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Abstract: In this article, the fractional-order differential equation of particle sedimentation was
obtained. It considers the Basset force’s fractional origin and contains the Riemann–Liouville frac-
tional integral rewritten as a Grunwald–Letnikov derivative. As a result, the general solution of the
proposed fractional-order differential equation was found analytically. The belonging of this solution
to the real range of values was strictly theoretically proven. The obtained solution was validated on
a particular analytical case study. In addition, it was proven numerically with the approach based on
the S-approximation method using the block-pulse operational matrix. The proposed mathematical
model can be applied for modeling the processes of fine particles sedimentation in liquids, aerosol
deposition in gas flows, and particle deposition in gas-dispersed systems.

Keywords: particle sedimentation; resistance force; fractional-order integro-differential equation;
laplace transform; Mittag–Leffler function; block-pulse operational matrix

1. Introduction

Based on the experimental and numerical simulation results, available experience
indicates the importance of considering the Basset force in studying the processes of
deposition and sedimentation of small particles moving close to rigid boundaries [1]. In
this regard, differential formulation of the Basset force for its numerical calculation is an
urgent problem in the field of computational mechanics [2]. Recently, the solution of this
problem has been associated with the fractional calculus application [3].

The fractional-order differential equations allows us to generalize existing approaches
in the fields of mechanical and chemical engineering, particularly for modeling hydrome-
chanical processes, such as the sedimentation of particles in a viscous fluid, deposition of
aerosols in separation channels, pneumatic classification of fine particles, nutrient release
from mineral fertilizers and migration of mineral components in soil, and gas-cleaning.

However, despite the existing numerical approaches for solving fractional-order
differential equations, their analytical solutions’ approaches remain an incompletely
studied problem. Therefore, this article aims to develop analytical techniques for solv-
ing the fractional-order differential equation of particle sedimentation considering the
fractional origin of the Basset force.

To achieve this goal, the following objectives were set: substantiation of fractional
origin for the Basset force, obtaining the fractional-order equation of the sedimentation
of particles, solving the obtained equation analytically, validating the obtained general
solution analytically, and approximating the numerically obtained case studies by obtained
analytical dependencies.
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The problems of particle deposition and sedimentation in a heterogeneous dispersed
system have not been thoroughly investigated. The first works devoted to solving small
particle motion equations in a viscous fluid and a nonuniform flow were presented by
Leal [4], Maxey, and Riley [5], respectively. Mainly, weak inertia and non-Newtonian effects
on the dynamics of rigid particles in an unbounded fluid were considered. However, the
proposed analytical approaches were not considered the fractional origin of the Basset
force. In addition, Loussaief et al. [6] investigated a spherical particle’s motion in a viscous
fluid and applied the Thomas algorithm to determine the characteristics of motion for
a spherical particle along a slip wall. However, the proposed methodology does not allow
one to obtain the general solution of the particle sedimentation equation analytically.

Coimbra and Kobayashi [7] studied the small particle motion in a viscous medium in
the rotating cylinder considering the Saffman fractional-order lift force. However, this force
acts on particles in vortex flows. Moreover, the authors only presented a comparison with
the results obtained by considering the drag force as a dominant one. Oppenheimer et al. [8]
studied the coupled thermal and hydromechanical particle motion problem in a viscous
fluid at low Reynolds numbers. As a result, a general analytical expression to determine
the force and its torque on a particle was derived based on the Lorentz reciprocal theo-
rem. However, this presented analytical solution does not consider the fractional-order
Basset force.

Moreno-Casas and Bombardelli [9] presented a general numerical approach for the
calculation of the Basset force. A method for approximating the Basset force was proposed
by van Hinsberg et al. [10]. However, such an approach does not allow one to estimate the
sedimentation velocity analytically and, therefore, the sedimentation time accurately.

