
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

SUMY STATE UNIVERSITY

U. Shvets, I. Knyaz’

Python and Data Science

Lecture notes

Sumy

Sumy State University

2021

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

SUMY STATE UNIVERSITY

U. Shvets, I. Knyaz’

Python and Data Science

Lecture notes

APPROVED

at the session of Applied

Mathematics and Complex

Systems Modelling Department

as lecture notes on discipline

“Python and Data Science”.

Minutes № 9 of 19.10.2021.

Sumy

Sumy State University

2021

Python and Data Science: lecture notes / compilers U. Shvets,

I. Knyaz’. – Sumy : Sumy State University, 2021. – 101 р.

Department of Applied Mathematics and Complex Systems

Modelling

4

CONTENTS

P.

LECTURE 1 “INTRODUCTION TO PYTHON” 6

1.1 Simple Python program .. 6

1.2 Getting input and printing results ... 8

1.3 Variables ... 11

LECTURE 2 “NUMBERS AND OPERATIONS WITH THEM” .. 13

2.1 Integers and Decimal Numbers .. 13

2.2 Math Operators and Order of operations 13

2.3 Random numbers .. 14

2.4 Math module ... 15

LECTURE 3 “CONDITIONAL FLOW CONTROL“ 19

3.1 Simple Conditions .. 19

3.2 Simple if Statements ... 19

3.3 if-else Statements .. 20

3.4 Multiple Tests and if-elif Statements .. 22

LECTURE 4 “LOOPS” .. 25

4.1 for loop.. 25

4.2 The range function .. 26

4.3 while loop .. 28

LECTURE 5 “STRING TREATMENT” ... 32

LECTURE 6 “PYTHON LISTS” ... 39

LECTURE 7 “SUBPROGRAM: FUNCTIONS” 47

7.1 Default and Keyword arguments .. 50

7.2 Local and Global variables ... 52

5

LECTURE 8 “PYTHON FOR DATA ANALYSIS” 55

8.1 Data Analysis .. 55

8.2 Why Python is widely used for Data Analysis 58

8.3 Python Data Structures for Data Science 59

8.4 Python Libraries for Data Science .. 68

LECTURE 9 "DATA EXPLORATION IN PYTHON: USING

PANDAS”... 70

9.1 Distribution analysis ... 73

9.2 Categorical variable analysis .. 77

9.3 Data Munging in Python ... 80

LECTURE 10 "BUILDING A PREDICTIVE MODEL IN

PYTHON” .. 86

10.1 Logistic Regression .. 88

10.2 Decision Tree .. 92

10.3 Random Forest .. 96

REFERENCES ... 100

6

LECTURE 1

INTRODUCTION TO PYTHON

Python is an easy to learn, powerful programming language. It

has efficient high-level data structures. Python’s elegant syntax and

dynamic typing, together with its interpreted nature, make it an ideal

language for scripting and rapid application development in many

areas on most platforms. The Python interpreter and the extensive

standard library are freely available in source or binary form for all

major platforms from the Python Web site, https://www.python.org/,

and may be freely distributed. The same site also contains distributions

of and pointers to many free third party Python modules, programs and

tools, and additional documentation. The Python interpreter is easily

extended with new functions and data types implemented in C or C++

(or other languages callable from C).

This lecture notes will introduce you to the basics of the python

programming environment, including fundamental python

programming techniques. This introduction to Python will kickstart

your learning of Python for data science, as well as programming in

general. The lecture notes will introduce data manipulation and

cleaning techniques using the popular python data science libraries

and introduce the abstraction of the Series and DataFrame as the

central data structures for data analysis.

To write programs you may use IDLE – a simple integrated

development environment (IDE) that comes with Python. You can

find IDLE in the Python folder on your computer. When you first start

IDLE, it starts up in the shell, which is an interactive window where

you can type in Python code and see the output in the same window.

1.1 Simple Python program

Start IDLE and open up a new window (choose New Window under

the File Menu). Type in the following program:

7

temp = eval(input('Enter a temperature in

 Celsius: '))

print('In Kelvin, that is', temp+273)

Then, under the Run menu, choose Run Module (or press F5).

IDLE will ask you to save the file, and you should do so. Be sure to

append .py to the filename as IDLE will not automatically append it.

This will tell IDLE to use colors to make your program easier to read.

Once you've saved the program, it will run in the shell window.

The program will ask you for a temperature. Type in 20 and press

Enter. The program's output looks something like this:

Enter a temperature in Celsius: 20

In Fahrenheit, that is 293.0

Let's examine how the program does what it does. The first line

asks the user to enter a temperature. The input function's job is to

ask the user to type something in and to capture what the user types.

The part in quotes is the prompt that the user sees. It is called a string

and it will appear to the program's user exactly as it appears in the code

itself. The eval function is something we use here, but it won't be

clear exactly why until later. So for now, just remember that we use it

when we're getting numerical input.

We need to give a name to the value that the user enters so that

the program can remember it and use it in the second line. The name

we use is temp and we use the equals sign to assign the user's value

to temp.

The second line uses the print function to print out the

conversion. The part in quotes is another string and will appear to your

program's user exactly as it appears in quotes here. The second

argument to the print function is the calculation. Python will do the

calculation and print out the numerical result.

This program may seem too short and simple to be of much

use, but there are many websites that have little utilities that do similar

conversions, and their code is not much more complicated than the

code here.

8

A second program here is a program that computes the average

of three numbers that the user enters:

nl = eval(input('Enter the first number:'))

n2 = eval(input('Enter the second number:'))

n3 = eval(input('Enter the third number:'))

print('The average of the numbers you entered

 is', (nl+n2+n3)/3)

For this program we need to get three numbers from the user.

There are ways to do that in one line, but for now we'll keep things

simple. We get the numbers one at a time and give each number its

own name. The only other thing to note is the parentheses in the

average calculation. This is because of the order of operations. All

multiplications and divisions are performed before any additions and

subtractions, so we have to use parentheses to get Python to do the

addition first1).

1.2 Getting input and printing results

The input function is a simple way for your program to get

information from people using your program. Here is an example:

name = input('Enter your surname: ')

print('Hello ', surname)

The basic structure is

variable name = input('message to user')

The above works for getting text from the user. To get numbers

1) Spaces matter at the beginning of lines, but not elsewhere. For example, the code below will not work

properly:
numl = eval(input('Enter the first number:'))

 num2 = eval(input('Enter the second number:'))

 print('The average of the numbers you

 entered is', (numl+num2)/2)

9

from the user to use in calculations, we need to do something extra.

Here is an example:

num = eval(input('Enter a number: '))

print('Your number cubed: ', num*num*num)

The eval function converts the text entered by the user into a

number. One nice feature of this is you can enter expressions, like

(3*2+3)/4, and eval will compute them for you.

There are several useful functions for convertation. The int function

converts something into an integer. The float function converts

something into a floating point number. Here are some examples.

Statement Result

int('27') 27

float('3.14') 3.14

int(3.14) 3

To convert a float to an integer, the int function drops

everything after the decimal point.

So, the previous example we may rewrite with float:

num = float(input('Enter a number: '))

print('Your number cubed: ', num*num*num)

 Quite often we will want to convert a number to a string to take

advantage of string methods to break the number apart. The built-in

function str is used to convert things into strings. Here are some

examples:

Statement Result

str(27) '27'

str(3.14) '3.14'

str([1,2,3]) '[1,2,3]

10

The print function requires parenthesis around its

arguments. Anything inside quotes will (with a few exceptions) be

printed exactly as it appears. In the following, the first statement will

output 3 + 4, while the second will output 7:

print('3+4')

print(3+4)

To print several things at once, separate them by commas.

Python will automatically insert spaces between them. Below is an

example and the output it produces.

print('The value of 2+2 is', 2+2)

print('A', 1)

As a result we will get

The value of 2+2 is 4

A 1

There are two optional arguments to the print function.

Python will insert a space between each of the arguments of the print

function. There is an optional argument called sep, short for

separator, that you can use to change that space to something else. For

example, using sep=' : ' would separate the arguments by a colon and

sep='##' would separate the arguments by two pound signs. One

particularly useful possibility is to have nothing inside the quotes, as

in sep=' '. This says to put no separation between the arguments. Here

is an example where sep is useful for getting the output to look nice:
print('The value of 3+5 Is', 3+5, '.')

print('The value of 3+5 Is', 3+5, sep=' ')

As a result we will get

The value of 3+5 is 8 .

The value of 3+5 is 8.

11

The print function will automatically advance to the next line. There

is an optional argument called end that you can use to keep the print

function from advancing to the next line. Here is an example:

print('On the first line', end='')

print('On the second line')

As a result we will get

On the first lineOn the second line

1.3 Variables

Looking back at our first program, we see the use of a variable called

temp:

temp = eval(input('Enter a temperature in

 Celsius: '))

print{'In Kelvin, that is', temp+273)

One of the major purposes of a variable is to remember a value

from one part of a program so that it can be used in another part of the

program. In the case above, the variable temp stores the value that the

user enters so that we can do a calculation with it in the next line.

Here is another example with variables:

x=3

y=4

z=x+y

z=z+l

x=y

y=5

After these four lines of code are executed, x is 4, y is 5 and z is 8.

One way to understand something like this is to take it one line at a

time. This is an especially useful technique for trying to understand

12

more complicated chunks of code. Here is a description of what

happens in the code above:

1. x starts with the value 3 and y starts with the value 4.

2. In line 3, a variable z is created to equal x+y, which is 7.

3. Then the value of z is changed to equal one more than it currently

equals, changing it from 7 to 8.

4. Next, x is changed to the current value of y, which is 4.

5. Finally, y is changed to 5. Note that this does not affect x.

6. So at the end, x is 4, y is 5, and z is 8.

There are just a couple of rules to follow when naming your variables.

• Variable names can contain letters, numbers, and the underscore.

• Variable names cannot contain spaces.

• Variable names cannot start with a number.

• Case matters – for instance, temp and Temp are different.

13

LECTURE 2

NUMBERS AND OPERATIONS WITH THEM

2.1 Integers and Decimal Numbers

Because of the way computer chips are designed, integers and decimal

numbers are represented differently on computers. Decimal numbers

are represented by what are called floating point numbers. The

important thing to remember about them is you typically only get

about 15 or so digits of precision. It would be nice if there were no

limit to the precision, but calculations run a lot more quickly if you cut

off the numbers at some point.

On the other hand, integers in Python have no restrictions.

They can be arbitrarily large.

For decimal numbers, the last digit is sometimes slightly off

due to the fact that computers work in binary (base 2) whereas our

human number system is base 10. As an example, mathematically, we

know that the decimal expansion of 7/3 is 2.333, with the threes

repeating forever. But when we type 7/3 into the Python shell, we get

2.3333333333333335. This is called roundoff error. For most

practical purposes this is not too big of a deal, but it actually can cause

problems for some mathematical and scientific calculations.

2.2 Math Operators and Order of operations

Here is a list of the common operators in Python:

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

14

Operator Description

** Exponentiation

// integer division

e. g. 6//5 = 1

% modulo (remainder)

e. g. 18%7 = 4

Exponentiation gets done first, followed by multiplication and

division (including // and %), and addition and subtraction come

last.

This comes into play in calculating an average. Say you have

three variables x, y, and z, and you want to calculate the average of

their values and to add value of f. To expression x+y+z/3+f would

not work. Because division comes before addition, you would actually

be calculating x + y +
𝑧

3
+ 𝑓 instead of

𝑥+𝑦+𝑧

3
+ 𝑓. This is easily

fixed by using parentheses: (x+y+z)/3+f.

In general, if you're not sure about something, adding

parentheses might help and usually doesn't do any harm.

2.3 Random numbers

Python comes with a module, called random, that allows us to use

random numbers in our programs.

Before we get to random numbers, we should first explain what

a module is. The core part of the Python language consists of things

like for loops, if statements, math operators, and some functions, like

print and input. Everything else is contained in modules, and if

we want to use something from a module we have to first import it —

that is, tell Python that we want to use it.

At this point, there is only one function, called randint, that

we will need from the random module. To load this function, we use

the following statement:

from random import randint

15

Using randint is simple: randint(a,b) will return a

random integer between a and b including both a and b. (Note that

randint includes the right endpoint b unlike the range function).

Here is a short example:

from random import randint

x = randint(1,20)

print('A random number between 1 and 20: ',x)

As a result we will get:

A random number between 1 and 20: 7

The random number will be different every time we run the program.

