Ministry of Education and Science of Ukraine
Sumy State University
Educational and Scientific Institute of Business, Economics and Management

Department of Economic Cybernetics

BACHELOR'S QUALIFICATION WORK

on the topic ““Automation of the retail trade at the enterprise”

Completed student of 4™ course, group AB-71a.an
(course number) (group code)

Specialties 051 “Economics” (Business analytics)

Yu.V. Lebedeva

(student's last name, initials)

Supervisor Dr. Sc. in Economics, professor,
0.V. Kuzmenko

(position, degree, last name, initials)

Sumy-2021

Ministry of Education and Science of Ukraine
Sumy State University
Educational and Scientific Institute of Business, Economics and
Management
Department of Economic Cybernetics

APPROVE

Head of the Department

Dr. Econ. Sciences, Professor
Kuzmenko O.V.

“o” 2021

TASK
FOR THE BACHELOR'S QUALIFICATION WORK
in the direction of training 051 Economic (Business analytics)
student 4" year of the group AB-71a.an

Lebedeva Yulia Vitaliivha

1. Topic of the work: Automation of the retail trade at the enterprise approved by
order of the university 0382-111 from 15.03.2021.

2. The deadline for the student to submit the completed work **_* 2021.

3. The purpose of the work is to develop a prototype of a postage management
module at a retail enterprise “Oxygen3000”.

4.The object of the study is the "Oxygen3000" enterprise.

5. The subject of research is the process of postage automation at the
"Oxygen3000" enterprise.

6. Thesis is performed on materials of "Oxygen3000" enterprise.

7. Indicative plan of qualification work, terms of submission of sections to the head
and the maintenance of tasks for performance of the set purpose

Section 1 Analysis of the current state of automation of business processes of the
enterprise

In section 1 to reveal the characteristics of the object of automation and analysis of
the current state of automation of business processes, the characteristics of
existing postal services and solutions for automation of postal items, definition and
formulation of requirements for future prototype.

Section 2 Implementation of the prototype of the postal management module

In section 2 make designing the architecture of the prototype of the postal

management module, select the most useful technology for realization, develop the

prototype of the postal management module, create reference example and

instructions for use.

8. Consultations on work:

Chapter Consultant Signature, data
Task issued by Task accepted by
Kuzmenko O.V. Lebedeva Yu. V.
Kuzmenko O.V. Lebedeva Yu. V.
9. Date of issue of the task* ” 20 p.

Supervisor

0.V. Kuzmenko

Received the task to perform

Signuture Initials, surname

Yu.V. Lebedeva

Signuture

Initials, surname

ABSTRACT
of the qualifying work
for obtaining the educational and qualification level “bachelor”

Lebedeva Yulia Vitaliivna

(surname, name, patronymic of the student)

Automation of the retail trade at the enterprise

The relevance of qualification work is that in today's competitive
environment, firms need to have significant competitive advantages to retain their
own and attract new customers. One of the competitive advantages is the speed of
postal items. The less the customer waits for his product — the greater his
satisfaction. In addition, the current quarantine conditions for the COVID-19 were
a significant challenge for retailers — outlets closed and firms could only sell their
goods by mail. Automation of postal items saves the work of the company's
manager, frees up man-hours, improves the company's service.The purpose of this
work is to develop a prototype of a postage management module at a retail
enterprise.

The object of the research is the “Oxygen3000” enterprise.

The subject of the research is the process of postage automation at the
“Oxygen3000” enterprise.

Methods of research — analysis, algorithmization, synthesis.

Information base — LLC «Oxygen3000», python documentation, APl Nova
Poshta.

The main contribution of the work is the practical implementation of the
prototype of the mail management module.

The work was implemented at LLC “Oxygen3000”, reference number
2021/2 from 09.06.2021.

Keywords: automation, mailings, New Mail API, programming, Django

framework.

The content of the qualification work is presented on 35 pages. The
references consist from 40 names, placed on 4 pages. The work contains 6 tables,
14 figures, 2 appendices.

Year of performance of qualification work — 2021.

Year of protection of work — 2021.

CONTENTS

INTRODUCTION.......octitiiciett ettt na et sn e ene e 7
SECTION 1 ANALYSIS OF THE CURRENT STATE OF AUTOMATION OF
BUSINESS PROCESSES OF THE ENTERPRISE ... 9
1.1 Characteristics of the object of automation and analysis of the current state of
automMation Of DUSINESS PrOCESSES.cciveeirieirierieeieesieesieeeree e ste e e e sree e e e sreesree e 9
1.2 Characteristics of existing solutions for automation of postal items................ 10
1.3. Formation of SyStem reqUIreMENTS.........ccveiveiieiieiie e 17
SECTION 2 IMPLEMENTATION OF THE PROTOTYPE OF THE POSTAL
MANAGEMENT MODULE ...ttt 19
2.1 Designing the architecture of the prototype of the postal management module
19
2.2 Selecting of implementation teChnology.........cccccvevieiieiiciie e 23
2.3 Developing the prototype of the postal management module 25
2.4 Reference example and inStructions fOr USEcccevveiieiieeiecie e 33
CONGCLUSIONS.ottt re e re e e nes 36
REFERENCGES.ttt e e s nan e et e e e e e e nneeas 37

APPENDICES.o 41

INTRODUCTION

In the 21st century, almost all processes have become automated.
Automation of business processes gives us the opportunity to conduct and control
our business without making a lot of effort, because one program can do in a
couple of minutes what a person will do for several hours. With the increase in
productivity, the income of the company also increases, and all this is due to
information systems and technologies.

To date, to open your own business, it is not enough to have only a sales
outlet and a good supplier, automation is most relevant for managing business
processes.

The main advantages of automation are:

— the emergence of an automated management system (CRM, ERM, PM,
etc.), where it will be possible to see what tasks are and when they need to be done;

— minimization of the human factor in business processes. This includes
forgotten data, procrastination with simple tasks, clients that have not been entered
into the database, etc.;

— saving data from cyber attacks or illegal access. With an automated
control system, you will enter all the actions in the system and, in which case, you
will be able to track them. It is clear that automation does not solve all security
problems, but it makes life much easier.

The purpose of this work is to develop a prototype of a postage management
module at a retail enterprise.

The object of the research is the «Oxygen3000» enterprise.

The subject of the research is the process of postage automation at the
“Oxygen3000” enterprise.

The main tasks of qualifying research work are:

— to characterize the object of research and analyze the state of automation

of business processes;

8
— to analyze the mail services existing on the market and their solutions for
delivery automation;
— to formulate requirements for a web-oriented system;
— to carry out the design of the prototype for the module of postal mailing;

— to reverse the technology corks to the prototype;

to develop a prototype of an automated postage system;

— develop a test case and instructions for use.

9
SECTION 1 ANALYSIS OF THE CURRENT STATE OF AUTOMATION OF
BUSINESS PROCESSES OF THE ENTERPRISE

1.1Characteristics of the object of automation and analysis of the current

state of automation of business processes

The object of the study is LLC “Oxygen3000”. Today there are many
options for starting your own business. And in this case, the company focused on a
limited liability company — one of the most popular organizational forms of
business in Ukraine. LLC is a business company, the authorized capital of which is
divided into shares, the size of which is determined by the constituent documents.

This enterprise is engaged in realization and sale of oxygen in cylinders of
the Ukrainian production on various trading platforms, such as the socket,
prom.yua and also through the website. Now this company wants to increase
turnover and automate the registration and shipment of its goods through the site
https://oxygen3000.com/ [1]

The peculiarity of the product is its use not only for rehabilitation after
coronavirus disease. Oxygen “OXYGEN 3000 is used

— for to relieve the symptoms of hypoxia,

— for the prevention of respiratory diseases.

— helps to relieve emotional stress,

— stimulates mental activity,

— increases concentration,

— enhances brain activity,

— increases the overall tone of the body;

— helps to overcome stress, insomnia, weather dependence,

— significantly improves the condition of the skin.

Retail trade is a type of activity for the sale of goods and services directly to

end users for their personal use.

https://oxygen/

10

The main goal of each organization is to meet the needs of the consumer
market. As competition grows, so do consumers’ demands for services and
products. This is all motivation for the company to make its product and services
better. Based on this, it is understood that meeting the needs of consumers is
paramount, so you should also pay due attention to the business processes of the
enterprise, paying attention not only to production but also to product sales. The
existing system operates at the basic level of business processes.

The client leaves a request for an order on the site or trading platform, the
manager calls back, clarifies the details of the order and is engaged in the
registration of the parcel for sending by new mail.