A number of recent research works have aimed at applying fractional calculus in the
field of engineering. Particularly, Chung [11] described a general approach for solving
fractional Newton’s mechanics problems based on fractional-order differential equations.
As a result, an approach to solve fractional-order differential equations of Newton dynamics
approximately has been proposed based on infinite power series. However, such an
approach cannot be applied to obtain the analytical solution of the fractional-order particle
sedimentation equation rigorously.

Agila [12] proposed applying fractional Euler–Lagrange equations for solving the
problem of free damped oscillations. He et al. [13] analyzed the dynamic response of
viscosimeters based on fractional-order differential equations. As a result, the memory-free
Yuan–Agrawal’s approach for numerical integrating fractional-order differential equa-
tions was developed and proven for the particular case studies. The presented approach
discovered perspectives in measuring the viscosity of fluids.

Tomovski and Sandev [14] proposed an analytical treatment of the wave equation
considering fractional friction and obtained the solution based on the Mittag–Leffler-type
functions. Rossikhin and Shitikova [15] studied the dynamic behavior of nonlinear oscil-
latory systems described by fractional-order time derivatives. The proposed approach
allowed them to obtain approximations of particular oscillatory modes for the fixed equi-
librium position case study.

Therefore, the following research gaps in particle deposition and sedimentation in
a heterogeneous dispersed system should be stated due to the critical review mentioned
above. First, the fractional-order particles sedimentation equation considering the Basset
force’s fractional origin should be substantiated and solved analytically. Second, the general
solution of the proposed equation should be found numerically. Finally, the obtained solu-
tion should be validated analytically for the available case study and proven numerically.
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2. Materials and Methods
2.1. The Particle Motion Equation Considering the Basset Force

According to the equation of motion for a small rigid sphere in a nonuniform flow [16],
the particle motion equation moving with a time-varying velocity in projection to the
positive tangential direction has the following form:

mp
dvp(t)

dt
= Fg − FA − Fd − Ff − FB, (1)

where mp—mass of a particle (kg), vp—particle velocity (m/s), t—time (s), Fg = mpg—
gravity force (N), g—acceleration gravity (m/s), FA = mfg–Archimedes’ force, (N), mf—
added mass of a flow (kg), Fd = 6πµavp(t)—drag force (N), µ—dynamic viscosity (Pa·s),

a—radius of a particle (m), Ff = 1
2 m f

dvp(t)
dt —force of the flow added mass (N), and FB—

Basset force, determined as follows [17]:

FB = 6πµa2
∫ t

0

dvp(τ)
dτ√

πν(t− τ)
dτ, (2)

where ν—kinematic viscosity (m2/s) and τ—time parameter (s).
The expressions mentioned above allow us to rewrite Equation (1) as follows:

(
mp +

1
2

m f

)
dvp(t)

dt
+ 6
√

πρµa2
∫ t

0

dvp(τ)
dτ√
t− τ

dτ + 6πµavp(t) =
(

mp −m f

)
g, (3)

where ρ—fluid density (kg/m3).
The introduction of the parameters

α =
3π
√

ρµa2

mp +
1
2 m f

; n =
6πµa

mp +
1
2 m f

; vp∞ =

(
mp −m f

)
g

6πµa
(4)

allows us to rewrite integro-differential Equation (3) in the following form:

dvp(t)
dt

+
2α√

π

∫ t

0

dvp(τ)
dτ√
t− τ

dτ + nvp(t) = nvp∞, (5)

where n—relaxation factor (s–1), α—coefficient of the Basset force (s–1/2), and vp∞ = lim
t→∞

v(t)—

stationary velocity (m/s).

