝝀1−𝝀2)𝑡 + 𝐶2𝑉12𝝀2
=

𝑉22

𝑉12
   , 

 

that is the phase curves at the points at infinity become parallel to 

the vector 𝐕2. 

Accordingly, when 𝐶2 = 0, the derivative is 
𝑑𝑦

𝑑𝑥
=

𝑉21

𝑉11
. 

In this case, the phase trajectory is determined by the direction of 

the eigenvector 𝐕1 . 

Given the above properties of the phase trajectories, the 

phase portrait of a stable node is shown schematically in Figure 5.  
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      Figure 5                      Figure 6 

Similarly, we can study the behavior of the phase 

trajectories for other types of equilibrium points. Furthermore, 

omitting the detailed analysis, we consider basic qualitative 

characteristics of the other equilibrium points. 

o The roots  𝜆1, 𝜆2 are distinct (𝜆1 ≠ 𝜆2) and positive      

(𝜆1 > 0, 𝜆2 > 0).  
In this case, the point  𝐗 = 0  is an unstable node. Its phase 

portrait is shown in Figure 6. 

Note that in the case of both stable and unstable node, the 

phase trajectories touch the line, which is directed along the 

eigenvector corresponding to the smallest (in absolute value) 

eigenvalue 𝝀. 

 

Dicritical Node 

Let the auxiliary equation have one zero root of 

multiplicity 2, i. e. consider the case 𝜆1 = 𝜆2 = 𝜆 ≠ 0. The system 

has a basis of two eigenvectors, i. e. the geometric multiplicity of 

the eigenvalue 𝜆 is 2. In terms of the linear algebra, this means 
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that the dimension of the eigenspace of 𝐴 is equal 

to 2: dim ker 𝐴 = 2 . This situation occurs in systems of the form 
𝑑𝑥

𝑑𝑡
=𝜆𝑥,   

𝑑𝑦

𝑑𝑡
=𝜆𝑦 . 

The direction of the phase trajectories depends on the sign 

of𝜆. Here the following two cases can arise: 

o Case 𝛌𝟏 = 𝛌𝟐 = 𝛌 < 𝟎. 

Such an equilibrium position is called a stable dicritical 

node (Fig. 7). 

o Case 𝛌𝟏 = 𝛌𝟐 = 𝛌 > 𝟎. 

This combination of eigenvalues corresponds to an unstable 

dicritical node (Fig. 8). 

 
       Figure 7                        Figure 8 

 

 

Singular Node 

Let the eigenvalues of 𝐴 be again coincident: 𝜆1 = 𝜆2 =
    = 𝜆 ≠ 0. Unlike the previous case, we assume that the 

geometric multiplicity of the eigenvalue (or in other words, the 

dimension of the eigenspace) is now 1. This means that the 

matrix 𝐴 has only one eigenvector 𝐕1. The second linearly 
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independent vector required for the basis is defined as a 

generalized eigenvector 𝐖1 connected to 𝐕1. 

o Case 𝛌𝟏 = 𝛌𝟐 = 𝛌 < 𝟎. 

The equilibrium point is called stable singular node (Fig. 9). 

o Case 𝛌𝟏 = 𝛌𝟐 = 𝛌 > 𝟎. 

The equilibrium position is called unstable singular 

node (Fig. 10). 

 
     Figure 9                       Figure 10 

 

Saddle 

The equilibrium point is a saddle under the following 

condition: 

𝝀1, 𝝀2 ∈ 𝑅, 𝝀1 ∙ 𝝀2 < 0. 

Since one of the eigenvalues is positive, the saddle is an 

unstable equilibrium point. Suppose, for example, 𝜆1 < 0, 𝜆2 > 0 . 
The eigenvalues 𝜆1 and 𝝀2 are associated with the corresponding 

eigenvectors 𝐕1 and 𝐕2. The straight lines directed along the 

eigenvectors 𝐕1, 𝐕2, are called separatrices. These are the 

asymptotes of other phase trajectories that have the form of a 

hyperbola. Each of the separatrices can be associated with a 

certain direction of motion. 
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If the separatrix is associated with a negative eigenvalue 

𝜆1 < 0,  i. e. in our case is directed along the vector 𝐕1, the 

movement along it occurs towards the equilibrium point 𝐗 =
        = 0. And conversely, at  𝜆2 > 0, i. e. for the separatrix 

associated with the vector 𝐕2, the movement is directed from the 

origin. The phase portrait of the saddle is shown schematically 

in Figure 11. 