The manager works with the mail service manually, and spends a lot of time
entering information into the information system of the delivery service.

The current system loads the manager, and as a result, delays sending parcels
to customers. The development of automation of the postal process will increase
the speed of processing applications, which will lead to increased turnover,
increased loyalty to the company and image growth.

For a higher level, you need to automate the registration of postage; to do
this, you need to use the integration with the Nova Poshta API.

APl (Application Programming Interface) is a set of tools for automating
work with Nova Poshta. The API functionality allows you to quickly integrate
logistics processes into any business and is the only entry point for all customers

and services [2].

1.2 Characteristics of existing solutions for automation of postal items

Various transport organizations of international and local importance operate
on the territory of Ukraine. Local carriers include private companies and the state
service Ukrposhta [3]. International companies mainly cooperate with national

operators, but they can also operate through their own representative branches.

11

In the segment of Ukrainian e-commerce, where logistics issues are of
particular importance, the following carriers are popular:

1. Nova Poshta — 97%.

2. Ukrposhta — 33%.

3. Intime — 24% [4].

4. Delivery — 18% [5].

5. Mist Express — 8% [6].

6. Autolux —4% [7].

7. Zruchna— 3% [8].

8. Delfast —0,8% [8].

The percentage next to the name of the organization is the approximate
number of online entrepreneurs that are working with it.

Up to 40% of online stores offer their own courier services, providing
express delivery of goods around the city. Maintaining your own courier service is
quite expensive. But it allows you to keep under full control the efficiency and
quality of delivery, which affect customer satisfaction and their further desire to
buy in the store. In other cases, it all depends on the characteristics of the company
delivering the parcel.

Delivery services have specific billing features. For all economic entities, the
first and one of the highest priority issues when choosing a delivery company is
pricing. Each organization has its own prices. They are calculated individually
depending on the distance and route of dispatch, weight, dimensions, declared
value of the parcel, type of packaging.

Initial price tags of services (box up to 1 kilogram):

- Nova Poshta — from 45 hryvnia;

- Ukrposhta — from 18 hryvniga;

— Intime — from 30 hryvnia;

- Delivery — from 20 hryvnia;

- Mist Express — from 25 hryvnia;

- Autolux — from 25 hryvnia.

12

In direct mailing services, the pricing system is different. In Zruchna, rates
start at 60 hryvnia. Delfast operates at a single fixed rate, which currently amounts
to 170 hryvnia.

The second criterion is the speed of sending. On average, services deliver
orders across Ukraine in such terms:

- Nova Poshta — 1-2 days;

— Ukrposhta — 4-6 days;

- Intime — 1-2 days;

— Delivery — 1-3 days;

— Mist Express — 1-3 days;

- Autolux — 1-3 days.

Express service Zruchna delivers goods within 1 day, Delfast — in a few
hours.

Parcels from Ukrposhta arrives the slowest. Although this company also has
an express delivery service, which is invested in terms of 2-3 days. The most
efficient work is the Nova Poshta.

The coverage area of the logistics company determines the settlements
available for service. The wider it is, the more efficiently Internet sales are made.

Online stores cooperate with shipping organizations with the largest number
of branches in the country. The leader by this criterion is the national operator
Ukrposhta. In second place — Nova Poshta, then — Mist Express, Deliveri and
Intime. The smallest coverage area is at Autolux. Targeted express delivery
services are represented by several branches in Kiev.

Analyzing all the advantages and disadvantages of postal services, it is
necessary to take into account the wishes of customers. NovaPoshta is the most
popular among “Oxygen3000” customers.

The considered operators can boast of a decent level of manufacturability.
Each of them has an API and a modern mobile application (with the exception of

the Zruchna service).

13

The API integrates the capabilities of the service into the website of the

online store. For example, such:

— registration and receipt of a TTN number;

tracking cargo tracking according to the receipt;

— calculation of the cost of shipments;

— displaying background information on the coverage area of the service.

The software product provided by NovaPoshta (Figure 1.1 and 1.2) is easy

to use and allows you to use the service to the fullest. The forms of the program are

shown in the figures. However, given the peculiarity of the company, all the

functionality provided by Nova Poshta is unnecessary. The company sells one type

of product with certain dimensions. The sender in the company is always the same.

In addition, to create an invoice, you must manually enter this data each time the

Q Creopui EH EH Peectpu redBOX Dpaxt MixnapogHa goctaeka [okyrmenTauia HanawTysanua Bawi gani Hoctynua sHvxka: 0.00 rpH
JOVAPOSHTA.UA / Tonoena / Coucor EH / Creopuri EH
HatucHite ona eubopy BIANPABHWUKA MapameTpw BignpasneHHs
MicTo: Mocunka v
Hasea (a6o M. I. B) Bi...
Agpeca: [NapamMeTpH KOXHOMC MiCLA BIANPABNEHHRA
KoHTakTHa ocoba:
TenacpoH: LLITpux-kog, redBOX:

HartucHite anA subopy OEPHKYBAYA

MicTo:

Hazea (a6o M.1. B) O...
Appeca:
KoHTakTHa ocoba:
TenedpoH:

3aransHa Bara

Bara o0'eMHa (LUMpuHa X JOBxWHE X BucoTa/4000)

3aransHui 00'em BigNpasneHHa*

KiMbKIiCTE MiCUb

Qronowlexa BapTICTh, TPH

OnKc BignpasnexHa =

Homep nakysaHHs

BHYTPILUHIA HOMED 33aMOBMEHHA KMieHTa

Figure 1.1 — View of the invoice creation window in the Nova Poshta service [10]

MNapameTpu KOXHOro Micua BignpaBneHHA

Ne

OB'em
Hin

1

+

LnpuHa OoExuHa Bucota Bara dakTnyHa

Bara o6'emMHa

abo

MiaTeepautu BigMiHuT!H

14

Py4Ha o6pobka
O (=] x| =

O = x| =

Figure 1.2 — View of the window describing the characteristics of the shipped

goods [10]

Given the above, it is advisable to integrate on your own website a system

for dialogue with the mail service through the API. Implementation of such a

system will allow you to flexibly adjust the operation of the program.

Nova Poshta provides access to the following services via the API [11]:

Working with addresses:

Online search in the directory of settlements
Online street search in the directory of settlements
Create counterparty address (sender / recipient)
Edit counterparty address (sender / recipient)
Delete counterparty address (sender / recipient)
Company Cities Directory

Directory of settlements of Ukraine

Directory of geographic regions of Ukraine
Directory of departments and types of departments
Company Directory

Working with Counterparty data

Create Counterparty

Create a contact person of the Counterparty

Create a Counterparty with the type (legal entity) organization
Create a third-party counterparty

Download the list of addresses

Load Counterparty parameters

Download the list of contact persons of the Counterparty
Download the list of Consignors / consignees / third parties
Update Counterparty details

Update the details of the contact person of the Counterparty
Delete the recipient's business partner

Delete Contact face of the Counterparty

API Print Forms:

Markings — printed form

Registers — printable

Express waybill — printed forms
Working with express waybill registries:
Add express wayhbills

Download information on one registry
Download the list of registries

Delete (disband) registries

Delete express invoices from the register

Working with directories:

Types of time intervals
Types of cargo

Types of return shipping
Pallet types

15

16
Payer types
Types of return shipping payers
Types of packaging
Types of tires and disks
Description of cargo
List of errors
Delivery technologies
Types of counterparties
Forms of payment
Forms of ownership

API Service return shipment. Implements the Possibility of the Client's

self-registration of the “Return of consignment” service when using the API:

Check if you can create a return request

Getting a list of reasons for return

Getting a list of subtypes and reasons for a return
Create a return request

Retrieving a list of return requests

Deleting a return request

API Service Change data.

Implements the possibility of the Client's self-registration of the “Change

data” service when using the API:

Checking the possibility of creating a request for data change
Creation of a data change request
Deleting an order

Receiving a list of applications

API Service forwarding shipment. Implements the possibility of the Client's
self-registration of the Call Forwarding service when using the API:

Checking the possibility of creating a request for forwarding a dispatch

17
Create a request forwarding a dispatch (branch / address)
Deleting an order

Receiving a list of applications

Working with express invoices:

Calculate the cost of services

Delivery date forecast

Create Express Invoice

Create an express invoice to the address

Create an express invoice for a branch

Create an express waybill for the “Nova Poshta” parcel machine
Create Express Return Shipping Invoice

Edit express invoice

Tracking

Get EN List

Delete express wayhill

Formation of a request to receive a full report on invoices
Formation of requests for the creation of EN with additional services

Formation of requests for the creation of electronic devices with various

types of cargo

1.3. Formation of system requirements

Placing an order, namely delivery, is the main business process associated

with the management of postal items.