2.4 Math module

Python has a module called math that contains familiar math

functions. There are also the inverse trig functions, hyperbolic

functions, and the constants pi and e. Here is the list of all the

functions and attributes defined in math module with a brief

explanation of what they do.

List of Functions in Python Math Module

Function Description

ceil(x) Returns the smallest integer greater than or

equal to x

copysign(x,y) Returns x with the sign of y

fabs(x) Returns the absolute value of x

factorial(x) Returns the factorial of x

floor(x) Returns the largest integer less than or

equal to x

fmod(x,y) Returns the remainder when x is divided

by y

frexp(x) Returns the mantissa and exponent of x as

16

Function Description

the pair (m, e)

fsum(iterable) Returns an accurate floating point sum of

values in the iterable

isfinite(x) Returns True if x is neither an infinity nor

a NaN (Not a Number)

isinf(x) Returns True if x is a positive or negative

infinity

isnan(x) Returns True if x is a NaN

ldexp(x,i) Returns x*(2**i)

modf(x) Returns the fractional and integer parts

of x

trunc(x) Returns the truncated integer value of x

exp(x) Returns e**x

expm1(x) Returns e**x-1

log(x[,b]) Returns the logarithm of x to the base b

(defaults to e)

log1p(x) Returns the natural logarithm of 1+x

log2(x) Returns the base-2 logarithm of x

log10(x) Returns the base-10 logarithm of x

pow(x,y) Returns x raised to the power y

sqrt(x) Returns the square root of x

acos(x) Returns the arc cosine of x

asin(x) Returns the arc sine of x

atan(x) Returns the arc tangent of x

atan2(y,x) Returns atan(y/x)

cos(x) Returns the cosine of x

hypot(x,y) Returns the Euclidean norm,

sqrt(x*x+y*y)

sin(x) Returns the sine of x

tan(x) Returns the tangent of x

degrees(x) Converts angle x from radians to degrees

radians(x) Converts angle x from degrees to radians

acosh(x) Returns the inverse hyperbolic cosine of x

17

Function Description

asinh(x) Returns the inverse hyperbolic sine of x

atanh(x) Returns the inverse hyperbolic tangent of x

cosh(x) Returns the hyperbolic cosine of x

sinh(x) Returns the hyperbolic cosine of x

tanh(x) Returns the hyperbolic tangent of x

erf(x) Returns the error function at x

erfc(x) Returns the complementary error function

at x

gamma(x) Returns the Gamma function at x

lgamma(x) Returns the natural logarithm of the

absolute value of the Gamma function at x

pi Mathematical constant, the ratio of

circumference of a circle to it's diameter

(3.14159...)

e Mathematical constant e (2.71828...)

Here is a short example:

import math

number = -21.19

print('The given number is :', number)

print('Floor value is :', math.floor(number))

print('Ceiling value is :', math.ceil(number))

print('Absolute value is :', math.fabs(number))

There are two built in math functions, abs (absolute value)

and round that are available without importing the math module.

Here are some examples:

print(abs(-2.3))

print(round(5.436, 2))

print(round(116.2, -1))

18

As a result we will get

2.3

5.43

120.0

The round function takes two arguments: the first is the

number to be rounded and the second is the number of decimal places

to round to. The second argument can be negative.

19

LECTURE 3

CONDITIONAL FLOW CONTROL

3.1 Simple Conditions

Let us consider simple arithmetic comparisons that directly translate

from math into Python

2 < 5

3 > 7

x = 11

x > 10

2 * x < x

type(True)

You see that conditions are either True or False. These are

the only possible Boolean values. In Python the name Boolean is

shortened to the type bool. It is the type of the results of true-false

conditions or tests.

3.2 Simple if Statements

Run this example program. Try it at least twice, with inputs: 30 and

then 55. As you see, you get an extra result, depending on the input.

The main code is:

weight = float(input("How many pounds does

 your suitcase weigh? "))

if weight > 50:

 print("There is a $25 charge for luggage

 that heavy.")

print("Thank you for your business.")

https://www.oreilly.com/library/view/java-programming-basics/9780133975154/Lesson_02_04.html
https://www.oreilly.com/library/view/java-programming-basics/9780133975154/Lesson_02_04.html

20

The middle two line are an if statement. If it is true that the

weight is greater than 50, then print the statement about an extra

charge. If it is not true that the weight is greater than 50, then don’t do

the indented part: skip printing the extra luggage charge. In any event,

when you have finished with the if statement (whether it actually

does anything or not), go on to the next statement that is not indented

under the if. In this case that is the statement printing “Thank you”.

The general Python syntax for a simple if statement is

if condition :

 indented Statement Block

If the condition is true, then do the indented statements. If the

condition is not true, then skip the indented statements.

In the examples above the choice is between doing something

(if the condition is True) or nothing (if the condition is False). Often

there is a choice of two possibilities, only one of which will be done,

depending on the truth of a condition.

3.3 if-else Statements

Try the program below at least twice, with inputs 50 and then 80. As

you can see, you get different results, depending on the input.

temperature = float(input('What is the

 temperature? '))

if temperature > 70:

 print('Wear shorts')

else:

 print('Wear long pants')

print('Get some exercise outside')

The middle four lines are an if-else statement. Again it is close to

English, though you might say “otherwise” instead of “else” (but else

is shorter!). There are two indented blocks: One, like in the simple if

statement, comes right after the if heading and is executed when the

21

condition in the if heading is true. In the if-else form this is

followed by an else: line, followed by another indented block that is

only executed when the original condition is false. In an if-else

statement exactly one of two possible indented blocks is executed.

The general Python if-else syntax is

if condition :

 indented Statement Block For True

 Condition

else:

 indented Statement Block For False

 Condition

These statement blocks can have any number of statements,

and can include about any kind of statement.

All the usual arithmetic comparisons may be made, but many

do not use standard mathematical symbolism, mostly for lack of

proper keys on a standard keyboard.

Meaning Math Symbol Python Symbols

Less than < <

Greater than > >

Less than or equal ≤ <=

Greater than or equal ≥ >=

Equals = ==

Not equal ≠ !=

There should not be space between the two-symbol Python

substitutes.

Tests for equality do not make an assignment, and they do not

require a variable on the left. Any expressions can be tested for

equality or inequality (!=). They do not need to be numbers! Predict

the results for these commands:

22

x = 5

x == 5

x != 6

x = 6

6 == x

6 != x

'hi' == 'h' + 'i'

'HI' != 'hi'

[1, 2] != [2, 1]

'a' > 5

There are three additional operators used to construct more

complicated conditions: and, or, and not. Here are an example:

if(score<100 or time>2) and turns_remain==0:

 print(‘Game over.’)

In terms of order of operations, and is done before or, so if you have

a complicated condition that contains both, you may need parentheses

around the or condition. Think of and as being like multiplication

and or as being like addition.

 On the other hand, there is a nice shortcut that does work in

Python (though not in many other programming languages):

if 80<=score<90:

 …

Here are some handy shortcuts:

Statement Shortcut

if a==0 and b==0 and c==0: if a==b==c==0:

if 1<a and a<b and b<5: if 1<a<b<5:

3.4 Multiple Tests and if-elif Statements

Often you want to distinguish between more than two distinct cases,

but conditions only have two possible results, True or False, so the

23

only direct choice is between two options. As anyone who has played

“20 Questions” knows, you can distinguish more cases by further

questions. If there are more than two choices, a single test may only

reduce the possibilities, but further tests can reduce the possibilities

further and further. Since most any kind of statement can be placed in

an indented statement block, one choice is a further if statement. For

instance consider a function to convert a numerical grade to a letter

grade, ‘A’, ‘B’, ‘C’, ‘D’ or ‘F’, where the cutoffs for ‘A’, ‘B’, ‘C’, and

‘D’ are 90, 80, 70, and 60 respectively. One way to write the function

would be test for one grade at a time, and resolve all the remaining

possibilities inside the next else clause:

if score >= 90:

 letter = 'A'

else: # grade must be B, C, D or F

 if score >= 80:

 letter = 'B'

 else: # grade must be C, D or F

 if score >= 70:

 letter = 'C'

 else: # grade must D or F

 if score >= 60:

 letter = 'D'

 else:

 letter = 'F

print(letter)

This repeatedly increasing indentation with an if statement as

the else block can be annoying and distracting. A preferred

alternative in this situation, that avoids all this indentation, is to

combine each else and if block into an elif block:

if score >= 90:

 letter = 'A'

elif score >= 80:

 letter = 'B'

elif score >= 70:

24

 letter = 'C'

elif score >= 60:

 letter = 'D'

else:

 letter = 'F'

The most elaborate syntax for an if-elif-else statement

is indicated in general below:

if condition1 :

 indented Statement Block For True

 Condition 1

elif condition2 :

 indented Statement Block For First True

 Condition 2

elif condition3 :

 indented Statement Block For First True

 Condition 3

elif condition4 :

 indented Statement Block For First True

 Condition 4

else:

 indented Statement Block For Each

 Condition False

The if, each elif, and the final else lines are all aligned.

There can be any number of elif lines, each followed by an indented

block. (Three happen to be illustrated above.) With this construction

exactly one of the indented blocks is executed. It is the one

corresponding to the first True condition, or, if all conditions are

False, it is the block after the final else line.

25

LECTURE 4

LOOPS

 Loops are among the most basic and powerful of programming

concepts. A loop in a computer program is an instruction that repeats

until a specified condition is reached. In a loop structure, the loop asks

a question. If the answer requires action, it is executed. The same

question is asked again and again until no further action is required.

Each time the question is asked is called an iteration. A computer

programmer who needs to use the same lines of code many times in a

program can use a loop to save time.

4.1 for loop

The following program will print Hello and How are you?

twenty times:

for i in range(20):

 print ('Hello')

 print ('How are you?')

The structure of a for loop is as follows:

for variable name in range(number of times to
 repeat):

statements to be repeated

The syntax is important here. The word for must be in

lowercase, the first line must end with a colon, and the statements to

be repeated must be indented. Indentation is used to tell Python which

statements will be repeated.

Since the second and third lines are indented, Python knows

that these are the statements to be repeated. If a line is not indented, so

https://www.thoughtco.com/loops-2034224

26

it is not part of the loop and only gets executed once, after the loop has

completed.

Looking at the above example, we see where the term for loop

comes from: we can picture the execution of the code as starting at the

for statement, proceeding to the second and third lines, then looping

back up to the for statement.

There is one part of a for loop that is a little tricky, and that is

the loop variable. In the example below, the loop variable is the

variable i. The output of this program will be the numbers 0,1,..., 99,

each printed on its own line.

for i in range(100):

 print(i)

When the loop first starts, Python sets the variable i to 0. Each

time we loop back up, Python increases the value of i by 1. The

program loops 100 times, each time increasing the value of i by until

we have looped 100 times. At this point the value of i is 99.

You may be wondering why i starts with 0 instead of 1. Well,

there doesn't seem to be any really good reason why other than that

starting at 0 was useful in the early days of computing and it has stuck

with us. In fact most things in computer programming start at 0 instead

of 1. This does take some getting used to.

 It's a convention in programming to use the letters i, j, and k

for loop variables, unless there's a good reason to give the variable a

more descriptive name.

4.2 The range function

The value we put in the range function determines how many times

we will loop. The way range works is it produces a list of numbers

from zero to the value minus one. For instance, range(5) produces

five values: 0, 1, 2, 3, and 4.

If we want the list of values to start at a value other than 0, we

can do that by specifying the starting value. The statement

range(1,5) will produce the list 1, 2, 3, 4. This brings up one quirk

27

of the range function - it stops one short of where we think it should.

If we wanted the list to contain the numbers 1 through 5 (including 5),

then we would have to do range(1,6).

Another thing we can do is to get the list of values to go up by

more than one at a time. To do this, we can specify an optional step as

the third argument. The statement range(1,10,2) will step

through the list by twos, producing 1, 3, 5, 7, 9.

To get the list of values to go backwards, we can use a step of

-1. For instance, range (5,1,-1) will produce the values 5, 4, 3,

2, in that order. Note that the range function stops one short of the

ending value 1. Here are a few more examples:

Statement Values generated

range(8) 0,1,2,3,4,5,6,7

range(1,8) 1,2,3,4,5,6,7

range(2,7) 2,3,4,5,6

range(2,13,2) 2,4,6,8,10,12

range(9,2,-1) 9,8,7,6,5,4,3

Here is an example program that counts down from 5 and then

prints a message.

for i in range(4,0,-1):

 print (i, end=' ')

print('Stop')

4 3 2 1 Stop

The end=' ' just keeps everything on the same line.

