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LECTURE 1 

INTRODUCTION TO PYTHON 
 

Python is an easy to learn, powerful programming language. It 

has efficient high-level data structures. Python’s elegant syntax and 

dynamic typing, together with its interpreted nature, make it an ideal 

language for scripting and rapid application development in many 

areas on most platforms. The Python interpreter and the extensive 

standard library are freely available in source or binary form for all 

major platforms from the Python Web site, https://www.python.org/, 

and may be freely distributed. The same site also contains distributions 

of and pointers to many free third party Python modules, programs and 

tools, and additional documentation. The Python interpreter is easily 

extended with new functions and data types implemented in C or C++ 

(or other languages callable from C).  

This lecture notes will introduce you to the basics of the python 

programming environment, including fundamental python 

programming techniques. This introduction to Python will kickstart 

your learning of Python for data science, as well as programming in 

general. The lecture notes will introduce data manipulation and 

cleaning techniques using the popular python data science libraries 

and introduce the abstraction of the Series and DataFrame as the 

central data structures for data analysis.   

To write programs you may use IDLE – a simple integrated 

development environment (IDE) that comes with Python.  You can 

find IDLE in the Python folder on your computer. When you first start 

IDLE, it starts up in the shell, which is an interactive window where 

you can type in Python code and see the output in the same window.  

 

1.1 Simple Python program  
 

Start IDLE and open up a new window (choose New Window under 

the File Menu). Type in the following program: 
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temp = eval(input('Enter a temperature in  

       Celsius: '))  

print('In Kelvin, that is', temp+273) 

 

Then, under the Run menu, choose Run Module (or press F5). 

IDLE will ask you to save the file, and you should do so. Be sure to 

append .py to the filename as IDLE will not automatically append it. 

This will tell IDLE to use colors to make your program easier to read. 

Once you've saved the program, it will run in the shell window. 

The program will ask you for a temperature. Type in 20 and press 

Enter. The program's output looks something like this: 
 

Enter a temperature in Celsius: 20  

In Fahrenheit, that is 293.0 

 

Let's examine how the program does what it does. The first line 

asks the user to enter a temperature. The input function's job is to 

ask the user to type something in and to capture what the user types. 

The part in quotes is the prompt that the user sees. It is called a string 

and it will appear to the program's user exactly as it appears in the code 

itself. The eval function is something we use here, but it won't be 

clear exactly why until later. So for now, just remember that we use it 

when we're getting numerical input. 

We need to give a name to the value that the user enters so that 

the program can remember it and use it in the second line. The name 

we use is temp and we use the equals sign to assign the user's value 

to temp. 

The second line uses the print function to print out the 

conversion. The part in quotes is another string and will appear to your 

program's user exactly as it appears in quotes here. The second 

argument to the print function is the calculation. Python will do the 

calculation and print out the numerical result. 

This program may seem too short and simple to be of much 

use, but there are many websites that have little utilities that do similar 

conversions, and their code is not much more complicated than the 

code here. 
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A second program here is a program that computes the average 

of three numbers that the user enters: 

 
nl = eval(input('Enter the first number:'))  

n2 = eval(input('Enter the second number:'))     

n3 = eval(input('Enter the third number:'))     

print('The average of the numbers you entered  

     is', (nl+n2+n3)/3) 

 

For this program we need to get three numbers from the user. 

There are ways to do that in one line, but for now we'll keep things 

simple. We get the numbers one at a time and give each number its 

own name. The only other thing to note is the parentheses in the 

average calculation. This is because of the order of operations. All 

multiplications and divisions are performed before any additions and 

subtractions, so we have to use parentheses to get Python to do the 

addition first1). 

 

1.2 Getting input and printing results 

 

The input function is a simple way for your program to get 

information from people using your program. Here is an example: 
 

name = input('Enter your surname: ')  

print('Hello ', surname) 

 

The basic structure is 

variable name = input('message to user') 

 

The above works for getting text from the user. To get numbers 

                     
1) Spaces matter at the beginning of lines, but not elsewhere. For example, the code below will not work 

properly: 
numl = eval(input('Enter the first number:'))  

 num2 = eval(input('Enter the second number:'))     

  print('The average of the numbers you  

        entered is', (numl+num2)/2) 
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from the user to use in calculations, we need to do something extra. 

Here is an example: 
 

num = eval(input('Enter a number:   '))  

print('Your number cubed: ', num*num*num) 

 

The eval function converts the text entered by the user into a 

number. One nice feature of this is you can enter expressions, like 

(3*2+3)/4, and eval will compute them for you. 

There are several useful functions for convertation. The int function 

converts something into an integer. The float function converts 

something into a floating point number. Here are some examples. 

 

Statement Result 

int('27') 27 

float('3.14') 3.14 

int(3.14) 3 

 

To convert a float to an integer, the int function drops 

everything after the decimal point. 