The system is must:

1.

Collect the information from the customer needed to send the parcel:
Full name;
Telephone number;

your city of residence;

18

— choice of payment (online / cash on delivery);

— choice of delivery (self-pickup from the branch of the NP / courier of the
NP);

— comment (optional, optional).

This will form the customer's card.

By creating a customer card, the process of creating a consignment note will
be automated.

2. Form a consignment note

3. Keep track of how much time the customer has left to pick up the item.

4. Make an auto-return of delivery, if the customer did not pick up the
parcel or refused it.

The mail module must be integrated into the company's general website. The
module must be integrated with the Nova Poshta API. To use this function, you
need to generate an APIlkey in your personal account, which will be used when
generating requests.

With the help of the API, the creation of the TTN will be automated, the

registration of auto returns after the expiration of the specified period.

19

SECTION 2 IMPLEMENTATION OF THE PROTOTYPE OF THE POSTAL
MANAGEMENT MODULE

2.1 Designing the architecture of the prototype of the postal management

module

The basis of the program is a dialogue with the APl Nova Poshta. The main

process that implements the management of postal items is the automatic formation

of the express invoice. To create an online express invoice document, you need to

perform the following steps:

— Specify sender data

— Specify recipient details

— Select branch and delivery address

— Determine the weight and size of the shipment

— Print/ save the document

The conceptual scheme of the module is shown in Figure 2.1

Name
Surname
Middle name
Prone number
City
Street
Building
Comment

Postage automated
system

API Nova Poshta

Postage automated
system

Figure 2.1 — Conceptual scheme of operation of the mail management module

After entering the information, the client forms a table with orders, with

which the company's manager works in the future.

The manager needs to call the client, clarify the order. In case of

confirmation — the manager creates an invoice, prints it, forms a parcel and takes

the appropriate order to the post office.

20

Consider in more detail the algorithm for creating an Internet document of
the consignment note (Figure 2.2).

At the input, the program module receives input data. Then the sender object
Is created in the Nova Poshta system via the API. The result is an object reference
identifier. The next step is to obtain a list of sender's contacts. The result of the
stage is an identifier-link to the contact person, his name and phone number.

After creating and obtaining the necessary information about the sender, you
need to determine whether the client is registered in the Nova Poshta system. To do
this, a search is made in the list of contractors, and if such a person exists, then we
get a link ID from the list. If there is no such person — then we create a new
recipient. In the next step we get a list of contact persons of the recipient, or
register a contact person, in case of creating a new recipient.

The following three blocks are sent to search in the lists of addresses: cities,
streets, houses, apartments of the recipient.

Then there is the creation of an Internet document of the consignment note

and its printing [12].

ApiKey, Name, Last name, Middle name
Phone, Email, City, Street
House, Flat, Comment

Get sender

Get sender’s contact
person

0es recepien

No

exists?

Yes

Get recepient

Create recepient

Get recepient’s
contact person

Registe recepient’s
contact person

Get city

I

Get street
I

Get adress

|
Create Internet
document
|
Print Internet
document
|

Internet document

21

Figure 2.2 — Block diagram of the algorithm for creating an Internet document of

the consignment note

22

The next part of the software module is tracking the status of the shipment.

4

List of parsels, delivery
date,
delivery statuses

Check delivery status —‘

yes

no

Perform return
I
Update status

List of parsels with
delivery statuses

®

Figure 2.3 — Block diagram of the algorithm for tracking the status of the parcel

and registration of auto-return of the parcel

Considering the algorithm for tracking the status of parcels, we note that the
login includes a list of items marked with the date of departure, date of arrival at
the branch, the date when the parcel must be picked up by the customer and the
status of the parcel. Statuses can contain information about the location of the
parcel and the approximate date of delivery, a mark of arrival at the branch, a mark
of receipt of the shipment, a change of address, the date of receipt of the shipment,

the termination of free storage [13].

23

The program must determine whether the term of free storage of the parcel
has been exceeded (up to 7 days), and in case of exceeding this term — registration
of auto-return.

To ensure the storage of order and delivery information, you need to create a
database table that will store all the information. The structure of the table is
described in table 2.1.

Table 2.1 — The structure of the database table [14]

Ne Name datatype Null Additional Purpose

1 |id int(10) not null | auto increment | primary key

2 | name char(100) not null — Client’s name

3 | surname char(100) not null — Client’s surname

4 | middleName char(100) not null — Client’s middleName
5 | phone char(100) not null — Client’s phone

6 | eMail char(100) null — Client’s eMail

7 | city char(100) Null — Client’s city

8 | street char(100) null — Client’s street

9 | building char(100) null — Client’s building

10 | apartment char(100) null — Client’s apartment
11 | purchaseld char(100) null — Number of purchase
12 | status char(100) null — Order status

13 | ttn char(100) null — Order invoice reference
14 | dateSent DateTime null — Date mail sent

15 | deliveryDate DateTime null — Date mail delivered
16 | deliveryStatus char(100) null — Delivery status

2.2 Selecting of implementation technology

The prototype is a module of an existing web-based information system.
Based on the analysis of existing solutions for automation of mail management, it
would be wise to choose the client-server architecture used by web applications.
This architecture will allow you to process operations directly on the server, which
will ensure the efficiency and security of the application.

The most common and advanced client-server architecture is three-tier. The
architecture model is divided into three parts: client, server, and database server.

The first level (thin client) — the client which is presented by a graphic
component and provides dialogue of the user with system. Users in the designed

system are employees of the financial monitoring department of the bank.

24

Important for the first level is the functionality of the user when interacting with
the system. It is necessary to clearly regulate the operations that can be performed
by the user, what data can be entered and what the user sees as a result of the
system.

The second level is represented by the application server (application server)
— at this level is stored in compliance with business rules. Here is all the logic of
the program. The server provides data processing from the client, generating
queries to the database, processing the received data and presenting them to the
user.

The third level is a database server that provides data storage, including their
consistent conversion and protection against unauthorized adjustments. Also at this
level is the function of data protection and backup [19].

Among the technologies that provide a three-tier architecture, we will focus
on the Django framework of the Python programming language.

The advantages of development on Django include the principle of “All
Inclusive” (“Batteries included”). The phrase “all-inclusive” means that most of
the tools for creating a program are part of the framework, and do not come as
separate libraries.

Django contains a huge amount of functionality to solve most web
development tasks.

Django supports:

— Object Related Mapping;

— Database migrations;

— User authentication;

— Admin panel;

— Forms;

— Standardized structure.

Django as a framework sets the structure of the project. It helps developers

understand where and how to add new functionality [15].

25

Thanks to the same structure for all projects, it is much easier to find ready-
made solutions or get help from the community. A huge number of enthusiastic
developers will help to cope with any task much faster [16].

Django applications allow you to divide a project into several parts. Add-ons
are installed by adding to settings.INSTALLED_APPS. This approach makes it
easy to integrate ready-made solutions [17].

Hundreds of universal modules and applications will greatly accelerate
development.

For coding is better to use Visual Studio Code software [20]. The basic
version of Python — 3.9.5 [21]

2.3 Developing the prototype of the postal management module

Prototype development begins with setting up the environment, creating a
project and related files.

Figure 2.3 shows the structure of the Django project. The migrations folder
stores a description of the changes made to the database. The “templates” folder
contains a list of templates used by the module. Files “forms.py”, “models.py”,
“urls.py”, “views.py” contain classes and functions that describe forms, database
table, list of pages and binding handlers to them, handler functions pages
respectively [18].

The “settings.py” file includes the general settings of the project. File
“db.sqlite3” — saves the database. The file “manage.py” is responsible for starting
the project [22].

26
* POSTALAPP
> _pycache
v migrations
2 _ pycache__

_init__.py
0001 _initial.py
0002_orders_status.py
0003_orders_ttn.py

v templates
catalogue.htm|
finish.html
main.html
order_detail.html
order_list.html

order.html

_init__.py

asgi.py
forms.py
models.py
settings.py
urls.py
views.py
wsqgi.py

= db.sglite3

manage.py

Figure 2.4 — Project structure

First we configure the pages we need. Figure 2.5 shows the pages involved

in the project.

urlpatterns = [
path('admin/', admin.site.urls),
url(r ,» postalApp.views.index, name='index'),
url(r » postalApp.views.order, name='order'),

url(r » postalApp.views.catalogue, name='catalogue'),
url(r , postalApp.views.finish, name='finish'),
url(r s postalApp.views.manager, name='manager'),

Figure 2.5 — Project pages

Pages “index”, “order”, “catalog”, “finish” — service pages, which in the
prototype of the system are responsible for integration with the general website.
Page “manager” — contains a list of orders and all information about orders and
shipments.