 The program below prints a triangle of symbols ‘o’ that is 4

rows tall

for i in range(4):

 print('o'*(i+1))

28

The triangle produced by this code is shown below
o

oo

ooo

oooo

The code 'o'*(i+1) is something we'll cover in next

lecture; it just repeats character 'o' six times.

Sometimes, though, we need to repeat something, but we don't

know ahead of time exactly how many times it has to be repeated. For

instance, a game of Tic-tac-toe keeps going until someone wins or

there are no more moves to be made, so the number of turns will vary

from game to game. This is a situation that would call for a while loop.

4.3 while loop

Let's go back to the first program we wrote back in Lecture 1, the

temperature converter. One annoying thing about it is that the user has

to restart the program for every new temperature. A while loop will

allow the user to repeatedly enter temperatures. A simple way for the

user to indicate that they are done is to have them enter a nonsense

temperature like 66. This is done below:

temp = 0

while temp!=66:

 temp = eval(input('Enter a temperature

 (66 to quit):'))

 print('In Kelvin, that is', temp+273)

Look at the while statement first. It says that we will keep

looping, that is, keep getting and converting temperatures, as long as

the temperature entered is not 66. As soon as 66 is entered, the while

loop stops. Tracing through, the program first compares temp to 66.

If temp is not 66, then the program asks for a temperature and

converts it. The program then loops back up and again compares temp

to 66. If temp is not 66, the program will ask for another temperature,

29

convert it, and then loop back up again and do another comparison. It

continues this process until the user enters 66.

We need the line temp=0 at the start, as without it, we would

get a name error. The program would get to the while statement, try

to see if temp is not equal to 66 and run into a problem because temp

doesn't yet exist. To take care of this, we just declare temp equal to 0.

There is nothing special about the value 0 here. We could set it to

anything except 66. (Setting it to 66 would cause the condition on the

while loop to be false right from the start and the loop would never

run.)

Note that is natural to think of the while loop as continuing

looping until the user enters 66. However, when we construct the

condition, instead of thinking about when to stop looping, we instead

need to think in terms of what has to be true in order to keep going.

 We can use a while loop to mimic a for loop, as shown

below. Both loops have the exact same effect:

for i in range(10):

 print(i)

i=0

while i<10:

 print(i)

 i=i+1

Remember that the for loop starts with the loop variable i

equal to 0 and ends with it equal to 9. To use a while loop to mimic

the for loop, we have to manually create our own loop variable i.

We start by setting it to 0. In the while loop we have the same print

statement as in the for loop, but we have another statement, i=i+1,

to manually increase the loop variable, something that the for loop

does automatically.

 When working with while loops, sooner or later you will

accidentally send Python into a never-ending loop. Here is an

example:

while True:

 # statements to be repeated go here

30

In this program, the condition is always true (you may replace

True by any positive number, e. g. while 1). Python will

continuously repeat intended statements below while. To stop a

program caught in a never-ending loop, use Restart Shell under

the Shell menu. You can use this to stop a Python program before it

is finished executing.

Another example of an infinite loop is here:

i=0

n=l

while i<1 and n>0: # Conditions are always true

 print(0)

The break statement can be used to break out of a for or

while loop before the loop is finished.

Here is a program that allows the user to enter up to 10

numbers. The user can stop early by entering a negative number.

for i in range(10):

 n = eval(input('Enter a number:'))

 if n<0:

 break

When a for loop is present inside another for loop then it is called a

nested for loop. Let’s take an example of nested for loop.

for num1 in range(3):

 for num2 in range(10, 14):

 print(num1, ",", num2)

As a result we will get:

0,10

0,11

0,12

0,13

31

1,10

1,11

1,12

1,13

2,10

2,11

2,12

2,13

 Unlike other languages we can use else for loops. When the

loop condition of "for" or "while" statement fails then code part in

"else" is executed. If a break statement is executed inside the for

loop then the "else" part is skipped. Note that the "else" part is

executed even if there is a continue statement. Let’s consider

another that allows us to print out 0, 1, 2, 3, 4 and then print “count

value reached 5”.

count=0

while(count<5):

 print(count)

 count +=1

else:

 print("count value reached %d" %(count))

Prints out 1,2,3,4

for i in range(1, 10):

 if(i%5==0):

 break

 print(i)

else:

 print("this is not printed because for

loop is terminated because of break but not

due to fail in condition")

32

LECTURE 5

STRING TREATMENT

Strings are a data type in Python for dealing with text. Python

has a number of powerful features for manipulating strings.

A string is created by enclosing text in quotes. You can use

either single quotes, ', or double quotes, ". A triple-quote can be used

for multi-line strings. Here are some examples:

s = 'Hi'

t = "Hello"

I = """This Is a long string that is

spread across two lines."""

 In previous lectures when getting numerical input we used an

eval statement with the input statement, but when getting text, we

do not use eval.

 The empty string '' is the string equivalent of the number 0.

It is a string with nothing in it. We have seen it before, in the print

statement's optional argument, sep=''.

 To get the length of a string (how many characters it has), use

the built-in function len. For example, len('How are you') is

11 (spaces are symbols too).

The operators + and * can be used on strings. The + operator

combines two strings. This operation is called concatenation. The *

repeats a string a certain number of times. Here are some examples.

Expression Result

'AB'+'cd' 'ABcd'

'A'+'7'+'B' 'A7B'

'Hi'*4 'HiHiHiHi'

https://stackoverflow.com/questions/57699348/string-treatment-with-blacklist-and-whitelist-in-python

33

The in operator is used to tell if a string contains something.

For example:

string='Hello. How are you?'

if 'H' in string:

 print('Your string contains H')

We will often want to pick out individual characters from a

string. Python uses square brackets to do this. The table below gives

some examples of indexing the string s='Python'.

Statement Result Description

s[0] P first character of s

s[1] y second character of s

s[-1] n last character of s

s[-2] o second-to-last character of s

Note, that the first character of s is s[0], not s[1]. Remember that

in programming, counting usually starts at 0, not 1. Negative indices

count backwards from the end of the string.

A common error Suppose s='Python' and we try to do

s[12]. There are only six characters in the string and Python will

raise the following error message:

IndexError: string index out of range

A slice is used to pick out part of a string. It behaves like a

combination of indexing and the range function. Below we have

some examples with the string s='abcdefghij'.

Code Result Description

s[2:5] cde characters at indices 2, 3, 4

s[:5] abcde first five characters

s[5:] fghij characters from index 5 to the

end

34

Code Result Description

s[-2:] ij last two characters

s[:] abcdefghij entire string

s[1:7:2] bdf characters from index 1 to 6,

by twos

s[: :-1] jihgfedcba a negative step reverses the

string

Slices have the same quirk as the range function in that they

does not include the ending location. For instance, in the example

above, s[2:5] gives the characters in indices 2, 3, and 4 but not the

character in index 5.

 We can leave either the starting or ending locations blank. If we

leave the starting location blank, it defaults to the start of the string.

So s[:5] gives the first five characters of s. If we leave the ending

location blank, it defaults to the end of the string. So s[5:] will give

all the characters from index 5 to the end. If we use negative indices,

we can get the ending characters of the string. For instance, s[-2:]

gives the last two characters.

 There is an optional third argument, just like in the range

statement, that can specify the step. For example, s[1:7:2] steps

through the string by twos, selecting the characters at indices 1,3, and

5 (but not 7, because of the aforementioned quirk). The most useful

step is -1, which steps backwards through the string, reversing the

order of the characters.

Suppose we have a string called s and we want to change the

character at index 4 of s to 'X'. It is tempting to try s[4]='X', but

that unfortunately will not work. Python strings are immutable, which

means we can't modify any part of them. If we want to change a

character of s, we have to instead build a new string from s and

reassign it to s. Here is code that will change the character at index 4

to 'X':

s = s[:4] + 'X' + s[5:]

The idea of this is we take all the characters up to index 4, then

35

X, and then all of the characters after index 4.

Very often we will want to scan through a string one character

at a time. A for loop like the one below can be used to do that. It loops

through a string called s, printing the string, character by character,

each on a separate line:

for i in range(len(s)):

 print(s[i])

In the range statement we have len(s) that returns how

long s is. So, if s were 5 characters long, this would be like having

range(5) and the loop variable i would run from 0 to 4. This means

that s[i] will run through the characters of s. This way of looping is

useful if we need to keep track of our location in the string during the

loop.

If we don't need to keep track of our location, then there is a

simpler type of loop we can use:

for c in s:

 print(c)

This loop will step through s, character by character, with c

holding the current character.

Strings come with a ton of methods, functions that return

information about the string or return a new string that is a modified

version of the original. Here are some of the most useful ones:

Method Description

lower() returns a string with every letter of the original

in lowercase
upper() returns a string with every letter of the original

in uppercase

replace(x,y) returns a string with every occurrence of x

replaced by y

36

Method Description

count(x) counts the number of occurrences of x in the

string

index(x) returns the location of the first occurrence of x

isalpha() returns True if every character of the string is

a letter

One very important note about lower, upper, and replace is

that they do not change the original string. If you want to change a

string, s, to all lowercase, it is not enough to just use s.lower().

You need to do the following:

s = s.lower()

Here are some examples of string methods in action:

Statement Description

print(s.count('')) prints the number of

spaces in the string s=s.upper() changes the string to all

caps s=s.replace('Hi','Hello') replaces each 'Hi' in s

with 'Hello' print(s.index('a')) prints location of the first

'a' in s

The isalpha method is used to tell if a character is a letter or not. It

returns True if the character is a letter and False otherwise. When

used with an entire string, it will only return True if every character

of the string is a letter. The values True and False are called

Booleans. For now, though, just remember that you can use isalpha

in if conditions.

 If you try to find the index of something that is not in a string,

Python will raise an error. For instance, if s='abc' and you try

s.index('z'), you will get an error.

 Let’s consider an example. Replace all occurrences of "is" with

"WAS"

37

string = "This is nice. This is good."

newString = string.replace("is","WAS")

print(newString)

As a result we will get
ThWAS WAS nice. ThWAS WAS good.

Let’s write a program that asks the user for a string and prints out the

location of each 'e' in the string and calculates a number of locations.

We use a loop to scan through the string one character at a time.

The loop variable i keeps track of our location in the string, and s[i]

gives the character at that location. Thus, the third line checks each

character to see if it is an 'a', and if so, it will print out i, the location

of that 'a'.

s = input('Enter a sentence: ')

num=0

for i in range(len(s)):

 if s[i]=='e':

 print(i)

 num=num+1

Here is another example. Let’s consider a very old method of sending

secret messages based on the substitution cipher. Basically, each letter

of the alphabet gets replaced by another letter of the alphabet, say

every a gets replaced with an x, and every b gets replaced by a z, etc.

alphabet = 'abcdefghijklmnopqrstuvwxyz'

key = 'xznlwebgjhqdyvtkfuompciasr'

message = input('Enter your text: ').lower()

for c in message:

 if c.isalpha():

 print(key[alphabet.index(c)],end='')

 else:

 print(c, end='')

38

The string key is a random reordering of the alphabet.

The only tricky part of the program is the for loop. What it

does is go through the message one character at a time, and, for every

letter it finds, it replaces it with the corresponding letter from the key.

This is accomplished by using the index method to find the position

in the alphabet of the current letter and replacing that letter with the

letter from the key at that position. All non-letter characters are copied

as is. The program uses the isalpha method to tell whether the

current character is a letter or not.

The code to decipher a message is nearly the same. Just change
key[alphabet.index(c)] to alphabet[key.index(c)].

39

LECTURE 6

PYTHON LISTS

 Lists are used to store multiple items in a single variable. Lists

are one of 4 built-in data types in Python used to store collections of

data, the other 3 are Tuple, Set, and Dictionary, all with

different qualities and usage.

Here is a simple list:

L=[4,1,4,7,8]

Use square brackets to indicate the start and end of the list, and

separate the items by commas.

The empty list is []. It is the list equivalent of 0 or ''. We can use

eval(input()) to allow the user to enter a list and the print

function to print the entire contents of a list.. Here is an example:

L = eval(input ('Enter a list: '))

print(L)

Lists can contain all kinds of things, even other lists. For example, the

following is a valid list:

['physics', 'chemistry', 1997, 2000]

Making copies of lists is a little tricky due to the way Python handles

lists. Say we have a list L and we want to make a copy of the list and

call it M. For now, do the following in place of M=L:

M = L[:]

There are a number of things which work the same way for lists as for

https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp

40

strings. E. g.:

• len – the number of items in L is given by len(L).

• in – the in operator tells you if a list contains something.

Here are some examples:

if 'physics' in L:

 print('Your list contains

 'physics'.')