 

     

       

Figure 11 

 

Stable and Unstable Focus 

Now suppose that the eigenvalues 𝝀1, 𝝀2 are complex 

numbers whose real parts are non-zero. If the matrix 𝐴 is 

composed of real numbers, the complex roots will be presented in 

the form of complex conjugate numbers: 

𝝀1,2 = 𝛼 ± 𝑖𝛽. 
Find out what kind of phase trajectories are in the neighborhood 

of the origin. Construct a complex solution 𝐗𝟏(𝑡) corresponding 

to the eigenvalue 𝝀1 = 𝛼 + 𝑖𝛽: 

𝐗𝟏(𝑡) = 𝑒𝝀1𝑡𝐕1 = 𝑒(𝛼+𝑖𝛽)𝑡(𝐔 + 𝑖𝐖), 
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where 𝐕1 = 𝐔 + 𝑖𝐖 is the complex-valued eigenvector associated 

with the eigenvalue 𝝀1, 𝐔 and 𝐖 are real vector functions. As a 

result, we obtain: 

𝐗𝟏(𝑡) = 𝑒𝛼𝑡𝑒𝑖𝛽𝑡(𝐔 + 𝑖𝐖) = 𝑒𝛼𝑡(cos 𝛽𝑡 + 𝑖 sin 𝛽𝑡 )(𝐔 + 𝑖𝐖) = 

= 𝑒𝛼𝑡(𝐔 cos 𝛽𝑡 + 𝑖 𝐔 sin 𝛽𝑡 + 𝑖 𝐖 cos 𝛽𝑡 −𝐖 sin 𝛽𝑡 )= 

= 𝑒𝛼𝑡(𝐔 cos 𝛽𝑡 −𝐖 sin 𝛽𝑡) + 𝑖𝑒𝛼𝑡(𝐔 sin 𝛽𝑡 + 𝐖 cos 𝛽𝑡) . 
The real and imaginary parts in the last expression form 

the general solution of the type 

𝐗(𝑡) = 𝐶1𝑅𝑒[𝐗𝟏(𝑡)] + 𝐶2𝐼𝑚[𝐗𝟏(𝑡)] = 

= 𝑒𝛼𝑡[𝐶1 (𝐔 cos 𝛽𝑡 −𝐖 sin 𝛽𝑡) + 𝐶2(𝐔 sin 𝛽𝑡 + 𝐖 cos 𝛽𝑡)] = 

= 𝑒𝛼𝑡[𝐔 (𝐶1cos 𝛽𝑡 + 𝐶2sin 𝛽𝑡) + 𝐖 (𝐶2cos 𝛽𝑡 + 𝐶1sin 𝛽𝑡) . 

We represent the constant 𝐶1,𝐶2 as 

𝐶1 = 𝐶 sin 𝛿 ,    𝐶2 = 𝐶 cos 𝛿 , 
 

where 𝛿 is an auxiliary angle. Then the solution is written as 

 

𝐗(𝑡) = 𝐶𝑒𝛼𝑡[𝐔 (sin 𝛿 cos 𝛽𝑡 +cos 𝛿 sin 𝛽𝑡) + 𝐖 (cos 𝛿 cos 𝛽𝑡 − 

− sin 𝛿 sin 𝛽𝑡)] = 𝐶𝑒𝛼𝑡[𝐔 sin(𝛽𝑡 + 𝛿) +  𝐖 cos(𝛽𝑡 + 𝛿)]. 

Thus, the solution 𝐗(𝑡) can be expanded in the basis of the 

vectors 𝐔 and 𝐖: 

𝐗(𝑡) = 𝜇(𝑡)𝐔 + η(t)𝐖, 
where the coefficients 𝜇(𝑡), η(t) are given by 

𝜇(𝑡) = 𝐶𝑒𝛼𝑡sin(𝛽𝑡 + 𝛿),   η(t) = 𝐶𝑒𝛼𝑡cos(𝛽𝑡 + 𝛿). 
 

This shows that the phase trajectories are spirals. When 𝛼 < 0, the 

spirals twist approaching the origin. Such an equilibrium position 
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is called stable focus. Accordingly, when 𝛼 > 0, we have 

an unstable focus. 