The next step is to create a database. In the file “models.py”” we define with
the help of the Orders class the corresponding structure of the database [24]. The

appearance of the file “models.py” is shown in Figure 2.6.

postalApp > models.py > ...

from django.db import models

class Orders(models.Model):
name = models.CharField(max_length=100)
surname = models.CharField(max_length=100)
middleName = models.CharField(max_length=100)
phone = models.CharField(max_length=100)
eMail = models.CharField(max_length=100)
city = models.CharField(max_length=160)
street = models.CharField(max_length=10@, null=True)
building = models.CharField(max_length=100, null=True)
apartment = models.CharField(max_length=180, null=True)
comment = models.CharField(max_length=180, null=True)
purchaseId = models.CharField(max_length=100,null=True)
status = models.CharField(max_length=18,null=True)
ttn = models.CharField(max_length=166,null=True)
dateSent = models.DateTimeField(null=True)
deliveryDate = models.DateTimeField(null=True)
deliveryStatus = models.CharField(max_length=180,null=True)

Figure 2.6 — Database structure

28

In Django, the database is implemented by creating classes that are
descendants of the ancestor class “models.Model”. Table columns are attributes of
a class. Class attributes are defined using appropriate methods, according to data
types: CharField () — for text fields, DateTimeField () — for fields that contain time
and date information. The “id” field, which acts as the primary key and has the
“autoincrement™ property, is created automatically by the framework. You can use
method attributes to control the validity of empty values, set the maximum field
length, or set default values [25].

The interface with customers is supported by interactive forms. In Django
the forms are placed in the file “forms.py” in the form of classes. Classes are
created as descendants of the “forms.Form” class, in which attributes, by analogy
with models, are methods that return objects. Method attributes specify the
maximum field length, field name, interactive widget (such as dropdownlist), or

hidden fields. An example of a class for creating a shape is shown in Figure 2.7.

postalApp > forms.py > 4 Order

from django import forms

PAYMENT_CHOICES= [
('online', 'Online'),
('cash', 'Cash')
1

DELIVERY_CHOICES= [
('self', 'Self'),
('courier’, 'Courier")
1

10 class Order(forms.Form):

name = forms.CharField(label="name', max_length=160)
surname = forms.CharField(label="'surname', max_length=168)
phone = forms.CharField(label='phone', max_length=16@)
payment = forms.CharField(label="payment', widget=forms.Select(choices=PAYMENT_CHOICES))
delivery = forms.CharField(label='delivery', widget=forms.Select(choices=DELIVERY_CHOICES))
city = forms.CharField(label="c max_length=108)
postbr = forms.CharField(label= br', max_length=108)
street = forms.CharField(label="street', max_length=108)
building = forms.CharField(label='building', max_length=166)
apartment = forms.CharField(label="apartment’', max_length=100)
comment = forms.CharField(label="Add comment', max_length=108)
purchaseld = forms.CharField(widget=forms.HiddenInput())

Figure 2.7 — Form for creating an order

29
The form is integrated into the html template using the Order class variable
and the csrf_token certificate, which is responsible for the security of the

transmitted data. Integration into the html-template is shown in Figure 2.8.

form method="post" action="/finish"
{% csrf_token %}
{{ form.non_field errors }}
table
tr
td
{{ form.name.errors }}

label for="{{ form.name.id_for_label }}">Name:

td
os

{{ form.name }}
td

Figure 2.8 — Integration of the form into the html-template

The views.py file contains site page handlers. To implement the required
functionality, you must use the following modules of the Django framework and
the actual Python language [35, 36, 37, 38, 39, 40]:

— from django.shortcuts import render

— from django.http import HttpResponse

— from django.contrib.auth import authenticate

— from django.http import HttpResponseRedirect

— from django.conf import settings

— from datetime import datetime, timedelta

— import http.client

— import requests

— import json

— from .forms import DeleteOrder, DeclineOrder, Order

— from .forms import changeStatus

30

— from .forms import Product

— from .models import Orders

Modules “render”, “Httpesponse”, “HttpResponseRedirect”, “authenticate”,
“settings”, “http.client”, “requests” — are responsible for the operation of the
project, displaying information on the interface, data transfer through variables in
the template and receiving http requests . Modules “datetime”, “timedelta” —
necessary for working with timers and date. Json module — implements the ability
to transfer data to the API and receive data from the API in json format. Modules
“DeleteOrder”, “DeclineOrder”, “Order”, “ChangeStatus™, “Product”, “Orders” —
connect the appropriate forms and models to the file “views.py” [23, 32].

Processing of the order form is implemented by the finish (request) method.
This method takes as an argument the request received from the html-form [33,
34].

The method has the following structure:

def finish(request):
if request.method =="'POST":
form = Order(request.POST)
if form.is_valid():
new_order = Orders(name = form.cleaned_data['name’],
surname = form.cleaned_data['surname’],
phone = form.cleaned_data['phone],
payment = form.cleaned_data['paymentT],
delivery = form.cleaned_data['delivery'],
city = form.cleaned_data['city'],
postbr = form.cleaned_data['postbr],
street = form.cleaned_data['street’],
building = form.cleaned_data['building'],
apartment = form.cleaned_data['apartment’],
comment = form.cleaned _data['‘comment’],
purchaseld = form.cleaned_data['purchaseld],
status ='1")
new_order.save()
return render(request, 'finish.ntml’, {'Thank': "Thanks \n our manager will contact you"})
else:
form = Order()
return render(request, ‘order.html’, {'form': form, 'id":'vwv'})

Code Listing 2.1 - Code method for processing the form and writing order
information to the database

31
In addition to filling in the fields of the database table obtained from the
form, the status is set to — 1, which corresponds to the new order [31].
The dialogue with the API is implemented using the post() methods of the
“requests” module and loads() [26] of the “json”” module.
Figure 2.9 shows an example of a Counterparty query to create a new sender

object.

countr = {

{ ang
ey

"methodProperties":
“"CounterpartyProperty": "
Ilpagell: lllll

}

}

response = requests.post('https://api.novaposhta.ua/v2.8/json/', json=countr)
content = response.content

countr_full = json.loads(content)

countr_ref = countr_full['data'][@]['Ref']

Figure 2.9 - Example of a query to the Counterparty model

Lines 272-288 form the request body in json format. Line 273 contains the
apiKey generated for the company by the Nova Poshta system and identifies it.
Line 281 generates a request to the APl method post(). Line 282 receives the
content of the request. Then the content is transformed into a dictionary from the
json format. The last step is to get the Ref ID of the entire response array [27, 30].

After making a number of such requests (Appendix B), the following request

is generated (Listing 2.2).

paramsl ={
"apiKey": "aa4e0992ea5446achef2al2f8a4328b4",
"modelName": "InternetDocument”,
"calledMethod™: "'save",
"methodProperties™: {
"PayerType": "Sender",
"PaymentMethod™: "Cash",
"DateTime": date,
"CargoType": "Cargo",

32

"VolumeGeneral": "0.1",

"Weight": "10",

"ServiceType": "WarehouseDoors",

"SeatsAmount™: "1",

"Description™: "Oxygen3000",

"Cost": "500",

"CitySender": "8d5a980d-391c-11dd-90d9-001a92567626",
"Sender": countr_ref,

"ContactSender": countr_cont_full_ref,
"SendersPhone™: countr_cont_full_phones,
"CityRecipient": get_city_full_ref,

"Recipient”: new_recepient_full_ref,
"RecipientAddress": get_adress_ref,
"ContactRecipient": get_cont_recepient_full_ref,
"RecipientsPhone": get_cont_recepient_full_phones

Code Listing 2.2 - Request for the formation of the consignment note [28]

This request indicates the date of creation, type of delivery, type of goods,
identifiers of the sender, recipient, contact persons of the sender and recipient,
delivery address, telephone numbers of contact persons.

The result of the request — created identifier express invoice. Next, the
specified ID IS added to the string
https://my.novaposhta.ua/orders/printDocument/orders[]/a01e801c-cef0-11eb-
8513-b88303659df5/orders[]/a01e801c-cef0-11eb-8513-
b88303659df5/type/pdf/apiKey/aade0992ea5446achbef2al2f8a4328hb4, after which
it can be printed.