• Indexing and slicing. These work exactly as with strings. For

example, L[0] is the first item of the list L and L[:3] gives the first

three items.

• index and count. These methods work the same as they do

for strings.

• + and *. The + operator adds one list to the end of another. The *

operator repeats a list. Here are some examples:

Expression Result

[1,2]+[3,4,5] [1,2,3,4,5]

[2,3]*3 [2,3,2,3,2,3]

[0]*5 [0,0,0,0,0]

The last example is particularly useful for quickly creating a list of

zeroes.

• Looping. The same two types of loops that work for strings also

work for lists. Both of the following examples print out the items of a

list, one-by-one, on separate lines.

for i in range(len(L)):

 print(L[i])

for item in L:

 print(item)

The left loop is useful for problems where you need to use the loop

variable i to keep track of where you are in the loop. If that is not

needed, then use the right loop, as it is a little simpler.

41

 There are several built-in functions that operate on lists. Here

are some useful ones:

Function Description

len returns the number of items in the list

sum returns the sum of the items in the list

min returns the minimum of the items in the list

max returns the maximum of the items in the list

For example, the following computes the average of the values in a

list L:

average = sum(L)/len(L)

Let’s consider a program which allows us to count the number of

strings where the string length is 2 or more and the first and last

character are same from a given list of strings.

list=(['mk','abc', 'xyz', 'aba', '3344'])

num = 0

for word in list:

 if len(word) > 1 and word[0] == word[-1]:

 num += 1

print(num)

Output: 2

 Here are some list methods:

Method Description

append(x) adds x to the end of the list

sort() sorts the list

count(x) returns the number of times x occurs in the list

index(x) returns the location of the first occurrence of x

reverse() reverses the list

42

Method Description

remove(x) removes first occurrence of x from the list

pop(p) removes the item at index p and returns its

value

insert(p,x) inserts x at index p of the list

split() Returns a list of the words of a string. The

method assumes that words are separated by

whitespace, which can be either spaces, tabs or

newline characters. Here is an example:
s = 'My name is Ivan'

print(s.split())

Result:

['My','name','is','Ivan']

join(L) takes a list L of strings and joins them together

into a single string

There is a big difference between list methods and string methods:

String methods do not change the original string, but list methods do

change the original list. To sort a list L, just use L.sort() and not

L=L.sort(). In fact, the latter will not work at all.

 Let’s consider a program that takes a sequence of numbers and

returns a list containing the square root of each number:

import math

numbers = [1, 4, 9, 16, 25, 36, 49, 64, 81]

result = []

for number in numbers:

 result.append(math.sqrt(number))

print(result)

Output:

[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

43

 Changing a specific item in a list is easier than with strings. To

change the value in location 1 of L to 10, we simply say L[1]=10. If

we want to insert the value 10 into location without overwriting what

is currently there, we can use the insert method. To delete an entry

from a list, we can use the del operator. Some examples are shown

below. Assume L=[6,7,8] for each operation.

Operation New L Description

L[1] = 9 [6,9,8] replace item at index 1 with 9

L.insert(1,9) [6,9,7,8] insert a 9 at index 1 without

replacing

del L[1] [6,8] delete second item

del L[:2] [8] delete first two items

There is a module called string that contains, among other

things, a string variable called punctuation that contains common

punctuation. We can remove the punctuation from a string s with the

following code:

from string import punctuation

for c in punctuation:

 s = s.replace(c, '')

The join method is in some sense the opposite of split. It

is a string method that takes a list of strings and joins them together

into a single string. Here are some examples, using the list
L = ['A','B','C']

Operation Result

' '.join(L) A B C

''.join(L) ABC

', '.join(L) A, B, C

'***'.join(L) A***B***C

44

A powerful way to create lists is using for loops. Here is a simple

example:

L = [i for i in range(5)]

This creates the list [0,1,2,3,4]. Notice that the syntax of a list

comprehension is somewhat reminiscent of set notation in

mathematics. Another example:

str='HELLO'

L=[c*2 for c in str]

L

Output:
['HH','EE',LL','LL','OO']

Another example:

sentence = 'the rocket came back from mars'

vowels = [i for i in sentence if i in 'aeiou']

vowels

Output:

['e', 'o', 'e', 'a', 'e', 'a', 'o', 'a']

You can use more than one for in a list comprehension:

L = [[i,j] for i in range(2) for j in

 range(2)]

We will get

[[0, 0], [0, 1], [1, 0], [1, 1]]

45

This is the equivalent of the following code:

L=[]

for i in range(2):

 for j in range(2):

 L.append([i,j])

 There are a number of common things that can be represented

by two-dimensional list. In Python, one way to create a two-

dimensional list is to create a list whose items are themselves lists.

Here is an example:

L = [[1,2,3],

 [4,5,6],

 [7,8,9]]

We use two indices to access individual items, e. g., L[1][2] to get the

entry in row 1 and column 2. To print a two-dimensional list, you can

use nested for loops:

for i in range(3):

 for j in range(3):

 print(L[i][j], end=' ')

print()

Nested for loops, like the ones used in printing a two-dimensional list,

can also be used to process the items in a two-dimensional list. Here

is an example that counts how many entries in a 10 x 5 list are even.

count = 0

for i in range(l0):

 for j in range(5):

 if L[i][j]%2==0:

 count = count + 1

46

 To create a larger list, you can use a list comprehension like

below:

L = [[0]*300 for i in range(10)]

This creates a list of zeroes with 10 rows and 300 columns.

47

LECTURE 7

SUBPROGRAM: FUNCTIONS

Functions are useful for breaking up a large program to make

it easier to read and maintain. They are also useful if find yourself

writing the same code at several different points in your program. You

can put that code in a function and call the function whenever you want

to execute that code. You can also use functions to create your own

utilities, math functions, etc.

Functions are defined with the def statement. The statement

ends with a colon, and the code that is part of the function is indented

below the def statement. Here we create a simple function that just

prints something.
def my_print():

 print('Student')

my_print()

print(' Ivan')

my_print()

print(' Alexey')

my_print()

Output:
Student

 Ivan

Student

 Alexey

Student

The first two lines define the function. In the last five lines we

call the function three times.

One use for functions is if you are using the same code over

and over again in various parts of your program, you can make your

program shorter and easier to understand by putting the code in a

48

function. For instance, suppose for some reason you need to print a

box of stars like the one below at several points in your program.

Put the code into a function, and then whenever you need a

box, just call the function rather than typing several lines of redundant

code. Here is the function.

def recta():

 print('o'*15)

 print('o', ' '*11, 'o')

 print('o', ' '*11, 'o')

 print('o', ' '*11, 'o')

 print('o', ' '*11, 'o')

 print ('o'*15)

Output:

ooooooooooooooo

o o

o o

o o

o o

ooooooooooooooo

One benefit of this is that if you decide to change the size of

the box, you just have to modify the code in the function, whereas if

you had copied and pasted the box-drawing code everywhere you

needed it, you would have to change all of them.

We can pass values to functions. Here is an example:

def recta(n,m):

 print('o'*n)

 print('o', ' '*m, 'o')

 print('o', ' '*m, 'o')

 print('o', ' '*m, 'o')

 print('o', ' '*m, 'o')

 print ('o'*n)

49

When we call the recta(8,4) function with the values 8

and 4, that value gets stored in the variables n and m. We can then

refer to that variables n and m in our function’s code.

Output:
oooooooo

o o

o o

o o

o o

oooooooo

We can write functions that perform calculations and return a

result. Here is a simple function that solves quadratic equations:

from math import sqrt
def roots(a,b,c):

 disc = b**2 - 4*a*c

 if disc >= 0:

 return ("x= ",(-b + sqrt(disc))/(2*a),

 "x= ",(-b - sqrt(disc))/(2*a))

 if disc < 0:

 return ("x= ",-b/(2*a),"+",

 sqrt(disc*(-1))/(2*a),"i"

 "x= ",-b/(2*a),"-",

 sqrt(disc*(-1))/(2*a),"i")

--- The end of function’s code --

a=float(input("a= "))
b=float(input("b= "))

c= float(input("c= "))

print(roots(a,b,c))

The return statement is used to send the result of a

function’s calculations back to the caller.

Notice that the function itself does not do any printing. The

printing is done outside of the function. That way, we can do math

50

with the result, like below.

print(roots(a+2,b-1,c))

If we had just printed the result in the function instead of

returning it, the result would have been printed to the screen and

forgotten about, and we would never be able to do anything with it.

 A return statement by itself can be used to end a function

early.

def Chk(string, wrong_words):

 if string in wrong_words:

 return

 print('Warning!!!')

Chk('root',['table','luck','pen'])

Output:

Warning!!!

The same effect can be achieved with an if/else statement, but

in some cases, using return can make your code simpler and more

readable.

7.1 Default and Keyword arguments

You can specify a default value for an argument. This makes it

optional, and if the caller decides not to use it, then it takes the default

value. Here is an example:

def mult_print(string, n=2) :

 print(string * n)

mult_print('Student', 4)

mult_print('Student')

51

Output:

StudentStudentStudentStudent

StudentStudent

Default arguments need to come at the end of the function

definition, after all of the non-default arguments.

 A related concept to default arguments is keyword arguments.

Say we have the following function definition:

def fancy_print(text, color, background,

 style, justify):

Every time you call this function, you have to remember the

correct order of the arguments. Fortunately, Python allows you to

name the arguments when calling the function, as shown below:

fancy_print(text, color='yellow',

 background='black', style='bold',

 justify='left')

fancy_print(text, style='bold',

 color='yellow', justify='left',

 background='black')

As we can see, the order of the arguments does not matter when

you use keyword arguments.

When defining the function, it would be a good idea to give

defaults. For instance, most of the time, the caller would want left

justification, a white background, etc. Using these values as defaults

means the caller does not have to specify every single argument every

time they call the function.

 Here is an example:

fancy_print('Student', style='Italic')

52

7.2 Local and Global variables

Let’s say we have two functions like the ones below that each use a

variable i:

def fun1():

 for i in range(6):

 print (i)

def fun2():

 i=20

 fun1()

 print(i)

A problem that could arise here is that when we call fun1, we

might mess up the value of i in fun2. In a large program it would be

a nightmare trying to make sure that we don’t repeat variable names

in different functions, and, fortunately, we don’t have to worry about

this. When a variable is defined inside a function, it is local to that

function, which means it essentially does not exist outside that

function. This way each function can define its own variables and not

have to worry about if those variable names are used in other

functions.

 On the other hand, sometimes you actually do want the same

variable to be available to multiple functions. Such a variable is called

a global variable. You have to be careful using global variables,

especially in larger programs, but a few global variables used

judiciously are fine in smaller programs. Here is a short example:

def output():

 place = "Cape Town"

 print("%s lives in %s." % (name, place))

 return

place = "Berlin"

name = "Dominic"

53

print("%s lives in %s." % (name, place))

output()

Output:
Dominic lives in Berlin.

Dominic lives in Cape Town.

The output consists of these two lines, whereas the first line originates

from the main program and the second line from the print statement

in the function output(). At first the two variables name and

place are defined in the main program and printed to stdout. Calling

the output() function, the variable place is locally redefined and

name comes from the global namespace, instead.

 Let’s consider another example:

def fun1(x):

 x = x + 1

def fun2(L):

 L = L + [4]

p=3

LIST1=[1,2,3]

fun1(p)

fun2(LIST1)

When we call fun1 with p and fun2 with L, a question arises:

do the functions change the values of p and L? The answer may

surprise you. The value of p is unchanged, but the value of L is

changed. The reason has to do with a difference in the way that Python

handles numbers and lists. Lists are said to be mutable objects,

meaning they can be changed, whereas numbers and strings are

immutable, meaning they cannot be changed.

If we want to reverse the behavior of the above example so that

p is modified and L is not, do the following:

54

def funl(x):

 x = x + 1

 return x

def fun2(L):

 copy = L[:]

 copy = copy + [1]

p=3

LIST1=[1,2,3]

a=funl(a)

fun2(LIST1)

55

LECTURE 8

PYTHON FOR DATA ANALYSIS

8.1 Data Analysis

We live in the digital era of high technologies, smart devices, and

mobile solutions. Data is an essential aspect of any enterprise and

business. It’s crucial to gather, process, and analyze the data flow and

to do that as quickly and accurately as possible. Nowadays, the data

volume can be large, which makes information handling time-

consuming and expensive. Due to this precise reason, the data science

industry is growing at a rapid pace, creating new vacancies and

possibilities.