The direction of twist can be identified by the sign of the 

coefficient 𝑎21 in the original matrix 𝐴. Indeed, consider the 

derivative 
𝑑𝑦

𝑑𝑡
, for example, at the point (1,0): 

𝑑𝑦

𝑑𝑡
(1,0) = 𝑎21 ∙ 1 + 𝑎22 ∙ 0 = 𝑎21. 

The positive coefficient 𝑎21 > 0 corresponds to the twist 

counterclockwise as shown in Figure 12. When 𝑎21 < 0 , the 

spirals will twist in a clockwise direction (Fig. 13). 

Thus, taking into account the direction of twist, there are 

only 4 different types of focus. Schematically, they are shown in 

Figures 12−15. 

 
    

          Figure 12                     Figure 13 
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       Figure 14                                  Figure 15 

 
Center 

If the eigenvalues of the matrix 𝐴 are purely imaginary 

numbers, then this equilibrium point is called a center. For a 

matrix with real elements, the imaginary eigenvalues are complex 

conjugate pairs. In the case of a center, the phase trajectories are 

formally obtained from the equation of spirals at 𝛼 = 0 

are ellipses, i. e. they describe periodic motion of a point in the 

phase space. A center equilibrium position is stable in the sense of 

Lyapunov. 

There are two types of centers, which differ in the 

direction of movement of the points (Fig. 16, 17). As in the case 

of focus, the direction of movement can be determined by the sign 

of the derivative 
𝑑𝑦

𝑑𝑡
 at some point. If we take the point (1.0), then 

𝑑𝑦

𝑑𝑡
(1.0) = 𝑎21 . 

that is the direction of rotation is determined by the sign of the 

coefficient 𝑎21 . 
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       Figure 16                Figure 17 

 

Thus, we have considered different types of equilibrium 

points in the case of a non-singular matrix 𝐴 (det 𝐴 ≠ 0). Taking 

into account the direction of phase trajectories, there are 

total 13 different phase portraits (shown, respectively, in 

Figures 2−17). 

We now turn to the case of a singular matrix 𝐴. 

 

Singular Matrix 

If the matrix is singular, then it has one or both 

eigenvalues equal to zero. In this case, there are the following 

special cases: 

o Case 𝛌𝟏 ≠ 𝟎, 𝛌𝟐 = 𝟎. 

Here, the general solution has the form 

𝐗(𝑡) = 𝐶1𝑒𝝀1𝑡𝐕1 + 𝐶2𝐕2 , 
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where 𝐕1 = (𝑉11 , 𝑉21)𝑇, 𝐕2 = (𝑉12 , 𝑉22)𝑇, are the eigenvectors 

corresponding to the eigenvalues 𝝀1and 𝝀2. It turns out that in this 

case the whole line passing through the origin and directed along 

the vector 𝐕2 consists of the equilibrium points (these points do 

not have a special name). The phase trajectories are rays parallel 

to the other eigenvector 𝐕1. Depending on the sign of 𝝀1, the 

motion at 𝑡 → ∞ occurs either in the direction of the 

line 𝐕2 (Figure 18), or away from it (Fig. 19). 

 

       Figure 18                      Figure 19 

 

o Case 𝛌𝟏 = 𝛌𝟐 = 𝟎, 𝐝𝐢𝐦 𝐤𝐞𝐫 𝑨 = 𝟐. 

In this case, the dimension of the eigenspace of the matrix is 

equal to 2 and, therefore, there are two eigenvectors 𝐕1 and 

 𝐕2. This may happen when 𝐴 is the zero matrix. The general 

solution is given by 

𝐗(𝑡) = 𝐶1𝐕1 + 𝐶2𝐕2 . 

It follows that every point in the plane is an equilibrium position 

of the system. 
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o Case 𝛌𝟏 = 𝛌𝟐 = 𝟎, 𝐝𝐢𝐦 𝐤𝐞𝐫 𝑨 = 𝟏. 

This case is different from the previous one in that there is 

only one eigenvector (the matrix 𝐴 will then be non-zero). To 

construct a basis, we can take the generalized eigenvector 

 𝐖1 connected to 𝐕1 as a second linearly independent vector. The 

general solution can be written as 

𝐗(𝑡) = (𝐶1+𝐶2𝑡)𝐕1 + 𝐶2𝐖1 . 