2.2. The Fractional-Order Differential Equation of Particles Sedimentation

For further analytically solving Equation (5), the Riemann–Liouville integral and
derivative [18] and Grünwald–Letnikov fractional derivative are considered [19]:

Iβ
t0,tvp(t) = 1

Γ(β)

∫ t
t0

vp(τ)(t− τ)β−1dτ;

Dβ
t0,tvp(t) = 1

Γ([β]−β)
d[β]

dt[β]
∫ t

t0
vp(τ)(t− τ)β−[β]+1dτ;

Dβ
t0,tvp(t) = lim

N→∞

(
t−t0

N

)β N
∑

i=0

Γ(α+i)
i!Γ(α) vp

[
t− i

N (t− t0)
]
= I−β

t0,t vp(t),

(6)

where β—fractional-order, t0—initial time (s), and Γ(β)—gamma function [20]:

Γ(β) =
∫ ∞

0
e−xxβ−1dx, Re(β) > 0 (7)



Energies 2021, 14, 4561 4 of 12

Considering the connection between fractional derivatives [21]:

Dγ
t0,t

[
dr

dtr vp(t)
]
=

dr

dtr

[
Dγ

t0,tvp(t)
]
− (t− t0)

−γ−r+i

Γ(−γ− r + i + 1)

[
di

dti vp(t)
]

t=t0

, (8)

in the case of γ = 1
2 , r = 1 for initial time t0 = 0, and considering Γ

(
1
2

)
=
√

π, the following
equation can be written:

I
1
2
0,t

[
dvp(t)

dt

]
= D

1
2
0,t
[
vp(t)

]
−

vp(0)√
πt

. (9)

Comparing Equations (2) and (9) with the Riemann–Liouville integro-differential (6)
for the value of β = 1

2 and initial time t0 = 0, as well as for the case of zero initial condition
(vp(0) = 0), allows us to determine the Basset force in terms of fractional calculus:

FB = 6πa2√µρI
1
2
0,t

[
dvp(t)

dt

]
= 6πa2√µρD

1
2
0,t
[
vp(t)

]
. (10)

Therefore, Equation (5) takes the following form:

dvp(t)
dt

+ 2α
d

1
2 vp(t)

dt
1
2

+ nvp(t) = nvp∞. (11)

Notably, this formula is the fractional-order differential equation of particle sedimenta-
tion that considers the Basset force. This equation can be applied for more precise modeling
of the processes of fine particles sedimentation in liquids, aerosol deposition in a gas flow,
and particle deposition in gas-dispersed systems.

3. Results
3.1. The General Solution of the Fractional-Order Differential Equation of Particles Sedimentation

For solving Equation (11) analytically, the Laplace transform [22] is used for zero
initial condition (vp(0) = 0). In this case, the following equational operation can be obtained:

(
s + 2α

√
s + n

)
Vp(s) =

nvp∞

s
, (12)

where s—complex frequency parameter (s–1) and Vp(s)—Laplace transform of the particle
velocity (m):

Vp(s) =
∫ ∞

0
vp(t)e−stdt, (13)

which can be determined from the algebraic Equation (12):

Vp(s) =
nvp∞

s
(
s + 2α

√
s + n

) = nvp∞

(
a1√

s
+

a2

s
+

a3√
s− θ1

+
a4√

s− θ2

)
, (14)

where θ1,2 = −α±
√

α2 − n—a couple of roots of the square equation θ2 + 2αθ + n = 0.
Notably, θ =

√
s. The unknown parameters a1, a2, a3, and a4 are obtained from the

following matrix equation:
1 0 1 1

−(θ1 + θ2) 1 −θ2 −θ1
θ1θ2

0
−(θ1 + θ2)

θ1θ2

0
0

0
0




a1
a2
a3
a4

 =


0
0
0
1

. (15)
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Based on the inverse matrix method, the following dependencies can be obtained after
identical transformation:

a1 = −2α

n2 ; a2 =
1
n

; a3,4 = ± 1

2
(

α∓
√

α2 − n
) . (16)

Introduction of the parameters θ = –θ1 and θ/ = –θ2, after considering the equality
L−1