Data analysis is defined as a process of cleaning,

transforming, and modeling data to discover useful information for

business decision-making. The purpose of Data Analysis is to extract

useful information from data and taking the decision based upon the

data analysis.

A simple example of Data analysis is whenever we take any

decision in our day-to-day life is by thinking about what happened last

time or what will happen by choosing that particular decision. This is

nothing but analyzing our past or future and making decisions based

on it. For that, we gather memories of our past or dreams of our future.

So that is nothing but data analysis. Now same thing analyst does for

business purposes, is called Data Analysis.

Data analysis tools make it easier for users to process and

manipulate data, analyze the relationships and correlations between

data sets, and it also helps to identify patterns and trends for

interpretation. Here is a complete list of tools used for data analysis in

research:

https://www.guru99.com/big-data-analytics-tools.html

56

There are several types of Data Analysis techniques that exist

based on business and technology. However, the major Data Analysis

methods are:

 Text Analysis

 Statistical Analysis

 Diagnostic Analysis

 Predictive Analysis

 Prescriptive Analysis

 Text Analysis is also referred to as Data Mining. It is one of

the methods of data analysis to discover a pattern in large data sets

using databases or data mining tools. It used to transform raw data into

business information. Business Intelligence tools are present in the

market which is used to take strategic business decisions. Overall it

offers a way to extract and examine data and deriving patterns and

finally interpretation of the data.

 Statistical Analysis shows “What happen?” by using past data

in the form of dashboards. Statistical Analysis includes collection,

Analysis, interpretation, presentation, and modeling of data. It

analyses a set of data or a sample of data.

 Diagnostic Analysis shows “Why did it happen?” by finding

the cause from the insight found in Statistical Analysis. This Analysis

is useful to identify behavior patterns of data. If a new problem arrives

in your business process, then you can look into this Analysis to find

similar patterns of that problem. And it may have chances to use

similar prescriptions for the new problems.

 Predictive Analysis shows “what is likely to happen” by using

previous data. The simplest data analysis example is like if last year I

bought two dresses based on my savings and if this year my salary is

increasing double then I can buy four dresses. But of course it's not

easy like this because you have to think about other circumstances like

https://www.guru99.com/best-data-mining-tools.html

57

chances of prices of clothes is increased this year or maybe instead of

dresses you want to buy a new bike, or you need to buy a house!

 So here, this Analysis makes predictions about future outcomes

based on current or past data. Forecasting is just an estimate. Its

accuracy is based on how much detailed information you have and

how much you dig in it.

 Prescriptive Analysis combines the insight from all previous

Analysis to determine which action to take in a current problem or

decision. Most data-driven companies are utilizing Prescriptive

Analysis because predictive and descriptive Analysis are not enough

to improve data performance. Based on current situations and

problems, they analyze the data and make decisions.

 The Data Analysis Process is nothing but gathering

information by using a proper application or tool which allows you to

explore the data and find a pattern in it. Based on that information and

data, you can make decisions, or you can get ultimate conclusions.

 Data Analysis consists of the following phases:

 Data Requirement Gathering

 Data Collection

 Data Cleaning

 Data Analysis

 Data Interpretation

 Data Visualization

 Data Requirement Gathering

 First of all, you have to think about why do you want to do this

data analysis? All you need to find out the purpose or aim of doing the

Analysis of data. You have to decide which type of data analysis you

wanted to do! In this phase, you have to decide what to analyze and

how to measure it, you have to understand why you are investigating

and what measures you have to use to do this Analysis.

 Data Collection. After requirement gathering, you will get a

clear idea about what things you have to measure and what should be

your findings. Now it's time to collect your data based on

requirements. Once you collect your data, remember that the collected

58

data must be processed or organized for Analysis. As you collected

data from various sources, you must have to keep a log with a

collection date and source of the data.

 Data Cleaning. Now whatever data is collected may not be

useful or irrelevant to your aim of Analysis, hence it should be cleaned.

The data which is collected may contain duplicate records, white

spaces or errors. The data should be cleaned and error free. This phase

must be done before Analysis because based on data cleaning, your

output of Analysis will be closer to your expected outcome.

 Data Analysis. Once the data is collected, cleaned, and

processed, it is ready for Analysis. As you manipulate data, you may

find you have the exact information you need, or you might need to

collect more data. During this phase, you can use data analysis tools

and software which will help you to understand, interpret, and derive

conclusions based on the requirements.

 Data Interpretation. After analyzing your data, it's finally

time to interpret your results. You can choose the way to express or

communicate your data analysis either you can use simply in words or

maybe a table or chart. Then use the results of your data analysis

process to decide your best course of action.

 Data Visualization. Data visualization is very common in

your day to day life; they often appear in the form of charts and graphs.

In other words, data shown graphically so that it will be easier for the

human brain to understand and process it. Data visualization often

used to discover unknown facts and trends. By observing relationships

and comparing datasets, you can find a way to find out meaningful

information.

8.2 Why Python is widely used for Data Analysis

Python is an increasingly popular tool for data analysis. In recent

years, a number of libraries have reached maturity, allowing R and

Stata users to take advantage of the beauty, flexibility, and

performance of Python without sacrificing the functionality these

https://www.guru99.com/what-is-data-analysis.html

59

older programs have accumulated over the years. Python is a cross-

functional, maximally interpreted language that has lots of advantages

to offer. The object-oriented programming language is commonly

used to streamline large complex data sets. Over and above, having a

dynamic semantics plus unmeasured capacities of RAD (rapid

application development), Python is heavily utilized to script as well.

There is one more way to apply Python – as a coupling language.

Another Python’s advantage is high readability that helps

engineers to save time by typing fewer lines of code for accomplishing

the tasks. Being fast, Python jibes well with data analysis. And that’s

due to heavy support; availability of a whole slew of open-source

libraries for different purposes, including but not limited to scientific

computing. Therefore, it’s not surprising at all that it’s claimed to be

the preferred programming language for data science. There is a scope

of unique features provided that makes Python a-number-one option

for data analysis. Python is one of the most supported languages

nowadays. It has a long list of totally free libraries available for all the

users. That’s a key factor that gives a strong push for Python at all, and

in the data science, too. If you’re involved in the field, more than

likely, you are acquainted with such names as Pandas, SciPy,

StatsModels, other libraries that are intensively utilized in the data

science community. Noteworthy is that the libraries constantly grow,

providing robust solutions. Herewith, you can easily find a solution

needed hassle-free without additional expenses.

8.3 Python Data Structures for Data Science

Following are some data structures, which are used in Python. You

should be familiar with them in order to use them as appropriate.

 Lists are one of the most versatile data structure in Python. A

list can simply be defined by writing a list of comma separated values

in square brackets. Lists might contain items of different types, but

usually the items all have the same type. Python lists are mutable and

individual elements of a list can be changed.

https://blog.capterra.com/what-is-rapid-application-development/
https://towardsdatascience.com/top-10-python-libraries-for-data-science-cd82294ec266

60

Here is a quick example to define a list and then access it:

empty list

my_list = []

list of integers

my_list = [1, 2, 3]

list with mixed data types

my_list = [1, "Hello", 3.4]

 A list can also have another list as an item. This is called a

nested list.

nested list

my_list = ["mouse", [8, 4, 6], ['a']]

List indexing

my_list = ['p', 'r', 'o', 'b', 'e']

Output: p

print(my_list[0])

Output: o

print(my_list[2])

Output: e

print(my_list[4])

Nested List

n_list = ["Happy", [2, 0, 1, 5]]

Nested indexing

print(n_list[0][1])

print(n_list[1][3])

Error! Only integer can be used for indexing

print(my_list[4.0])

Output:

p

o

e

a

5

Traceback (most recent call last):

61

 File "<string>", line 21, in <module>

TypeError: list indices must be integers or

slices, not float

 Strings can simply be defined by use of single ('), double (')

or triple (''') inverted commas. Strings enclosed in tripe quotes

(''') can span over multiple lines and are used frequently in

docstrings (Python’s way of documenting functions). \ is used as an

escape character. Please note that Python strings are immutable, so you

can not change part of strings.

defining strings in Python

all of the following are equivalent

my_string = 'Hello'

print(my_string)

my_string = "Hello"

print(my_string)

my_string = '''Hello'''

print(my_string)

triple quotes string can extend multiple

lines

my_string = """Hello, welcome to

 the world of Python"""

print(my_string)

Output:

Hello

Hello

Hello

Hello, welcome to

 the world of Python

 Tuples. A tuple is represented by a number of values separated

by commas. Tuples are immutable and the output is surrounded by

parentheses so that nested tuples are processed correctly. Additionally,

even though tuples are immutable, they can hold mutable data if

needed.

 Since Tuples are immutable and can not change, they are faster

https://www.analyticsvidhya.com/wp-content/uploads/2014/07/python_strings.png
https://www.analyticsvidhya.com/wp-content/uploads/2014/07/python_strings.png

62

in processing as compared to lists. Hence, if your list is unlikely to

change, you should use tuples, instead of lists.

Different types of tuples

Empty tuple

my_tuple = ()

print(my_tuple)

Tuple having integers

my_tuple = (1, 2, 3)

print(my_tuple)

tuple with mixed datatypes

my_tuple = (1, "Hello", 3.4)

print(my_tuple)

nested tuple

my_tuple = ("mouse", [8, 4, 6], (1, 2, 3))

print(my_tuple)

Output:

 ()

(1, 2, 3)

(1, 'Hello', 3.4)

('mouse', [8, 4, 6], (1, 2, 3))

 Dictionary is an unordered set of key: value pairs, with the

requirement that the keys are unique (within one dictionary). A pair of

braces creates an empty dictionary: {}.

empty dictionary

my_dict = {}

dictionary with integer keys

my_dict = {1: 'apple', 2: 'ball'}

dictionary with mixed keys

my_dict = {'name': 'John', 1: [2, 4, 3]}

using dict()

my_dict = dict({1:'apple', 2:'ball'})

from sequence having each item as a pair

my_dict = dict([(1,'apple'), (2,'ball')])

63

get vs [] for retrieving elements

my_dict = {'name': 'Jack', 'age': 26}

Output: Jack

print(my_dict['name'])

Output: 26

print(my_dict.get('age'))

Trying to access keys which doesn't exist

throws error

Output None

print(my_dict.get('address'))

KeyError

print(my_dict['address'])

Output:

Jack

26

None

Traceback (most recent call last):

 File "<string>", line 15, in <module>

 print(my_dict['address'])

KeyError: 'address'

 Python Numpy Arrays are a bit like Python lists, but still very

much different at the same time. As the name kind of gives away, a

NumPy array is a central data structure of the numpy library. The

library’s name is actually short for "Numeric Python" or "Numerical

Python".

 Simplest way to create an array in Numpy is to use Python List

myPythonList = [1,9,8,3]

To convert python list to a numpy array by using the object np.array.

numpy_array_from_list = np.array(myPythonList)

In practice, there is no need to declare a Python List. The

operation can be combined.

64

a = np.array([1,9,8,3])

You can also create a numpy array from a Tuple

 You could perform mathematical operations like additions,

subtraction, division and multiplication on an array. The syntax is the

array name followed by the operation (+.-,*,/) followed by the operand

Example:
numpy_array_from_list + 10

Output:

array([11, 19, 18, 13])

This operation adds 10 to each element of the numpy array.

 You can check the shape of the array with the object shape

preceded by the name of the array. In the same way, you can check the

type with dtypes.

import numpy as np

a = np.array([1,2,3])

print(a.shape)

print(a.dtype)

Output:

(3,)

int64

An integer is a value without decimal. If you create an array with

decimal, then the type will change to float.

Different type

b = np.array([1.1,2.0,3.2])

print(b.dtype)

Output:

float64

65

 You can add a dimension with a "," coma

Note that it has to be within the bracket []

2 dimension

c = np.array([(1,2,3),

 (4,5,6)])

print(c.shape)

Output:
(2, 3)

 Series and Dataframe. Series is a type of list in Python

Pandas which can take integer values, string values, double values and

more. But in Pandas Series we return an object in the form of

list, having index starting from 0 to n, Where n is the length of values

in series. Pandas DataFrame is a 2-dimensional labeled data

structure with columns of potentially different types. It is generally the

most commonly used pandas object. Series can only contain single

list with index, whereas dataframe can be made of more than one

series or we can say that a dataframe is a collection of series that

can be used to analyse the data.