Here, all points of the straight line passing through the origin and 

directed along the eigenvector 𝐕1 are unstable equilibrium 

positions. The phase trajectories are straight lines parallel 

to 𝐕1. The direction of movement along these lines as 𝑡 →
∞ depends on the constant 𝐶2: with 𝐶2 < 0, the motion is from 

left to right, and with 𝐶2 > 0 − in the opposite direction (Fig. 20). 

 

 
                 Figure 20           

 

As seen, there are 4 different phase portraits in the case of a 

singular matrix. Therefore, the linear second order autonomous 

system allows total 17 different phase portraits. 
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Bifurcation Diagram 

In the above, we have reviewed the classification of 

equilibrium points of a linear system based on the eigenvalues. 

However, the type of an equilibrium point can be determined 

without computing the eigenvalues 𝛌𝟏,λ2, knowing only the 

determinant of the matrix det 𝐴 and its trace tr 𝐴. 

Recall that the trace of the matrix is the number equal to 

the sum of the diagonal elements: 

𝐴 = (
𝑎11𝑎12

𝑎21𝑎22
) ,     tr 𝐴 = 𝑎11 + 𝑎22  ,     

 det 𝐴 = 𝑎11𝑎22 − 𝑎12𝑎21 . 

Indeed, the auxiliary equation of the matrix is 

λ2 − (𝑎11 + 𝑎22)𝛌 + 𝑎11𝑎22 − 𝑎12𝑎21 = 0 . 

It can be written in terms of the determinant and the trace of the 

matrix: 

λ2 − tr 𝐴 ∙ 𝛌 + det 𝐴 = 0 . 

The discriminant of this quadratic equation is given by 

𝐷 = (tr 𝐴)2 − 4det 𝐴. 

Thus, the bifurcation curve delineating the different stability 

modes is a parabola in the plane (tr 𝐴, det 𝐴)(Fig. 21): 

det 𝐴 = (
tr 𝐴

2
)

2

. 
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                Figure 21           

 

The equilibrium points of the type “focus” and “center” are 

above the parabola. The points of the type “center” are located on 

the positive 𝑦-axis, i. e. provided that tr 𝐴 = 0. The “nodes” and 

“saddles” are below the parabola. The parabola itself contains 

dicritical or singular nodes. 

Stable modes of motion exist in the upper left quadrant of 

the bifurcation diagram. The other three quadrants correspond to 

unstable equilibrium positions. 

6. How to Sketch a Phase Portrait 

To draw the phase portrait of a second order linear autonomous 

system with constant coefficients 

𝑿′ = 𝐴𝑿, 𝐴 = [
𝑎11  𝑎12

𝑎21  𝑎22
]  ,       𝑿 = [

𝑥
𝑦], 

it is necessary to do the following steps: 
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1. Find the eigenvalues of the matrix by solving the auxiliary 

equation 

λ2 − (𝑎11 + 𝑎22)𝛌 + 𝑎11𝑎22 − 𝑎12𝑎21 = 0 . 

2. Determine the type of the equilibrium point and the character 

of stability. 

Hint: 

The type of the equilibrium position can also be determined 

based on the bifurcation diagram (Fig. 18), knowing the trace 

and the determinant of the matrix: 

tr 𝐴 = 𝑎11 + 𝑎22  ,     det 𝐴 = |
𝑎11  𝑎12

𝑎21  𝑎22
| = 𝑎11𝑎22 − 𝑎12𝑎21. 

3. Find the equations of the isoclines: 
𝑑𝑥

𝑑𝑡
=𝑎11𝑥 + 𝑎12𝑦(vertical isocline), 

𝑑𝑦

𝑑𝑡
=𝑎21𝑥 + 𝑎22𝑦(horizontal isocline). 

4. If the equilibrium position is a node or a saddle, it is 

necessary to compute the eigenvectors and draw the 

asymptotes parallel to the eigenvectors and passing through 

the origin. 

5. Schematically draw the phase portrait. 

6. Show the direction of motion along the phase trajectories 

(this depends on the stability or instability of the equilibrium 

point). In the case of a focus, one should determine the 

direction of trajectories twisting. This can be done by 

calculating the velocity vector (
𝑑𝑥

𝑑𝑡
,

𝑑𝑦

𝑑𝑡
) at any point, for 

example, at the point (1.0). Similarly, we can determine the 

direction of movement if the equilibrium position is a center. 

The algorithm described here is not a rigid scheme. In the study 

of a particular system, other tricks and techniques are acceptable 

in order to draw up the phase portrait. 
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