(
1√

s

)
= 1√

πt
allows us to apply inverse Laplace transform [23] to Equation (14):

vp(t) = nvp∞

[
a1√
πt

+ a2H(t) + a3L−1
(

1√
s + θ

)
+ a4L−1

(
1√

s + θ′

)]
, (17)

where H(t)—Heaviside step function.
Notably, the absence of singularity for this solution is proven below. For further

consideration, Mittag–Leffler function [24] is used:

Eγ,β(z) =
∞

∑
i=0

zi

Γ(γi + β)
. (18)

It has the following peculiarity in terms of its Laplace transform [25]:

L
[
tβ−1Eγ,β(θtγ)

]
=

sγ−β

sγ − θ
. (19)

Consequently, the following inverse Laplace transform for the case of γ = 1
2 and β = 1

can be written as follows:

L
[

E 1
2 ,1

(
θ
√

t
)]

=
1√

s
(√

s− θ
) =

1
θ

(
1√

s− θ
− 1√

s

)
. (20)

Therefore, the following inverse Laplace transform can be obtained:

L−1
(

1√
s− θ

)
=

1√
πt

+ θE 1
2 ,1

(
θ
√

t
)

. (21)

In addition, the decomposition

1
s− θ2 =

1
2θ

(
1√

s− θ
− 1√

s + θ

)
(22)

with equality L−1
(

1
s−θ2

)
= eθ2t with Equation (21) allows us to obtain the following inverse

Laplace transform:

L−1
(

1√
s + θ

)
=

1√
πt

+ θE 1
2 ,1

(
θ
√

t
)
− 2θeθ2t. (23)

Therefore, Equation (16) can be rewritten as follows:

vp(t) = nvp∞

[
a1 + a3 + a4√

πt
+ a2H(t) + a3θE 1

2 ,1

(
θ
√

t
)
+ a4θ′E 1

2 ,1

(
θ′
√

t
)
− 2
(

a3θeθ2t + a4θ′eθ′2t
)]

, (24)

Notably, a1 + a3 + a4 ≡ 0 due to Equation (16), and H(t) = 1 for t > 0. Therefore,
Equation (24) can be rewritten in the following form:

vp(t) = vp∞

{
1− n

[
2
(

a3θeθ2t + a4θ′eθ′2t
)
− a3θE 1

2 ,1

(
θ
√

t
)
− a4θ′E 1

2 ,1

(
θ′
√

t
)]}

. (25)

Remarkably, in practical applications, the inequality α2 < n, the obtained solution,
seems complex because of the complexity of parameters θ1,2. Consequently, the belonging
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of this solution to the real range of values must be proven strictly theoretically. For
this purpose, the complex parameters θ1,2 = −α± j

√
n− α2 are considered (j–imaginary

unit: j2 = –1). The substitution of these parameters to Equation (25), as well as the use of
Newton’s binomial theorem [26] and properties of hyperbolic functions [27], allows us to
obtain the following expressions:

a3θeθ2t + a4θ′eθ′2t = 1
n

∞
∑

i=0

t
i
2

Γ( i
2+1)

i
∑

r=0

(
i
r

)
αi−r(n− α2) r

2
(

cos πi
2 −

α√
n−α2 sin πi

2

)
;

a3θE 1
2 ,1

(
θ
√

t
)
+ a4θ′E 1

2 ,1

(
θ′
√

t
)
= 1

n e−(n−2α2)t
(

cos 2α
√

n− α2t− α√
n−α2 sin 2α

√
n− α2t

)
.

(26)

Therefore, the Velocity (25) belongs to the real range of values.
Finally, the general Equation (25) of the fractional-order differential Equation (11) of

particles sedimentation that considers the Basset force takes the following form:

vp(t) = vp∞

[
1− 2e−(n−2α2)t

(
cos 2α

√
n− α2t− α√

n−α2 sin 2α
√

n− α2t
)
+

+
∞
∑

i=0

t
i
2

Γ( i
2+1)

i
∑

r=0

(
i
r

)
αi−r(n− α2) r

2
(

cos πi
2 −

α√
n−α2 sin πi

2

)]
.