 Creating a simple Series

import pandas as pd

import matplotlib.pyplot as plt

author = ['Jitender', 'Purnima', 'Arpit',

 'Jyoti']

auth_series = pd.Series(author)

print(auth_series)

Output:
0 Jitender

1 Purnima

2 Arpit

3 Jyoti

dtype: object

https://www.geeksforgeeks.org/python-pandas-series/
https://www.geeksforgeeks.org/python-pandas-dataframe/
https://www.geeksforgeeks.org/python-pandas-series/
https://www.geeksforgeeks.org/python-pandas-series/

66

Creating Dataframe from Series
import pandas as pd

import matplotlib.pyplot as plt

author = ['Jitender', 'Purnima', 'Arpit',

 'Jyoti']

article = [210, 211, 114, 178]

auth_series = pd.Series(author)

article_series = pd.Series(article)

frame = { 'Author': auth_series, 'Article':

 article_series }

result = pd.DataFrame(frame)

print(result)

Output:
 Author Article
0 Jitender 210

1 Purnima 211

2 Arpit 114

3 Jyoti 178

 We are combining two series Author and Article

published. Create a dictionary so that we can combine the metadata

for series. Metadata is the data of data that can define the series of

values. Pass this dictionary to pandas DataFrame and finally you

can see the result as combination of two series i. e for author and

number of articles.

 We can add series externally in dataframe:

import pandas as pd

import matplotlib.pyplot as plt

author = ['Jitender', 'Purnima', 'Arpit',

 'Jyoti']

article = [210, 211, 114, 178]

auth_series = pd.Series(author)

article_series = pd.Series(article)

67

frame = { 'Author': auth_series, 'Article':

 article_series }

result = pd.DataFrame(frame)

age = [21, 21, 24, 23]

result['Age'] = pd.Series(age)

print(result)

Output:
 Author Article Age

0 Jitender 210 21

1 Purnima 211 21

2 Arpit 114 24

3 Jyoti 178 23

We have added one more series externally named as age of the

authors, then directly added this series in the pandas dataframe.

Remember one thing if any value is missing then by default it will be

converted into NaN value i. e null by default.

 Pandas DataFrame can be created by passing lists of

dictionaries as a input data. By default dictionary keys taken as

columns.

Python code demonstrate how to create

Pandas DataFrame by lists of dicts.

import pandas as pd

Initialise data to lists.

data = [{'a': 1, 'b': 2, 'c':3},

 {'a':10, 'b': 20, 'c': 30}]

Creates DataFrame.

df = pd.DataFrame(data)

Print the data

df

68

Output:
 a b c

first NaN 2 3

second 10.0 20 30

8.4 Python Libraries for Data Science

Following are a list of libraries, you will need for any scientific

computations and data analysis:

 NumPy stands for Numerical Python. The most powerful feature

of NumPy is n-dimensional array. This library also contains basic

linear algebra functions, Fourier transforms, advanced random

number capabilities and tools for integration with other low level

languages like Fortran, C and C++.

 SciPy stands for Scientific Python. SciPy is built on NumPy. It is

one of the most useful library for variety of high level science and

engineering modules like discrete Fourier transform, Linear

Algebra, Optimization and Sparse matrices.

 Matplotlib for plotting vast variety of graphs, starting from

histograms to line plots to heat plots. You can use Pylab feature

in ipython notebook (ipython notebook –pylab = inline) to use

these plotting features inline. If you ignore the inline option, then

pylab converts ipython environment to an environment, very

similar to Matlab. You can also use Latex commands to add math

to your plot.

 Pandas for structured data operations and manipulations. It is

extensively used for data munging and preparation. Pandas were

added relatively recently to Python and have been instrumental in

boosting Python’s usage in data scientist community.

 Scikit Learn for machine learning. Built on NumPy, SciPy and

matplotlib, this library contains a lot of efficient tools for machine

learning and statistical modeling including classification,

regression, clustering and dimensionality reduction.

https://www.analyticsvidhya.com/machine-learning/?utm_source=blog&utm_medium=k-nearest-neighbors

69

 Statsmodels for statistical modeling. Statsmodels is a Python

module that allows users to explore data, estimate statistical

models, and perform statistical tests. An extensive list of

descriptive statistics, statistical tests, plotting functions, and result

statistics are available for different types of data and each

estimator.

 Seaborn for statistical data visualization. Seaborn is a library for

making attractive and informative statistical graphics in Python.

It is based on matplotlib. Seaborn aims to make visualization a

central part of exploring and understanding data.

 Bokeh for creating interactive plots, dashboards and data

applications on modern web-browsers. It empowers the user to

generate elegant and concise graphics in the style of D3.js.

Moreover, it has the capability of high-performance interactivity

over very large or streaming datasets.

 Blaze for extending the capability of Numpy and Pandas to

distributed and streaming datasets. It can be used to access data

from a multitude of sources including Bcolz, MongoDB,

SQLAlchemy, Apache Spark, PyTables, etc. Together with

Bokeh, Blaze can act as a very powerful tool for creating effective

visualizations and dashboards on huge chunks of data.

 Scrapy for web crawling. It is a very useful framework for getting

specific patterns of data. It has the capability to start at a website

home url and then dig through web-pages within the website to

gather information.

70

LECTURE 9

DATA EXPLORATION IN PYTHON: USING PANDAS

Data Exploration – finding out more about the data we have. In order

to explore our data further, let’s use Pandas. Pandas is one of the most

useful data analysis library in Python. They have been instrumental in

increasing the use of Python in data science community. We will now

use Pandas to read a data set from an Analytics Vidhya competition,

perform exploratory analysis and build our first basic categorization

algorithm for solving this problem. Before loading the data, lets

understand the 2 key data structures in Pandas – Series and

DataFrames

 Series can be understood as a 1 dimensional labelled/indexed

array. You can access individual elements of this series through these

labels.

 A dataframe is similar to Excel workbook – you have column

names referring to columns and you have rows, which can be accessed

with use of row numbers. The essential difference being that column

names and row numbers are known as column and row index, in case

of dataframes.

 Series and dataframes form the core data model for Pandas in

Python. The data sets are first to read into these dataframes and then

various operations (e. g. group by, aggregation etc.) can be applied

very easily to its columns.

 Let’s use dataset which has the following description of the

variables:

Variable Description

Loan_ID Unique Loan ID

Gender Male/Female

Married Applicant married (Y/N)

Dependents Number of dependents

Education Applicant Education

71

Variable Description

(Graduate/ Under Graduate)

Self_Employed Self employed (Y/N)

ApplicantIncome Applicant income

CoapplicantIncome Coapplicant income

LoanAmount Loan amount in thousands

Loan_Amount_Term Term of loan in months

Credit_History Credit history meets
guidelines

Property_Area Urban/ Semi Urban/ Rural

Loan_Status Loan approved (Y/N)

 After importing the library (file train.csv), you read the

dataset using function read_csv(). This is how the code looks like

till this stage:

import pandas as pd

import numpy as np

import matplotlib as plt

#Reading the dataset in a dataframe using Pandas

df = pd.read_csv("train.csv")

Once you have read the dataset, you can have a look at few top rows

by using the function head()

72

df.head(10)

This should print 10 rows. Alternately, you can also look at more rows

by printing the dataset. Next, you can look at summary of numerical

fields by using describe() function

df.describe()

As we can see, describe() function would provide count, mean,

standard deviation (std), min, quartiles and max in its

output. Let’s remember what this basic statistics mean:

 Mean. This is most common used measure of central tendency.

The mean is simply the average value of a data set. We have all

averaged a set of exam grades before. That is an example of mean.

 Standard Deviation is a measure of variation that is the

simply the square root of the variance.

 Variance is a measure of variation. That is it describes how the

data is distributed about the mean.

 Quartiles are the values that divide a list of numbers into

quarters. To calculate Quartiles put the list of numbers in order, then

cut the list into four equal parts. The Quartiles are at the "cuts". Like

73

this:

 Example: 5, 7, 4, 4, 6, 2, 8

 Put them in order: 2, 4, 4, 5, 6, 7, 8

 Cut the list into quarters:

And the result is:

 Quartile 1 (Q1) = 4

 Quartile 2 (Q2), which is also the Median, = 5

 Quartile 3 (Q3) = 7

If we look at the output of describe() function, we can see:

1. LoanAmount has (614 – 592) 22 missing values;

2. Loan_Amount_Term has (614 – 600) 14 missing values;

3. Credit_History has (614 – 564) 50 missing values;

We can also look that about 84 % applicants have a credit history.

How? The mean of Credit_History field is 0.84 (Remember,

Credit_History has value 1 for those who have a credit history

and 0 otherwise)

 The ApplicantIncome distribution seems to be in line with

expectation. Same with CoapplicantIncome

df['Property_Area'].value_counts()

Similarly, we can look at unique values of port of credit history. Note

that dfname['column_name'] is a basic indexing technique to

acess a particular column of the dataframe. It can be a list of columns

as well.

9.1 Distribution analysis

Now that we are familiar with basic data characteristics, let us study

distribution of various variables. Let us start with numeric variables –

https://www.mathsisfun.com/median.html

74

namely ApplicantIncome and LoanAmount.

 Let’s start by plotting the histogram of ApplicantIncome

using the following commands:

df['ApplicantIncome'].hist(bins=50)

Here we observe that there are few extreme values. This is also the

reason why 50 bins are required to depict the distribution clearly.

 Next, we look at box plots to understand the distributions. Box

plot for fare can be plotted by:

df.boxplot(column='ApplicantIncome')

 This confirms the presence of a lot of outliers/extreme values.

This can be attributed to the income disparity in the society. Part of

this can be driven by the fact that we are looking at people with

different education levels. Let us segregate them by Education:

df.boxplot(column='ApplicantIncome', by =

 'Education')

75

76

 We can see that there is no substantial different between the

mean income of graduate and non-graduates. But there are a higher

number of graduates with very high incomes, which are appearing to

be the outliers.

 Now, Let’s look at the histogram and boxplot of

LoanAmount using the following command:

df['LoanAmount'].hist(bins=50)

df.boxplot(column='LoanAmount')

Again, there are some extreme values. Clearly, both

ApplicantIncome and LoanAmount require some amount of

data munging. LoanAmount has missing and well as extreme values

values, while ApplicantIncome has a few extreme values, which

demand deeper understanding. We will take this up in coming

subsection.

77

9.2 Categorical variable analysis

Now that we understand distributions for ApplicantIncome and

LoanIncome, let us understand categorical variables in more details.

For instance, let us look at the chances of getting a loan based on credit

history. Let us use the function pivot_table (from Pandas) to do

this. Pivot tables are one of Excel’s most powerful features.

A pivot table is a table of statistics that summarizes the data of

a more extensive table (such as from a database, spreadsheet, or

business intelligence program). This summary might include sums,

averages, or other statistics, which the pivot table groups together in a

meaningful way. Pivot tables are a technique in data processing.

They arrange and rearrange (or "pivot") statistics in order to draw

attention to useful information.

 Pandas provides a similar function called

pivot_table(). Pandas pivot_table() is a simple

function but can produce very powerful analysis very quickly.

temp1=df['Credit_History'].value_counts(

 ascending=True)

https://en.wikipedia.org/wiki/Table_(information)
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Spreadsheet
https://en.wikipedia.org/wiki/Business_intelligence_software
https://en.wikipedia.org/wiki/Data_processing
https://www.analyticsvidhya.com/wp-content/uploads/2016/01/output_14_1.png

78

temp2=df.pivot_table(values='Loan_Status',

index=['Credit_History'],aggfunc=lambda x:

 x.map({'Y':1,'N':0}).mean())

Loan status is coded as 1 for Yes and 0 for

No. So the mean represents the probability

of getting loan.

print ('Frequency Table for Credit History:')

print (temp1)

print ('\nProbility of getting loan for each

 Credit History class:')

print (temp2)

Output:

This can be plotted as a bar chart using the “matplotlib” library with

following code:

import matplotlib.pyplot as plt fig =

plt.figure(figsize=(8,4))

ax1=fig.add_subplot(121)

ax1.set_xlabel('Credit_History')

ax1.set_ylabel('Count of Applicants')

ax1.set_title("Applicants by Credit_History")

temp1.plot(kind='bar')

ax2 = fig.add_subplot(122)

temp2.plot(kind = 'bar')

ax2.set_xlabel('Credit_History')

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/11.-pivot_python.png

79

ax2.set_ylabel('Probability of getting loan')

ax2.set_title("Probability of getting loan by

 credit history")

This shows that the chances of getting a loan are eight-fold if the

applicant has a valid credit history. You can plot similar graphs by

Married, Self-Employed, Property_Area, etc.