Then all the information is recorded in the database and transmitted to the
manager interface using function manager (response). The program code is given

in appendix B [29].

33

2.4 Reference example and instructions for use

On the company's website, the customer adds the product to the cart, fills out

the form with their contact information. View of the form in the Figure 2.10.

— Kok (1)

-
FonoeHa KopHcHi BRacTUBOCTI HoBHHK MaraauH Oxyg e n

% Hazag

MnaTixkHa iHdopMaLis

EneKTpoHHa NowTa

Homep tenedony

Im s Mpizerwge
Mo-6aTbroBi

Bynwuua

ByAMHOK

MicTo Ingexc

IchOpMaU.i B HaagHocTi!
Tak camo, Ak

KomeHTapi 3aMOB/1eHHS -
Kucent razononioHuin ana auxadHa «OXYGEN 3000», 8 nitpie.

Figure 2.10 — Form for filling in delivery information

After filling out the form, the client displays the message ‘“Thanks, our
manager will contact you”.

In his personal account, the manager sees a list of orders and detailed
information about the shipment, shown in Figure 2.11

As can be seen in Figure 2.11, columns 1-5 are filled in by the customer

when ordering. The manager receives a list of orders, new orders are displayed

34
marked “New” in the column “status”. Order information with its quantity is

displayed in the “purchase 1d” column.

purchaze
Id

Delivery

name | surname | middleName | phone Adress
Status

status Approve |Decline |Delete |TTN |DateSent | DateReceived

Xapiis. (A Decline | |[Delete |
Yulia | Lebedeva | Vitaliivna | 0505656560 | Cyvcsxa, | 1 Declined | APProve ||| Deciine | | Delete |
TEE. 2

Hapris,
¥Omiz | JleGeaera | Biraniiera | 0305656569 | Cyuceka, | 2 Approved
TEs. 2

[Approve | Decling | Delete

Ié‘ﬁ

Haprie,
FOqix | Jlebegeea | Bitamiera | 0305656569 | Cyuceka, | 3 Approved
Tre.2

| Approve | Decling | Delete

Ié‘ﬁ

Haprie,
FOmix | JIedegera | Bitamiera | 0305656569 | Cyucera, | 4 New
TEE. 2

[Approve | || Decline || Delete |

Figure 2.11 — View of the List of orders on the manager page

After the manager confirms the order from the customer, he clicks on the
Approve button and changes the status of the order to “Approved”. In case of order
cancellation — the manager can click “Decline” and cancel it, the status changes to
“Declined”. If necessary, the “Delete” button deletes the order from the list.

When you click the “Approved” button, an Internet document is
automatically generated — a consignment note, which becomes available for
printing by following the link in the “TTN” column.

The view of the consignment note is shown in Figure 2.12.

After creating an Internet document of the consignment note, the manager
prints it out and forms a parcel with the goods. After that, all he has to do is take
the parcels to the Nova Poshta branch and send them.

After sending parcels using a request to the API, the program will update the
date of departure (12th column of Figure 2.11) and change the delivery status (14th
column of Figure 2.11).

The program tracks the storage time of 7 days from the date of delivery, and
if such time has expired, the status in the 14th column changes to “Return”. In the
implemented prototype, the data cells are empty, because the APIN New Mail
works in real time, and the prototype needs to run and send real parcels to

demonstrate the appropriate functionality.

EKCNPEC-HAKITAOHA
Ne 20450402626632

17.06.2021 01:17:23

4

f, HOBA
& nowrta

IHchopmauis npo BianpaBHuka

Micto-

Sorew | XapkiB

Hassa cipmm a6o .1.6. npusatHoi ocobu

MpusaTHa ocoba

Aapeca (38iaku 3a6MPaETLCA BiANPaBNEHHs)

IHcbopmauia npo BianpaBneHHsa
Kinbxicte micus ®akTvyHa sara O6'emxa Bara

™

Kowrponwwasara [Jwr

Oronowena sapricte

500

TPH.

Tenedon

IN.1.5. koHTaKTHOI 0COBM (NOBHICTIO)

MoBHui ONUC BIANPABNEHKs

Abaxyp |
wo

HOBA MOWTA

www.novaposhta.ua
0-800-500-609

Hopatkosi nocnyrn

Homep 3amoBneHHs

PerioH-opepxyBay

Ne paitoHy

XapkiB MNocunkoBum

IHdhopmauis npo OpgepxyBaya

Micro-
aaepysay

[Xapkis

Haana chipmm aBo .. npuaarwof ocobu

MpusaTHa ocoba

Anpeca (kyau AOCTABNAETLCA BIANPABNEHHS)

Cymcbka Byn. 7 kB. 2 KoMMmeHTapuit

Tenedon

[380997979789

X02/301

CTopoHa, Wo cnnavye nocnyru

|Z| BianpaBHuk

Bapricte nocTask, rpH.
138 rpH. (CTo TpuauATs Bicim rpuserb 00
KOMiAOK)

E [OTiBKOBWIT PO3PaXyHOK

Mianue nnatHuka

MpepcraBHuk OpepxyBava
Para Yac Mocana

MpeacraBsuuk TOB "HoBa MowTra™*
MN.1.6., Aara, nignuc 20-06-2021

[|

I.1.5. KOHTaKTHOI 0cO6M (NOBHICTIO)

le6Genesa KOnisa BitaniieHa

]

“TMignue Bignpanuca, nevanca’

MN.L6.

MacnopTsi Aaki (ans disuari oci6)

Mianwe, nevarka Onepxysada

3 ymosanm MyBnkaoro AGTOBOPY NPO

3 opramisaui

Figure 2.12 - View of the Internet document of the consignment note

35

36
CONCLUSIONS

The importance of process automation in our time is difficult to

overestimate. The use of computer technology simplifies the functioning of both

individual processes of the organization and the entire work of the company as a

whole.

During the qualifying bachelor's thesis, the peculiarities of automation of the

process of managing postal items at the enterprise were investigated. The analysis

of existing solutions of automation of postal items is carried out. Based on the

analysis, the basic requirements for the mail management system at the enterprise

were identified and formed.

As a result, a prototype of the web-oriented automated mail management

system module at Oxygen 3000 LLC was designed and implemented.

According to the tasks, there were:

Oxygen 3000 LLC was characterized as an object of research and the
state of business process automation was analyzed;

the analysis of existing on the market of postal services and their decision
of automation of registration of postal deliveries is carried out;

formed requirements for web-based system;

design of the architecture of the prototype module of postal subdivisions;
selected technology prototype development: Django framework, Python
programming language;

a prototype of an automated system of postal corrections was developed;

developed a control example with instructions for use.

Prospects for further automation activities of LLC “Oxygen 3000 are to

expand the ability to pay online for the ordered goods. In addition, it is possible to

upgrade an existing web system to meet modern requirements.

37
REFERENCES

1. Kucenp nmns guxanas: BeO-caiit. URL: https://oxygen3000.com/uk/
(maTa 3Beprenns 10.06.2021)

2. Ilopran nns po3poonukiB APl Hosa Ilomra: BeO-caiit. URL:
https://devcenter.novaposhta.ua/ (nara 3sepuenns 10.06.2021)

3. Vkpnomra: BeO-caiir. URL: https://ukrposhta.ua/ua (mata 3BepHeHHs
10.06.2021)

4. Jlorictnuna kommadis Iuraiim: BeO-caiit. URL: https://intime.check-
track.com/ua/ (mata 3BepHenns 10.06.2021)

5. I'pyma xommaniii «JlenmiBepi»: BeO-caiit. URL: https://www.delivery-
auto.com/uk-UA/Home/Index (mara 3sepuenns 10.06.2021)

6. I'pyma xommaniii «Meesty: Be6-caiit. URL: https://ua.meest.com/ (mata
3BepHeHHs 10.06.2021)

7. Asromokc I'moban IToct: BeO-caiit. URL: https://autolux-post.com.ua/
(maTa 3BeprenHs 10.06.2021)

8. TOB «3pyuna JlocraBka»: BeO-caiit. URL: http://zruchnadostavka.com/
(mata 3BepHenHs 10.06.2021)

9. Delfast: website. URL: https://kiev.delfast.co/en/ (date accessed
10.06.2021)

10. Biznec-kabiHeT Hoga [Tomra: BEO-CailT. URL:
https://new.novaposhta.ua/create (mara 3sepuenns 10.06.2021)

11. JloxymeHTaris API Hoga ITomrra: BeO-caiT. URL.:
https://devcenter.novaposhta.ua/docs/services/ (nata 3Bepaenns 10.06.2021)