(27)

3.2. The Particular Case Study

For validating the obtained general Equation (27) of the fractional-order differential
Equation (11), the particular case study for α = 0 is considered. In this case, the solution
takes the following form:

vp0(t) = vp∞

[
1− 2e−nt + E′1

2 ,1

(√
nt
)]

, (28)

where the following modified Mittag–Leffler function is introduced:

E〈c〉γ,β(z) =
∞

∑
i=0

zi

Γ(γi + β)
cos

πi
2

, (29)

which differs from the traditional one (18) by the multiplier cos πi
2 .

Remarkably, the modified Mittag–Leffler function has the following peculiarity:

E〈c〉1
2 ,1

(z) ≡ e−z2
. (30)

In this case, a particular Equation (28) takes the form

vp0(t) = vp∞
(
1− e−nt), (31)

which corresponds to the traditional one [28].
Thus, the general Equation (27) discovers new areas in studying the process of particle

sedimentation in a fluid flow.

3.3. Analysis of Leading Orders of the General Solution

To analyze the leading orders of the general Equation (27), the dimensionless velocity

vp(τ) =
vp(τ)
vp∞

, the dimensionless time τ = nt, and the dimensionless coefficient of the
Basset force ε = α√

n are introduced. Accordingly, Equation (27) takes the following
dimensionless form:

vp(τ) = 1− 2e−τe2ε2τ
(

cos 2ε
√

1− ε2τ − ε√
1−ε2 sin 2ε

√
1− ε2τ

)
+

+
∞
∑

i=0

τ
i
2

Γ( i
2+1)

i
∑

r=0

(
i
r

)
εi−r(1− ε2) r

2
(

cos πi
2 −

ε√
1−ε2 sin πi

2

)
.

(32)



Energies 2021, 14, 4561 7 of 12

For the first approximation, in case of relatively small values of ε << 1, after expansion
into a Maclaurin series leaving the first-order terms ε only, Equation (27) considering
identity Equation (30) and dependence Equation (31) can be rewritten approximately
as follows:

vp(τ) = 1− e−τ − εE〈s〉1
2 ,1

(√
τ
)
= vp0(τ)− δvp(τ), (33)

where the first-order variation has been introduced:

δvp(τ) = εE〈s〉1
2 ,1

(√
τ
)
. (34)

It contains the modified Mittag–Leffler function

E〈s〉γ,β(z) =
∞

∑
i=0

zi

Γ(γi + β)
sin

πi
2

(35)

for values γ = 1
2 , β = 1 and argument z =

√
τ.

Due to the abovementioned results, the leading terms of the Equation (27) are the first
terms in the double sum for the case of i = r = 0, where εi–r = ε0 = 1:

1. Multiplier before cos
(

2α
√

n− α2t
)

= cos
(

2ε
√

1− ε2τ
)

, when the use of identity
Equation (30) allows obtaining the leading component Equation (31). This component
is responsible for the sedimentation velocity without considering the Basset force.

2. Multiplier before sin
(

2α
√

n− α2t
)
= sin

(
2ε
√

1− ε2τ
)

. It allows us to obtain the
velocity variation (34) proportional to the dimensionless parameter ε. This component
allows us to reduce the general Equation (27) to the most simplified variation form (33)
with respect to dimensionless parameters ε and τ.

Notably, due to Equation (33), an increase in the Basset force (the dimensionless
parameter ε) leads to decreased sedimentation velocity.

For practical purposes, Simplification (33) can be applied for values of the dimen-
sionless coefficient ε ≤ 0.23 because the maximum relative deviation of the sedimentation
velocity from the accurate analytical Solution (27) is less than 10%. Therefore, if the di-
mensionless coefficient ε is more than this critical value, Equation (27) or (32) should be
given preference.