 Alternately, these two plots can also be visualized by

combining them in a stacked chart:

temp3 = pd.crosstab(df['Credit_History'],

 df['Loan_Status'])

temp3.plot(kind='bar', stacked=True,

 color=['red','blue'], grid=False)

We have just created two basic classification algorithms here, one

based on credit history, while other on 2 categorical variables.

 We just saw how we can do exploratory analysis in Python

using Pandas. Next let’s explore ApplicantIncome and

LoanStatus variables further, perform data munging and create a

dataset for applying various modeling techniques.

https://www.analyticsvidhya.com/blog/2014/09/data-munging-python-using-pandas-baby-steps-python/

80

9.3 Data Munging in Python

While our exploration of the data, we found a few problems in the data

set, which needs to be solved before the data is ready for a good model.

Here are the problems, we are already aware of:

1. There are missing values in some variables. We should estimate

those values wisely depending on the amount of missing values

and the expected importance of variables.

2. While looking at the distributions, we saw that

ApplicantIncome and LoanAmount seemed to contain

extreme values at either end. Though they might make intuitive

sense, but should be treated appropriately.

In addition to these problems with numerical fields, we should also

look at the non-numerical fields i. e. Gender, Property_Area,

Married, Education and Dependents to see, if they contain

any useful information.

81

 Let us look at missing values in all the variables because most

of the models don’t work with missing data and even if they do,

imputing them helps more often than not. So, let us check the number

of nulls / NaNs in the dataset.

df.apply(lambda x: sum(x.isnull()),axis=0)

This command should tell us the number of missing values in each

column as isnull() returns 1, if the value is null.

Though the missing values are not very high in number, but many

variables have them and each one of these should be estimated and

added in the data.

 It should be noted that missing values may not always be

NaNs. For instance, if the Loan_Amount_Term is 0, does it makes

sense or would you consider that missing? I suppose your answer is

missing and you’re right. So we should check for values which are

unpractical.

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/4.-missing.png

82

 There are numerous ways to fill the missing values of loan

amount – the simplest being replacement by mean, which can be done

by following code:

df['LoanAmount'].fillna(df['LoanAmount'].

 mean(), inplace=True)

 The other extreme could be to build a supervised learning

model to predict loan amount on the basis of other variables and then

use age along with other variables to predict survival.

 Since, the purpose now is to bring out the steps in data

munging, let’s rather take an approach, which lies somewhere in

between these 2 extremes. A key hypothesis is that the whether a

person is educated or self-employed can combine to give a good

estimate of loan amount.

 First, let’s look at the boxplot to see if a trend exists:

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/5.-loan-amount-boxplot.png

83

Thus we see some variations in the median of loan amount for each

group and this can be used to impute the values. But first, we have to

ensure that each of Self_Employed and Education variables

should not have a missing values.

 As we say earlier, Self_Employed has some missing

values. Let’s look at the frequency table:

Since ~ 86 % values are “No”, it is safe to impute the missing values

as “No” as there is a high probability of success. This can be done

using the following code:

df['Self_Employed'].fillna('No',inplace=True)

Now, we will create a Pivot table, which provides us median

values for all the groups of unique values of Self_Employed and

Education features. Next, we define a function, which returns the

values of these cells and apply it to fill the missing values of loan

amount:

table = df.pivot_table(values='LoanAmount',

index='Self_Employed',columns='Education',

 aggfunc=np.median)

Define function to return value of this

pivot_table

def fage(x):

 return table.loc[x['Self_Employed'],

 x['Education']]

Replace missing values

df['LoanAmount'].fillna(df[df['LoanAmount'].

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/6.-self-emp.png

84

 isnull()].apply(fage, axis=1),

 inplace=True)

This should provide you a good way to impute missing values of loan

amount. It should be noted that еhis method will work only if you have

not filled the missing values in Loan_Amount variable using the

previous approach, i. e. using mean.

 Let’s analyze Loan_Amount first. Since the extreme values

are practically possible, i. e. some people might apply for high value

loans due to specific needs. So instead of treating them as outliers, let’s

try a log transformation to nullify their effect:

df['LoanAmount_log']=np.log(df['LoanAmount'])

df['LoanAmount_log'].hist(bins=20)

Looking at the histogram again:

Now the distribution looks much closer to normal and effect of

extreme values has been significantly subsided.

 Coming to ApplicantIncome. One intuition can be that

some applicants have lower income but strong support Co-applicants.

So it might be a good idea to combine both incomes as total income

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/7.-loan-log.png

85

and take a log transformation of the same.

df['TotalIncome'] = df['ApplicantIncome'] +

 df['CoapplicantIncome']

df['TotalIncome_log']=

 np.log(df['TotalIncome'])

df['LoanAmount_log'].hist(bins=20)

Now we see that the distribution is much better than before. Next, we

will look at making predictive models.

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/8.-total-income-log.png

86

LECTURE 10

BUILDING A PREDICTIVE MODEL IN PYTHON

After, we have made the data useful for modeling, let’s now look at

the python code to create a predictive model on our data set. Skicit-

Learn (sklearn) is the most commonly used library in Python for this

purpose and we will follow the trail.

 Since, sklearn requires all inputs to be numeric, we should

convert all our categorical variables into numeric by encoding the

categories. Before that we will fill all the missing values in the dataset.

This can be done using the following code:

df['Gender'].fillna(df['Gender'].mode()[0],

 inplace=True)

df['Married'].fillna(df['Married'].mode()[0],

 inplace=True)

df['Dependents'].fillna(df['Dependents'].mode()[0]

 , inplace=True)

df['Loan_Amount_Term'].

 fillna(df['Loan_Amount_Term'].mode()[0],

 inplace=True)

df['Credit_History'].fillna(df['Credit_History

 '].mode()[0], inplace=True)

from sklearn.preprocessing import LabelEncoder

var_mod=['Gender','Married','Dependents',

 'Education','Self_Employed','Property_Area',

 'Loan_Status']

le = LabelEncoder()

for i in var_mod:

 df[i] = le.fit_transform(df[i])

df.dtypes

Next, we will import the required modules. Then we will define a

generic classification function, which takes a model as input and

determines the Accuracy and Cross-Validation scores.

87

#Import models from scikit learn module:

from sklearn.linear_model import

 LogisticRegression

#For K-fold cross validation

from sklearn.cross_validation import KFold

from sklearn.ensemble import

 RandomForestClassifier

from sklearn.tree import

 DecisionTreeClassifier, export_graphviz

from sklearn import metrics

Generic function for making a classification

model and accessing performance:

def classification_model(model, data,

 predictors, outcome):

 #Fit the model:

 model.fit(data[predictors],data[outcome])

 #Make predictions on training set:

 predictions=model.predict(data[predictors])

 #Print accuracy

 accuracy=metrics.accuracy_score(predictions,

 data[outcome])

 print("Accuracy:%s"%"{0:.3%}".format(accuracy))

 #Perform k-fold cross-validation with 5 folds

 kf = KFold(data.shape[0], n_folds=5)

 error = []

 for train, test in kf:

 # Filter training data

 train_predictors

 =(data[predictors].iloc[train,:])

 # The target we're using to train the

 algorithm.

 train_target = data[outcome].iloc[train]

 # Training the algorithm using the predictors
 and target.
 model.fit(train_predictors, train_target)
 #Record error from each cross-validation run

 error.append(model.score(data[predictors].iloc

88

 [test,:], data[outcome].iloc[test]))

 print ("Cross-Validation Score : %s" %

 "{0:.3%}".format(np.mean(error)))

 # Fit the model again so that it can be refered

 # outside the function:

 model.fit(data[predictors],data[outcome])

10.1 Logistic Regression

Let’s make our first Logistic Regression model. One way would be to

take all the variables into the model but this might result in overfitting.

In simple words, taking all variables might result in the model

understanding complex relations specific to the data and will not

generalize well. Logistic regression is a fundamental classification

technique. It belongs to the group of linear classifiers and is somewhat

similar to polynomial and linear regression. Logistic regression is

fast and relatively uncomplicated, and it’s convenient for you to

interpret the results. Although it’s essentially a method for binary

classification, it can also be applied to multiclass problems.

 You’ll need an understanding of the sigmoid function and the

natural logarithm function to understand what logistic regression is

and how it works.

 This image shows the sigmoid function (or S-shaped curve) of

some variable 𝑥:

https://en.wikipedia.org/wiki/Linear_classifier
https://realpython.com/linear-regression-in-python/
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Natural_logarithm

89

 The sigmoid function has values very close to either 0 or 1

across most of its domain. This fact makes it suitable for application

in classification methods.

 The next image depicts the natural logarithm log(𝑥) of some

variable 𝑥, for values of 𝑥 between 0 and 1:

When you’re implementing the logistic regression of some dependent

variable 𝑦 on the set of independent variables 𝐱 = (𝑥₁, …, 𝑥ᵣ), where 𝑟

is the number of predictors (or inputs), you start with the known

values of the predictors 𝐱ᵢ and the corresponding actual response (or

output) 𝑦ᵢ for each observation 𝑖 = 1, …, 𝑛.

 Our goal is to find the logistic regression function 𝑝(𝐱) such

that the predicted responses 𝑝(𝐱ᵢ) are as close as possible to the

actual response 𝑦ᵢ for each observation 𝑖 = 1, …, 𝑛. Remember that

the actual response can be only 0 or 1 in binary classification

problems! This means that each (𝐱ᵢ) should be close to either 0 or 1.

That’s why it’s convenient to use the sigmoid function. Once you have

the logistic regression function (𝐱), you can use it to predict the outputs

for new and unseen inputs, assuming that the underlying mathematical

dependence is unchanged.

 Logistic regression is a linear classifier, so you’ll use a linear

function (𝐱) = 𝑏₀ + 𝑏₁𝑥₁ + ⋯ + 𝑏ᵣ𝑥ᵣ, also called the logit. The variables

90

𝑏₀, 𝑏₁, …, 𝑏ᵣ are the estimators of the regression coefficients, which

are also called the predicted weights or just coefficients.

 The logistic regression function is the sigmoid function of 𝐱:

(𝐱) = 1 / (1 + exp(−𝑓(𝐱)). As such, it’s often close to either 0 or 1. The

function (𝐱) is often interpreted as the predicted probability that the

output for a given 𝐱 is equal to 1. Therefore, 1 − (𝑥) is the probability

that the output is 0.

 Logistic regression determines the best predicted weights 𝑏₀,

𝑏₁, …, 𝑏ᵣ such that the function 𝑝(𝐱) is as close as possible to all actual

responses 𝑦ᵢ, 𝑖 = 1, …, 𝑛, where 𝑛 is the number of observations. The

process of calculating the best weights using available observations is

called model training or fitting.

 To get the best weights, you usually maximize the log-

likelihood function (LLF) for all observations 𝑖 = 1, …, 𝑛. This

method is called the maximum likelihood estimation and is

represented by the equation

LLF = Σᵢ(𝑦ᵢ log(𝑝(𝐱ᵢ)) + (1 − 𝑦ᵢ) log(1 − 𝑝(𝐱ᵢ))).

When 𝑦ᵢ = 0, the LLF for the corresponding observation is equal to

log(1 − 𝑝(𝐱ᵢ)). If (𝐱ᵢ) is close to 𝑦ᵢ = 0, then log(1 − 𝑝(𝐱ᵢ)) is close to 0.

This is the result you want. If (𝐱ᵢ) is far from 0, then log(1 − 𝑝(𝐱ᵢ))

drops significantly. You don’t want that result because your goal is to

obtain the maximum LLF. Similarly, when 𝑦ᵢ = 1, the LLF for that

observation is 𝑦ᵢ log(𝑝(𝐱ᵢ)). If (𝐱ᵢ) is close to 𝑦ᵢ = 1, then log(𝑝(𝐱ᵢ)) is

close to 0. If (𝐱ᵢ) is far from 1, then log(𝑝(𝐱ᵢ)) is a large negative

number.

 There are several mathematical approaches that will calculate

the best weights that correspond to the maximum LLF, but that’s

beyond the scope of this Lecture notes. For now, you can leave these

details to the logistic regression Python libraries you’ll learn to use

here!

 Once you determine the best weights that define the function

(𝐱), you can get the predicted outputs (𝐱ᵢ) for any given input 𝐱ᵢ. For

each observation 𝑖 = 1, …, 𝑛, the predicted output is 1 if 𝑝(𝐱ᵢ) > 0.5

and 0 otherwise. The threshold doesn’t have to be 0.5, but it usually

91

is. You might define a lower or higher value if that’s more convenient

for your situation.