12. Zingaro D. Algorithmic thinking: a problem-based introduction. San
Francisco: No starch press, 2021. 410 p. URL.: https://dokumen.pub/algorithmic-
thinking-a-problem-based-introduction-1nbsped-9781718500808-9781718500815-
1718500807.html (date accessed 10.06.2021)

https://oxygen3000.com/uk/
https://devcenter.novaposhta.ua/
https://kiev.delfast.co/en/
https://new.novaposhta.ua/create
https://devcenter.novaposhta.ua/docs/services/

38

13. Erickson J. Algorithms, 2019. 472 p. URL.:

https://jeffe.cs.illinois.edu/teaching/algorithms/book/Algorithms-JeffE.pdf (date
accessed 10.06.2021)

14. Kreibich J.A. Using SQLite. O'Reily press, 2010. 503 p. URL:

https://allitbooks.net/programming/5373-using-sqglite.html (date accessed
10.06.2021)
15. Django documentation: website. URL.:

https://docs.djangoproject.com/en/3.2/ (date accessed 10.06.2021)

16. Sedhain S. Web framework for Python: Django, 2006. 190 p. URL.:
https://www.programmer-books.com/wp-content/uploads/2018/08/Django-Book-
Web-framework-for-Python.pdf (date accessed 10.06.2021)

17. Forcier J., Bissex P., Chun W. Python Web Development with Django.
Pearson Education inc, 2009. 405 p. URL: https://freepdf-
books.com/download/?file=4536 (date accessed 10.06.2021)

18. Dauzon S., Bendoraitis A., Ravindran A. Django: Web Development
with Python. Birmingham: Packt Publishing Ltd, 2016. 717 p. URL:
http://englishonlineclub.com/pdf/Django%20-
%20Web%20Development%20with%20Python%20(Learning%20Path)%20[Engli
shOnlineClub.com].pdf (date accessed 10.06.2021)

19. Three Level Architecture of Database: tuorialspoint website. URL:
https://www.tutorialspoint.com/Three-Level-Architecture-of-Database (date
accessed 10.06.2021)

20. Visual Studio Code: website. URL.: https://code.visualstudio.com/ (date
accessed 10.06.2021)

21. Python: website. URL: https://www.python.org/ (date accessed
10.06.2021)

22. Django: The web framework for perfections with deadlines: website.
URL.: https://www.djangoproject.com/ (date accessed 10.06.2021)

https://docs.djangoproject.com/en/3.2/
https://code.visualstudio.com/
https://www.python.org/

39

23. Writing Views: website. URL.:
https://docs.djangoproject.com/en/3.2/topics/http/views/ (date accessed
10.06.2021)

24. Stratton J. Django: Beyond the SQL: website. URL.: https://www.pdf-
tutorial.com/database/749-django-beyond-the-sql (date accessed 10.06.2021)

25. Django Web Development in Python: website. URL:
https://www.datacamp.com/community/tutorials/web-development-django (date
accessed 10.06.2021)

26. McKinney W. Python for Data Analysis. O Reilly, 2013. 470 p. URL.:
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-
Data-Analysis.pdf (date accessed 10.06.2021)

27. Python Notes for Professionals: website. URL.:
https://books.goalkicker.com/PythonBook/ (date accessed 10.06.2021)

28. Shaw Z. Learn Python the hard way: a very simple introduction to the
terrifyingly beautiful world of computers and code. Crawfordsville: Addison-
Wesley, 2014. 306 p. URL.: https://learntocodetogether.com/learn-python-the-hard-
way-free-ebook-download/ (date accessed 10.06.2021)

29. McKinney W. Pandas: powerful Python data analysis toolkit, 2021.
3325 p. URL: https://pandas.pydata.org/docs/pandas.pdf (date accessed
10.06.2021)

30. Learning Django: free unaffiliated eBook created from Stack Overflow
contributors. 228 p. URL: https://riptutorial.com/Download/django.pdf (date
accessed 10.06.2021)

31. Joxymenrtanus Django: Beo-caiit. URL: https://djbook.ru/rel3.0/ (date
accessed 10.06.2021)

32. Gorelick M., Ozsvald I. (2014) High Performance Python. O Reilly
Media, 370 p. ISBN: 978-1-449-36159-4

33. Lutz M. (2013) Learning Python, Fifth Edition. O Reilly Media, 1594 p.
ISBN: 978-1-449-35573-9

https://docs.djangoproject.com/en/3.2/topics/http/views/
https://www.datacamp.com/community/tutorials/web-development-django
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://bedford-computing.co.uk/learning/wp-content/uploads/2015/10/Python-for-Data-Analysis.pdf
https://books.goalkicker.com/PythonBook/
https://learntocodetogether.com/learn-python-the-hard-way-free-ebook-download/
https://learntocodetogether.com/learn-python-the-hard-way-free-ebook-download/
https://pandas.pydata.org/docs/pandas.pdf
https://riptutorial.com/Download/django.pdf
https://djbook.ru/rel3.0/

40

34. JIyty M. (2019) Usyuaem Python, Tom 1, 5-¢ u3a.: Ilep. ¢ anrn. CIIO.:
00O “uanextuxa”’, 2019. 832 c.

35. Downey A. (2016) Think Complexity. URL:
https://github.com/AllenDowney/ThinkComplexity2 (date accessed 10.06.2021)

36. 3maromonbekuii JI.M. OcHOBBI mporpaMMupoBaHus Ha si3eike Python. —
M.: IMK Ilpecc, 2017. 284 c.

37. JIytiy M. IIporpammupoBanue Ha Python, Tom |, 4-e uzganue. — Ilep. ¢
anrj. CII6.: CumBoa-ITnroc, 2011. 992 c.

38. JIytiy M. IIporpammupoBanue Ha Python, Tom I, 4-¢ uznanue. — Ilep. ¢
auri. CII0.: CumBon-ILmoc, 2011. 992 c.

39. Requests: HTTP for Humans: website. URL: https://docs.python-
requests.org/en/master/ (date accessed 10.06.2021)

40. Basic date and time types: website. URL.:
https://docs.python.org/3/library/datetime.html (date accessed 10.06.2021)

https://docs.python-requests.org/en/master/
https://docs.python-requests.org/en/master/

41
APPENDICES
Appendix A
SUMMARY

Lebedeva Yu. V. Automation of the retail trade at the enterprise. Qualifying
work of the bachelor. Sumy State University, Sumy, 2021.

The process of creating a prototype of an automated module for managing
postal items at the enterprise is investigated. An analysis of postal services that
provide their services in Ukraine. The prototype database was designed,
algorithmic software was determined. A prototype of an automated mail
management system at the enterprise has been implemented.

Keywords: automation, mailings, Nova Poshta API, programming, Django

framework.

AHOTALIIS

Jlebenena 1O. B. ABToMaru3anisi NOIITOBUX BiANPABIEHb HA IMiNPUEMCTBI
po3apibnoi Toprisii. Kamidikariina pobora 6akanaBpa. CyMChbKUN Jep>KaBHHIMA
yHiBepcuteT, Cymu, 2021 p.

Y po0oTi JOCHIIKEHO MPOIEC CTBOPEHHS MPOTOTUIY aBTOMATHU30BAHOTO
MOJYJIIO YIPABIIHHS MOIITOBUMH BiJMPaBICHHSMH Ha mianpuemcTsi. [IpoBeaeHo
aHaji3 TOIITOBUX CEpBICIB, SIKI HAJalOTh CBOI TOCIYrd B YKpaiHi. byno
CIIPOEKTOBAHO 0a3y JMaHWX MPOTOTHILY, BU3SHAYECHO AJITOPUTMIYHE 3a0€3MeUYeHHS.
PeanizoBaHo mMpOTOTUI ABTOMATHU30BAHOI CHUCTEMHU YIPABIIHHS TOMITOBUMHU
BIJIIPABJIEHHSAMHU Ha M1IIPUEMCTBI.

KirodoBi cioBa: aBTomatu3aiiis, momrtosi Bianpasiainasa, APl Hosa Ilomra,

nporpamyBanHs, Django ¢peiiMBopK.