Figure 1 presents the dimensionless solution Equation (32) of the particle sedimenta-
tion Equation (11) for different dimensionless parameters ε in a wide range (from 0 to 1).

Figure 1. Comparative analysis of the dimensionless solutions for the fractional-order integro-
differential equations of particle sedimentation.
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Notably, all the solutions asymptotically approach the horizontal lines of the maximum
sedimentation velocities.

3.4. Comparison with the Numerical Simulation Results

The next step for proving the obtained general solution Equation (27) is its comparison
with the numerical simulation results.

The direct integration of the fractional-order differential Equation (11) can be realized
with approach based on the S-approximation method [29] using the block-pulse operational
matrix (S(t)) [30], the elements of which are as follows:

Si(t) =
1
2
{sign(t− i∆t)− sign[t− (i + 1)∆t]}, (36)

where i—plot index and ∆t = tmax/N—timestep (tmax—the maximum time range; N—
number of plots for numerical integration).

In this case, the initial fractional-order differential Equation (11) is transformed to the
following fractional-order integral equation:

vp(t) + 2αI
1
2
0,t
[
vp(t)

]
+ nI1

0,t
[
vp(t)

]
= nvp∞t, (37)

which satisfies the zero initial condition, as vp(0) = 0.
The numerical solution of this integral equation is based on the following operational

analog [31]: (
[E] + 2α

[
P〈0.5〉

]
+ n

[
P〈1〉

])
{Y} = {F}, (38)

where {Y}—operational column-vector of the solution, [E]—the identity matrix with di-
mensions of N × N, and [P<0.5>], [P<1>]—elements of the operational matrix [P<β>] (β = 0.5,
and β = 1, respectively), the elements of which are determined as follows:

P〈β〉i,j = p(β, i− j), (39)

where p(β, r)—the following function (|r| = 0, 1, . . . , N–1):

P〈β〉i,j =
∆tβ

Γ(β + 2)
·


1, i = j;

(r + 1)β+1 − 2rβ+1 + (r− 1)β+1, i > j
0, i < j.

, (40)

Elements Fi (i = 1, 2, . . . , N) of the operational column-vector of external impact {F}
are determined as follows:

Fi =
1
h

∫ (i+1)∆t

i∆t
nvp∞tdt =

(
i +

1
2

)
∆t·nvp∞. (41)

Using the inverse matrix method [32], the operational column-vector of the solution

{Y} =
(
[E] + 2α

[
P〈0.5〉

]
+ n

[
P〈1〉

])−1
{F} (42)

allows us to obtain the following numerical solution of the initial Equation (33):

vp(t) =
N−1

∑
i=0

YiSi(t). (43)

Figure 1 also presents the numerically obtained results of solving the particle sedi-
mentation Equation (37). Approximation lines for all the data completely coincide with
the analytically obtained function Equation (32). This fact additionally proves the an-
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alytical approach’s adequacy for solving the fractional-order differential equation of
particle sedimentation.

Remarkably, the Basset force significantly increases the dimensionless sedimenta-
tion time determined from the condition vp = (1− δ)vp∞, where δ—deviation of the
sedimentation velocity from the stationary one vp∞, usually chosen as equal to δ = 0.05.

Particularly, if the Basset force is not considered (ε = 0), then the dimensionless
sedimentation time is equal to 3.0 (Figure 1). However, even considering the parameter
ε = 0.05, this dimensionless time parameter increases by 43% and becomes equal to 4.3.

The fact mentioned above explains the use of significant correction factors in tradi-
tional calculations of apparatuses for the sedimentation and deposition of the particles.
However, using the fractional-order differential equation of particle sedimentation avoids
unjustified correction factors in modeling processes and designing related chemical tech-
nology equipment.

4. Discussion

The fractional-order differential Equation (11) and its analytical solution Equation (27)
eliminate the gap in studying the particle sedimentations and deposition processes.