 There’s one more important relationship between (𝐱) and (𝐱),

which is that log(𝑝(𝐱) / (1 − 𝑝(𝐱))) = 𝑓(𝐱). This equality explains why

(𝐱) is the logit. It implies that (𝐱) = 0.5 when (𝐱) = 0 and that the

predicted output is 1 if (𝐱) > 0 and 0 otherwise.

 Binary classification has four possible types of results:

 True negatives: correctly predicted negatives (zeros).

 True positives: correctly predicted positives (ones).

 False negatives: incorrectly predicted negatives (zeros).

 False positives: incorrectly predicted positives (ones).

You usually evaluate the performance of your classifier by comparing

the actual and predicted outputsand counting the correct and incorrect

predictions.

 The most straightforward indicator of classification

accuracy is the ratio of the number of correct predictions to the total

number of predictions (or observations). Other indicators of binary

classifiers include the following:

 The positive predictive value is the ratio of the number of true

positives to the sum of the numbers of true and false positives.

 The negative predictive value is the ratio of the number of true

negatives to the sum of the numbers of true and false negatives.

 The sensitivity (also known as recall or true positive rate) is the

ratio of the number of true positives to the number of actual

positives.

 The specificity (or true negative rate) is the ratio of the number of

true negatives to the number of actual negatives.

 The most suitable indicator depends on the problem of interest.

In this tutorial, you’ll use the most straightforward form of

classification accuracy.

Let’s return back to the data set from an Analytics Vidhya competition.

We can easily make some intuitive hypothesis to set the ball rolling.

The chances of getting a loan will be higher for:

https://en.wikipedia.org/wiki/Logit
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values#Positive_predictive_value
https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values#Negative_predictive_value
https://en.wikipedia.org/wiki/Sensitivity_and_specificity#Sensitivity
https://en.wikipedia.org/wiki/Sensitivity_and_specificity#Specificity

92

 Applicants having a credit history (remember we observed this in

exploration?).

 Applicants with higher applicant and co-applicant incomes.

 Applicants with higher education level.

 Properties in urban areas with high growth perspectives.

So let’s make our first model with ‘Credit_History’.

outcome_var = 'Loan_Status'

model = LogisticRegression()

predictor_var = ['Credit_History']

classification_model(model, df,predictor_var,

 outcome_var)

Output:
Accuracy : 80.945% Cross-Validation Score :

80.946%

Generally we expect the accuracy to increase on adding variables. But

this is a more challenging case. The accuracy and cross-validation

score are not getting impacted by less important variables.

Credit_History is dominating the mode. We have two options now:

 Feature Engineering: derive new information and try to predict

those.

 Better modeling techniques. Let’s explore this next.

10.2 Decision Tree

Decision tree is another method for making a predictive model. It is

known to provide higher accuracy than logistic regression model.

 Decision Tree algorithm belongs to the family of supervised

learning algorithms. Unlike other supervised learning algorithms, the

decision tree algorithm can be used for solving regression and

classification problems too.

 The goal of using a Decision Tree is to create a training model

that can use to predict the class or value of the target variable by

93

learning simple decision rules inferred from prior data (training

data).

 In Decision Trees, for predicting a class label for a record we

start from the root of the tree. We compare the values of the root

attribute with the record’s attribute. On the basis of comparison, we

follow the branch corresponding to that value and jump to the next

node.

 Types of decision trees are based on the type of target variable

we have. It can be of two types:

 Categorical Variable Decision Tree: Decision Tree which has a

categorical target variable then it called a Categorical variable

decision tree.

 Continuous Variable Decision Tree: Decision Tree has a

continuous target variable then it is called Continuous Variable

Decision Tree.
Let’s say we have a problem to predict whether a customer will pay

his renewal premium with an insurance company (yes/ no). Here we

know that the income of customers is a significant variable but the

insurance company does not have income details for all customers.

Now, as we know this is an important variable, then we can build a

decision tree to predict customer income based on occupation,

product, and various other variables. In this case, we are predicting

values for the continuous variables.

 Important Terminology related to Decision Trees:

 Root Node: It represents the entire population or sample and this

further gets divided into two or more homogeneous sets.

 Splitting: It is a process of dividing a node into two or more sub-

nodes.

 Decision Node: When a sub-node splits into further sub-nodes,

then it is called the decision node.

 Leaf/Terminal Node: Nodes do not split is called Leaf or

Terminal node.

 Pruning: When we remove sub-nodes of a decision node, this

process is called pruning. You can say the opposite process of

splitting.

94

 Branch/Sub-Tree: A subsection of the entire tree is called branch

or sub-tree.

 Parent and Child Node: A node, which is divided into sub-nodes

is called a parent node of sub-nodes whereas sub-nodes are the

child of a parent node.

 Decision trees classify the examples by sorting them down the

tree from the root to some leaf/terminal node, with the leaf/terminal

node providing the classification of the example. Each node in the tree

acts as a test case for some attribute, and each edge descending from

the node corresponds to the possible answers to the test case. This

process is recursive in nature and is repeated for every subtree rooted

at the new node. The decision of making strategic splits heavily affects

a tree’s accuracy. The decision criteria are different for classification

and regression trees.

 Decision trees use multiple algorithms to decide to split a node

into two or more sub-nodes. The creation of sub-nodes increases the

homogeneity of resultant sub-nodes. In other words, we can say that

the purity of the node increases with respect to the target variable. The

decision tree splits the nodes on all available variables and then selects

the split which results in most homogeneous sub-nodes.

 Let us look at some ID3 algorithm used in Decision Trees. It

begins with the original set S as the root node. On each iteration of the

algorithm, it iterates through the very unused attribute of the set S and

calculates Entropy and Information gain (IG) of this attribute. It

then selects the attribute which has the smallest Entropy or Largest

Information gain. The set S is then split by the selected attribute to

produce a subset of the data. The algorithm continues to recur on each

subset, considering only attributes never selected before. If the dataset

consists of N attributes then deciding which attribute to place at the

root or at different levels of the tree as internal nodes is a complicated

step. By just randomly selecting any node to be the root can’t solve the

issue. If we follow a random approach, it may give us bad results with

low accuracy.

 Let’s consider an algorithm of building of Decision Tree based

on Entropy. Entropy is a measure of the randomness in the information

being processed. The higher the entropy, the harder it is to draw any

95

conclusions from that information. ID3 follows the rule — a branch

with an entropy of zero is a leaf node and a branch with entropy

more than zero needs further splitting.
Mathematically Entropy for 1 attribute is represented as:

Entropy(S) = – Σᵢ pᵢ log(pᵢ),

where S is Current state, pi → Probability of an event i of state S or

Percentage of class i in a node of state S.

 Information gain or IG is a statistical property that measures

how well a given attribute separates the training examples according

to their target classification. Constructing a decision tree is all about

finding an attribute that returns the highest information gain and the

smallest entropy.

Information gain is a decrease in entropy. It computes the difference

between entropy before split and average entropy after split of the

dataset based on given attribute values.

 Let’s return back to the data set from an Analytics Vidhya

competition and make our model:

model = DecisionTreeClassifier()

predictor_var=['Credit_History','Gender','Married'

 ,'Education']

classification_model(model,df,predictor_var,

96

 outcome_var)

Output:
Accuracy : 81.930% Cross-Validation Score :

76.656%

Here the model based on categorical variables is unable to have an

impact because Credit History is dominating over them. Let’s try a few

numerical variables:

predictor_var =

['Credit_History','Loan_Amount_Term','LoanAmou

nt_log']

classification_model(model,

df,predictor_var,outcome_var)

Output:
Accuracy : 92.345% Cross-Validation Score :

71.009%

Here we observed that although the accuracy went up on adding

variables, the cross-validation error went down. This is the result of

model over-fitting the data. Let’s try an even more sophisticated

algorithm and see if it helps:

10.3 Random Forest

The common problem with Decision trees, especially having a table

full of columns, they fit a lot. Sometimes it looks like the tree

memorized the training data set. If there is no limit set on a decision

tree, it will give you 100 % accuracy on the training data set because

in the worst case it will end up making 1 leaf for each observation.

Thus this affects the accuracy when predicting samples that are not

part of the training set. One of the ways to remove overfitting is

Random Forest. Random forest is another algorithm for solving the

classification problem. An advantage with Random Forest is that we

can make it work with all the features and it returns a feature

importance matrix which can be used to select features.

97

Two key concepts that give it the name random:

 A random sampling of training data set when building trees.

 Random subsets of features considered when splitting nodes.

 A technique known as bagging is used to create an ensemble

of trees where multiple training sets are generated with replacement.

In the bagging technique, a data set is divided into N samples using

randomized sampling. Then, using a single learning algorithm a model

is built on all samples. Later, the resultant predictions are combined

using voting or averaging in parallel.

model=RandomForestClassifier(n_estimators=100)

predictor_var=['Gender', 'Married',

 'Dependents', 'Education',

 'Self_Employed', 'Loan_Amount_Term',

 'Credit_History', 'Property_Area',

 'LoanAmount_log','TotalIncome_log']

classification_model(model,df,predictor_var,

 outcome_var)

Output:

Accuracy : 100.000% Cross-Validation Score :

78.179%

Here we see that the accuracy is 100 % for the training set. This is the

ultimate case of overfitting and can be resolved in two ways:

 Reducing the number of predictors.

 Tuning the model parameters.

Let’s try both of these. First we see the feature importance matrix from

which we’ll take the most important features.

featimp=pd.Series(model.feature_importances_,

 index=predictor_var).

 sort_values(ascending=False)

print (featimp)

98

Output:

Let’s use the top 5 variables for creating a model. Also, we will modify

the parameters of random forest model a little bit:

model=RandomForestClassifier(n_estimators=25,

 min_samples_split=25, max_depth=7,

 max_features=1)

predictor_var=['TotalIncome_log',

 'LoanAmount_log','Credit_History',

 'Dependents','Property_Area']

classification_model(model,df,predictor_var,

 outcome_var)

Output:
Accuracy : 82.899% Cross-Validation Score :

81.461%

Notice that although accuracy reduced, but the cross-validation score

is improving showing that the model is generalizing well. Remember

that random forest models are not exactly repeatable. Different runs

will result in slight variations because of randomization. But the output

should stay in the ballpark.

You would have noticed that even after some basic parameter tuning

on random forest, we have reached a cross-validation accuracy only

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/9.-rf-feat-imp.png

99

slightly better than the original logistic regression model. This exercise

gives us some very interesting and unique learning:

1. Using a more sophisticated model does not guarantee better

results.

2. Avoid using complex modeling techniques as a black box without

understanding the underlying concepts. Doing so would increase the

tendency of overfitting thus making your models less interpretable.

3. Feature Engineering is the key to success. Everyone can use an

Xgboost models but the real art and creativity lies in enhancing your

features to better suit the model.

https://www.analyticsvidhya.com/blog/2015/03/feature-engineering-variable-transformation-creation/

100

REFERENCES

1. Eng Michael David. A Practical Introduction to Python

Programming. Independently Published, 2020. 264 р.

2. Ben Stephenson. The Python Workbook. A Brief Introduction

with Exercises and Solutions. Springer, 2019. 219 p.

3. Andrew Bird, Dr Lau Cher Han, Mario Corchero Jiménez,

Graham Lee, Corey Wade. The Python Workshop. A Practical,

No-Nonsense Introduction to Python Development. Packt, 2019.

606 p.

4. What is Data Analysis? Research | Types | Methods | Techniques.

URL : http://surl.li/nayy.

5. Why Python is Essential for Data Analysis.

URL : https://www.rtinsights.com/why-python-is-essential-for-

data-analysis.

6. A Complete Python Tutorial to Learn Data Science from Scratch.

URL : http://surl.li/nbdy.

7. KDnuggets.

URL : https://www.kdnuggets.com/2020/01/decision-tree-

algorithm-explained.html.

http://surl.li/nayy
https://www.rtinsights.com/why-python-is-essential-for-data-analysis
https://www.rtinsights.com/why-python-is-essential-for-data-analysis
http://surl.li/nbdy
https://www.kdnuggets.com/news/subscribe.html
https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html
https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html

Навчальне видання

Конспект лекцій

із курсу «Пайтон та наука про дані»

(Англійською мовою)

 Відповідальний за випуск І. В. Коплик
 Редактор І. А. Іванов

 Комп’ютерне верстання І. О. Князя

Формат 60х84/16. Ум. друк. арк. 5,81. Обл.-вид. арк. 5,65.

Видавець і виготовлювач
Сумський державний університет,

вул. Римського-Корсакова, 2, м. Суми, 40007

Свідоцтво суб’єкта видавничої справи ДК № 3062 від 17.12.2007.