42
Appendix B

Program code

models.py

from django.db import models

class Orders(models.Model):
name = models.CharField(max_length=100)
surname = models.CharField(max_length=100)
middleName = models.CharField(max_length=100)
phone = models.CharField(max_length=100)
eMail = models.CharField(max_length=100)
city = models.CharField(max_length=100)
street = models.CharField(max_length=100, null=True)
building = models.CharField(max_length=100, null=True)
apartment = models.CharField(max_length=100, null=True)
comment = models.CharField(max_length=100, null=True)
purchaseld = models.CharField(max_length=100,null=True)
status = models.CharField(max_length=10,null=True)
ttn = models.CharField(max_length=100,null=True)
dateSent = models.DateTimeField(null=True)
deliveryDate = models.DateTimeField(null=True)
deliveryStatus = models.CharField(max_length=100,null=True)

forms.py

from django import forms
PAYMENT_CHOICES= [
(‘online’, 'Online’),
(‘cash’, 'Cash’)
]
DELIVERY_CHOICES=|
(‘'self, 'Self"),
(‘courier', 'Courier")
]
class Order(forms.Form):
name = forms.CharField(label="name’, max_length=100)
surname = forms.CharField(label="surname’, max_length=100)
phone = forms.CharField(label="phone’, max_length=100)
payment = forms.CharField(label="payment', widget=forms.Select(choices=PAYMENT_CHO
ICES))
delivery = forms.CharField(label="delivery', widget=forms.Select(choices=DELIVERY_CHO
ICES))
city = forms.CharField(label="city’, max_length=100)
postbr = forms.CharField(label="postbr', max_length=100)
street = forms.CharField(label='street', max_length=100)
building = forms.CharField(label="building’', max_length=100)
apartment = forms.CharField(label="apartment’, max_length=100)

43

comment = forms.CharField(label="Add comment’, max_length=100)
purchaseld = forms.CharField(widget=forms.HiddenInput())
class Product(forms.Form):
pr_id = forms.CharField(label="Product’, max_length=100)
class changeStatus(forms.Form):
approve = forms.CharField(widget=forms.HiddenInput())
class DeclineOrder(forms.Form):
decline = forms.CharField(widget=forms.HiddenInput())
class DeleteOrder(forms.Form):
delete = forms.CharField(widget=forms.HiddenInput())

urls.py

from django.contrib import admin

from django.urls import path

from django.conf.urls import include, url

import postal App.views

urlpatterns = [
path(‘admin/', admin.site.urls),
url(r~$', postalApp.views.index, name="index’),
url(r'~order$', postalApp.views.order, name='order"),
url(r~catalogue$', postal App.views.catalogue, name="catalogue’),
url(r~finish$', postalApp.views.finish, name="finish"),
url(r“manager$’, postalApp.views.manager, name='manager’),

Settings.py

from pathlib import Path
Build paths inside the project like this: BASE_DIR / 'subdir".
BASE_DIR =Path(__file_).resolve().parent.parent
Quick-start development settings - unsuitable for production
See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/
SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY ='django-insecure-@+lu_ydf!zOk $&0&ibmpioy-
&@u*$&@2#vpIH8 f&&=8g&sw'
SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED HOSTS =1]
Application definition
INSTALLED_APPS = [
‘django.contrib.admin’,
‘django.contrib.auth’,
‘django.contrib.contenttypes’,
‘django.contrib.sessions',
‘django.contrib.messages’,
‘django.contrib.staticfiles',
‘postalApp’,
]
MIDDLEWARE =
‘django.middleware.security.SecurityMiddleware’,
‘django.contrib.sessions.middleware.SessionMiddleware’,

44

‘django.middleware.common.CommonMiddleware’,
'django.middleware.csrf.CsrfViewMiddleware',
‘django.contrib.auth.middleware.AuthenticationMiddleware',
‘django.contrib.messages.middleware.MessageMiddleware’,
‘django.middleware.clickjacking.XFrameOptionsMiddleware’,
]
ROOT_URLCONF = "postalApp.urls'
TEMPLATES =
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS": [],
'‘APP_DIRS'": True,
'OPTIONS": {

‘context_processors": [
‘django.template.context_processors.debug’,
‘django.template.context_processors.request’,
‘django.contrib.auth.context_processors.auth’,
‘django.contrib.messages.context_processors.messages’,

WSGI_APPLICATION = "postalApp.wsgi.application’
Database
https://docs.djangoproject.com/en/3.2/ref/settings/#databases
DATABASES = {
‘default’: {
'ENGINE": 'django.db.backends.sqlite3,
'NAME'": BASE_DIR /'db.sqlite3’,
¥
¥

Password validation
https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS =[

{
'‘NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator’,

'NAME": 'django.contrib.auth.password_validation.MinimumLengthValidator',

'NAME': ‘django.contrib.auth.password_validation.CommonPasswordValidator',

¥
{
¥
{
¥
{

'NAME'": 'django.contrib.auth.password_validation.NumericPasswordValidator',

2
]

Internationalization

https://docs.djangoproject.com/en/3.2/topics/i18n/
LANGUAGE_CODE = "en-us'

TIME_ZONE ="'UTC'

45

USE_I18N = True

USE_L10N = True

USE_TZ =True

Static files (CSS, JavaScript, Images)

https://docs.djangoproject.com/en/3.2/howto/static-files/
STATIC_URL = '/static/'

Default primary key field type

https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field
DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField’

migrations

from django.db import migrations, models
class Migration(migrations.Migration):
initial = True
dependencies = [
]
operations = [
migrations.CreateModel(
name='Orders’,
fields=[
(‘'id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, ver
bose_name='1D")),
(‘'name’, models.CharField(max_length=100)),
(‘'surname’, models.CharField(max_length=100)),
(‘phone’, models.CharField(max_length=100)),
(‘payment’, models.CharField(max_length=100)),
(‘delivery’, models.CharField(max_length=100)),
(‘city’, models.CharField(max_length=100)),
(‘postbr', models.CharField(max_length=100, null=True)),
(‘street’, models.CharField(max_length=100, null=True)),
(‘building’, models.CharField(max_length=100, null=True)),
(‘apartment’, models.CharField(max_length=100, null=True)),
(‘comment’, models.CharField(max_length=100, null=True)),
(‘purchaseld’, models.CharField(max_length=100, null=True)),

1,
),

]
Generated by Django 3.2 on 2021-06-13 22:01

from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
(‘postalApp’, '0001_initial’),
]
operations = [
migrations.AddField(
model_name='"orders’,
name='status’,
field=models.CharField(max_length=10, null=True),

),

from django.db import migrations, models

class Migration(migrations.Migration):
dependencies = [
(‘postalApp’, '0002_orders_status’),
]
operations = [
migrations.AddField(
model_name='"orders’,
name="ttn’,
field=models.CharField(max_length=100, null=True),
),
]

order_list.html

<html>
<head><title></title></head>
<body>
<style>
table {
width: 100%; /* [llupuna Tabnuiisr */
border: 4px double black; /* Pamka Bokpyr Tabsuisr */
border-collapse: collapse; /* OTobpaxars TOIBKO OJUHAPHBIC JIUHUH */
}
th {
text-align: left; /* BeipaBHuBaHMe 110 JIeBOMY Kpato */
background: #ccc; /* Liger dona siueex */
padding: 5px; /* Tlons BOKpPYT COAEPIKUMOTO siueek */
border: 1px solid black; /* I'panuria Bokpyr stueex */
}
td {
padding: 5px; /* Tlonst BOKPYT COAEPKUMOTO siueek */
border: 1px solid black; /* I'panuria Bokpyr stueex */
width:50px;
}
<[style>
<table>
<tr >
<td>name</td>
<td>surname</td>
<td>middleName</td>
<td>phone</td>
<td>Adress</td>
<td>purchaseld</td>
<td>status</td>
<td>Approve</td>
<td>Decline</td>
<td>Delete</td>
<td>TTN</td>
<td>DateSent</td>
<td>DateReceived</td>
<td>Delivery Status</td>

46

<ftr>
{% for order in content %}
<tr>

fa>

<td>{{order.name}}</td>
<td>{{order.surname} }</td>
<td>{{order.phone}}</td>
<td>{{order.city}}</td>
<td>{{order.purchaseld}}</td>
<td>{% if order.status == "1"%}

<div>New</div>

{% elif order.status == "2"%}

<div>Approved</div>

{% elif order.status == "3"%}

<div>Declined</div>

{%endif%}

</td>
<td>
<form method="post" action="/manager">
{% csrf_token %}
<input type="hidden" name="approve" value="{{ order.id }}">
<input type="submit" value="Approve">
</form>
</td>
<td>
<form method="post" action="/manager">
{% csrf_token %}
<input type="hidden" name="decline" value="{{ order.id }}">
<input type="submit" value="Decline">
</form>
</td>
<td>
<form method="post" action="/manager">
{% csrf_token %}
<input type="hidden" name="delete" value="{{ order.id }}">
<input type="submit" value="Delete">
</form>
</td>
<td>
{% if order.ttn != None%}