Notably, Wan [33] obtained the fractional-order differential equation’s analytical
solution for the free-falling process. However, the considered hydraulic drag as a linear
combination of the velocity vp and its square v2

p was extended to a more general case of
velocity analog based on the fractional derivative of particle displacement with the order
in a range from 1 to 2. However, this approach does not consider the Basset force at all.
Moreover, consideration of this force makes it possible to use the fractional derivative of
particle displacement with the order of 3/2 only.

Visitskii et al. [34] investigated spherical particles’ sedimentation in a viscous fluid
considering the Basset force. However, the solution was obtained numerically for particular
case studies. In addition, numerical simulation results can be obtained using the operational
matrix based on the Legendre polynomials proposed by Saadatmandi and Dehghan [35].
However, the resulting curves presented in Figure 1 remain unchanged in terms of their
approximation by the obtained analytical solution Equation (27).

Sobral et al. [36] applied the “Maple” software for obtaining the particular solution
of the sedimentation equation. However, this solution is quite complicated for the anal-
ysis due flaws, including complex variables that need to reduce hyperbolic functions by
trigonometric ones with imaginary coefficients. Moreover, in the case of zero Basset force,
the corresponding solution should be reduced to the solution of the relaxation equation.

All these disadvantages were eliminated using the Mittag–Leffler function and its
particular properties. In addition, the validity of the proposed solution for the imaginary
arguments was justified. Finally, the singularity of the fractional-order differ-integral
sedimentation equation was proven analytically.

Notably, the proposed approach can be applied not only for particle sedimentation
and deposition problems but also for solving nutrient release problems from mineral
fertilizers and the pneumatic classification of fine particles. Particularly, Equation (11)
and its general solution Equation (27) allow us to clarify the concentration distribution for
nutrients during their washing out from the fertilized soil [37]. The migration process of
mineral components in the soil [38] can also be studied more precisely using the proposed
fractional-calculus approach. The proposed methodology also extends the understanding
of the distribution of fine particles’ concentration and the height of the rhomb-shaped
pneumatic classificators [39].

The fractional-order sedimentation equation can be further expanded to solve the prob-
lem of dispersed particle’s deposition in separation channels [40] and for further precise
modeling of the gas emission process [41] and designing gas-cleaning equipment [42].
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5. Conclusions

In this article, the fractional origin for the Basset force was substantiated. As a result of
modifying the particle motion equation moving with a time-varying velocity, the fractional-
order equation of particles’ sedimentation was obtained. This equation differs from the
traditional one by the semi-derivative of the particle velocity.

As a result of the integration of the proposed equation, its general solution was found
analytically. This solution varies from the traditional one by the component based on the
modified Mittag–Leffler function. Notably, for the particular case of zero Basset force, this
equation reduces to the traditional one. Moreover, the belonging of this solution to the real
range of values was theoretically proven.

In addition, the particle sedimentation’s fractional-order differential equation was
solved numerically using the analogous fractional-order integral equation. The numerical
simulation was realized based on the S-approximation method using the block-pulse
operational matrix. For normalizing the obtained solutions, the dimensionless particle
velocity was introduced.

As a result, approximations of the numerically obtained case studies were presented
graphically for a single variable dimensionless system parameter ranging from 0 to 1. The
obtained analytical dependencies approximated the corresponding block-pulse curves. The
adequacy of the proposed analytical approach for solving the fractional-order differential
equation of particle sedimentation was proven analytically and numerically.

Notably, the Basset force significantly increases the sedimentation time. For example,
if the Basset force is not considered, then the dimensional sedimentation time is equal to
3.0. However, when considering the Basset force with the dimensionless parameter equal
to 0.05, this time increases by 43%.

Finally, the proposed mathematical model can be applied for modeling the processes
of particle sedimentation in liquids, aerosol deposition in gas flows, and particle depo-
sition in gas-dispersed systems as essential processes in the fields of mechanical and
chemical engineering.
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