47

<a href="https://my.novaposhta.ua/orders/printDocument/orders[]/{{order.ttn}}/orders[]/
{{order.ttn} }/type/pdf/apiKey/aade0992ea5446achef2a12f8a4328b4" target="_blank">open ttn<

{%endif%}
</td>

<ftr>

{% endfor %}
</table>
</body>
</htm|>

48
Views.py

from django.shortcuts import render
from django.http import HttpResponse
from django.shortcuts import render
from django.contrib.auth import authenticate
from django.http import HttpResponseRedirect
from django.conf import settings
from datetime import datetime, timedelta
import http.client
import requests
import json
from .forms import DeleteOrder, DeclineOrder, Order
from .forms import changeStatus
from .forms import Product
from .models import Orders
def index(request):
pass
def order(request):
if request.method =="'POST":
form = Product(request.POST)
if form.is_valid():
pr_id = form.cleaned_data['pr_id']
form1 = Order()
form1.fields['purchaseld].initial = pr_id
return render(request, ‘order.html’, {'form": form1})
else:
form = Order()
return render(request, ‘order.html’, {'form': form})
def catalogue(request):
form = Product()
return render(request, 'catalogue.html’, {'form": form})
def finish(request):
if request.method =="'POST":
form = Order(request.POST)
if form.is_valid():
new_order = Orders(name = form.cleaned_data['name’],
surname = form.cleaned_data['surname'],
phone = form.cleaned_data['phone],
payment = form.cleaned_data['paymentT],
delivery = form.cleaned_data['delivery'],
city = form.cleaned_data['city'],
postbr = form.cleaned_data['postbr'],
street = form.cleaned_data['street’],
building = form.cleaned_data['building’],
apartment = form.cleaned_data['apartment'],
comment = form.cleaned_data['‘comment’],
purchaseld = form.cleaned_data['purchaseld],
status ='1")
new_order.save()
return render(request, 'finish.ntml’, {'Thank': "Thanks \n our manager will contact you"})
else:

49

form = Order()
return render(request, ‘order.ntml', {'form’: form, 'id":'vvwv'})
def manager(request):
appr = changeStatus()
orders = Orders.objects.all()
decline = DeclineOrder()
delete = DeleteOrder()
if request.method =="'POST":
apprf = changeStatus(request.POST)
declinef = DeclineOrder(request.POST)
deletef = DeleteOrder(request.POST)
if apprf.is_valid():
new_appr = apprf.cleaned_data['approve’]
Orders.objects.filter(id=new_appr).update(status="2")
client = Orders.objects.filter(id=new_appr).values()[0]
gg = client['surname’]
ttn =create_ttn(client['name'],"JIeGenena")
Orders.objects.filter(id=new_appr).update(ttn=ttn)
return render(request, "order_list.html", {'content": orders,"gg":gg})
elif declinef.is_valid():
decline = declinef.cleaned_data['decline’]
Orders.objects.filter(id=decline).update(status="3")
return render(request, "order_list.html", {'content": orders})
elif deletef.is_valid():
delete = deletef.cleaned _data['delete’]
Orders.objects.filter(id=delete).delete()
return render(request, "order_list.html", {'content": orders})
else:
return render(request, "order_list.html", {"content": orders})
def create_ttn(name,lastname):
countr = {
"apiKey": "aa4e0992ea5446achef2al2f8a4328h4",
"modelName": "Counterparty",
"calledMethod": "getCounterparties™,
"methodProperties™: {
"CounterpartyProperty": "Sender",
"Page": "1"
¥
}

response = requests.post(‘https://api.novaposhta.ua/v2.0/json/', json=countr)
content = response.content

countr_full = json.loads(content)

countr_ref = countr_full['data’][0]['Ref"]

countr_contact_pers = {
"apiKey": "aa4e0992ea5446achef2al2f8a4328b4",
"modelName": "Counterparty",
"calledMethod": "getCounterpartyContactPersons”,
"methodProperties": {
"Ref": countr_ref,
"Page": "1"
¥

50
¥

response = requests.post(‘https://api.novaposhta.ua/v2.0/json/', json=countr_contact_pers)
content = response.content
countr_cont_full = json.loads(content)
countr_cont_full_ref = countr_cont_full['data’][0]['Ref"]
countr_cont_full_phones = countr_cont_full['data’][0]['Phones']
create_recepient = {
"apiKey": "aa4e0992ea5446achef2al2f8a4328h4",
"modelName": "Counterparty",
"calledMethod": "save",
"methodProperties™: {
"FirstName": name,
"MiddleName": "BiraniiBaa",
"LastName": lastname,
"Phone": "0999203721",
"Email": ",
"Counterparty Type": "PrivatePerson",
"CounterpartyProperty": "Recipient”

¥
¥

response = requests.post(‘https://api.novaposhta.ua/v2.0/json/', json=create_recepient)
content = response.content
new_recepient_full = json.loads(content)
new_recepient_full_ref = new_recepient_full['data’][0]['Ref']
#new_recepient_full_phones = new_recepient_full['data’][0]['Phones’]
get_cont_recepient = {
"apiKey": "aa4e0992ea5446achef2al2f8a4328b4",
"modelName": "Counterparty",
"calledMethod": "getCounterpartyContactPersons”,
"methodProperties™: {
"Ref": new_recepient_full_ref,
"Page": "1"
}
¥

response = requests.post(‘https://api.novaposhta.ua/v2.0/json/', json=get_cont_recepient)
content = response.content
get_cont_recepient_full = json.loads(content)
get_cont_recepient_full_ref = get_cont_recepient_full['data’][0]['Ref']
get_cont_recepient_full_phones = get_cont_recepient_full['data’][0]['Phones’]
get_city ={

"modelName": "Address",

"calledMethod": "getCities",

"methodProperties™: {

"FindByString": "XapbkoB"
}

piKey": "aa4e0992ea5446achef2al2f8a4328h4"
b

response = requests.post(‘https://api.novaposhta.ua/v2.0/json/', json=get_city)
content = response.content

get_city_full = json.loads(content)

get_city full_ref = get_city_full['data'][0]['Ref"]

o1

get_street = {
"modelName": "Address",
"calledMethod": "getStreet",
"methodProperties”: {
"CityRef": get_city_full_ref,
"FindByString": "Cymcbka"
1
"apiKey": "aa4e0992ea5446achef2al2f8a4328h4"

¥

response = requests.post(‘https://api.novaposhta.ua/v2.0/json/', json=get_street)
content = response.content
get_street_full = json.loads(content)
get_street_full_ref = get_street_full['data’][0]['Ref']
get_adress = {

"modelName": "Address",

"calledMethod": "save",

"methodProperties™: {

"CounterpartyRef": new_recepient_full_ref,

"StreetRef": get_street full_ref,

"BuildingNumber™: "7",

"Flat": "2",

"Note": "KommenTapuit"

}
"apiKey": "aa4e0992ea5446achef2al2f8a4328h4"
¥

response = requests.post(‘https://api.novaposhta.ua/v2.0/json/', json=get_adress)
content = response.content
get_adress_full = json.loads(content)
get_adress_ref = get_adress_full['data’][0]['Ref"]
date="20.06.2021"
paramsl ={
"apiKey": "aa4e0992ea5446achef2al2f8a4328h4",
"modelName": "InternetDocument”,
"calledMethod": "save",
"methodProperties™: {
"PayerType™: "Sender",
"PaymentMethod™: "Cash",
"DateTime": date,
"CargoType": "Cargo",
"VolumeGeneral™: "0.1",
"Weight": "10",
"ServiceType": "WarehouseDoors",
"SeatsAmount": "1",
"Description™: "Oxygen3000",
"Cost": "500",
"CitySender": "8d5a980d-391c-11dd-90d9-001a92567626",
"Sender": countr_ref,
"SenderAddress": "01ae2635-e1c2-11e3-8c4a-0050568002cf",
"ContactSender": countr_cont_full_ref,
"SendersPhone": countr_cont_full_phones,
"CityRecipient": get_city full_ref,
"Recipient”: new_recepient_full_ref,

"RecipientAddress": get_adress_ref,
"ContactRecipient™: get_cont_recepient_full_ref,
"RecipientsPhone™: get_cont_recepient_full_phones
}
}
response = requests.post(‘https://api.novaposhta.ua/v2.0/json/', json=params1)
content = response.content
rezult = json.loads(content)
get_t = rezult['data’][0]['Ref]
return get_t

52