So, the previous example we may rewrite with float: 
 

num = float(input('Enter a number:   '))  

print('Your number cubed: ', num*num*num) 

 

 Quite often we will want to convert a number to a string to take 

advantage of string methods to break the number apart. The built-in 

function str is used to convert things into strings. Here are some 

examples: 

 

Statement Result 

str(27) '27' 

str(3.14) '3.14' 

str([1,2,3]) '[1,2,3] 
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The print function requires parenthesis around its 

arguments. Anything inside quotes will (with a few exceptions) be 

printed exactly as it appears. In the following, the first statement will 

output 3 + 4, while the second will output 7: 
 

print('3+4') 

print(3+4) 

 

To print several things at once, separate them by commas. 

Python will automatically insert spaces between them. Below is an 

example and the output it produces. 

 
print('The value of 2+2 is', 2+2)  

print('A',   1) 

 

As a result we will get  

 
The value of 2+2 is 4  

A 1  

 

There are two optional arguments to the print function. 

Python will insert a space between each of the arguments of the print 

function. There is an optional argument called sep, short for 

separator, that you can use to change that space to something else. For 

example, using sep=' : ' would separate the arguments by a colon and 

sep='##' would separate the arguments by two pound signs. One 

particularly useful possibility is to have nothing inside the quotes, as 

in sep=' '. This says to put no separation between the arguments. Here 

is an example where sep is useful for getting the output to look nice: 
print('The value of 3+5 Is', 3+5,   '.') 

print('The value of 3+5 Is', 3+5, sep=' ') 

 

As a result we will get  

 
The value of 3+5 is 8 . 

The value of 3+5 is  8. 
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The print function will automatically advance to the next line. There 

is an optional argument called end that you can use to keep the print 

function from advancing to the next line. Here is an example: 
 

print('On the first line', end='')  

print('On the second line') 

 

As a result we will get  
 

On the first lineOn the second line 

 

1.3 Variables 
 

Looking back at our first program, we see the use of a variable called 

temp: 

 
temp = eval(input('Enter a temperature in  

       Celsius: '))  

print{'In Kelvin, that is', temp+273) 

 

One of the major purposes of a variable is to remember a value 

from one part of a program so that it can be used in another part of the 

program. In the case above, the variable temp stores the value that the 

user enters so that we can do a calculation with it in the next line. 

Here is another example with variables: 

 
x=3  

y=4 

z=x+y  

z=z+l  

x=y  

y=5 

 

After these four lines of code are executed, x is 4, y is 5 and z is 8. 

One way to understand something like this is to take it one line at a 

time. This is an especially useful technique for trying to understand 
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more complicated chunks of code. Here is a description of what 

happens in the code above: 

 

1. x starts with the value 3 and y starts with the value 4.  

2. In line 3, a variable z is created to equal x+y, which is 7. 

3. Then the value of z is changed to equal one more than it currently 

equals, changing it from 7 to 8. 

4. Next, x is changed to the current value of y, which is 4.  

5. Finally, y is changed to 5. Note that this does not affect x.  

6. So at the end, x is 4, y is 5, and z is 8. 

 

There are just a couple of rules to follow when naming your variables. 

• Variable names can contain letters, numbers, and the underscore. 

• Variable names cannot contain spaces. 

• Variable names cannot start with a number. 

• Case matters – for instance, temp and Temp are different. 
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LECTURE 2 

NUMBERS AND OPERATIONS WITH THEM 
 

2.1 Integers and Decimal Numbers 
 

Because of the way computer chips are designed, integers and decimal 

numbers are represented differently on computers. Decimal numbers 

are represented by what are called floating point numbers. The 

important thing to remember about them is you typically only get 

about 15 or so digits of precision. It would be nice if there were no 

limit to the precision, but calculations run a lot more quickly if you cut 

off the numbers at some point. 

On the other hand, integers in Python have no restrictions. 

They can be arbitrarily large. 

For decimal numbers, the last digit is sometimes slightly off 

due to the fact that computers work in binary (base 2) whereas our 

human number system is base 10. As an example, mathematically, we 

know that the decimal expansion of 7/3 is 2.333, with the threes 

repeating forever. But when we type 7/3 into the Python shell, we get 

2.3333333333333335. This is called roundoff error. For most 

practical purposes this is not too big of a deal, but it actually can cause 

problems for some mathematical and scientific calculations.  

 

2.2 Math Operators and Order of operations 
 

Here is a list of the common operators in Python: 

 

Operator Description 

+ Addition 

- Subtraction 

* Multiplication 

/ Division 
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Operator Description 

** Exponentiation 

// integer division 

e. g. 6//5 = 1 

% modulo (remainder) 

e. g. 18%7 = 4 

 

Exponentiation gets done first, followed by multiplication and 

division (including // and %), and addition and subtraction come 

last. 

This comes into play in calculating an average. Say you have 

three variables x, y, and z, and you want to calculate the average of 

their values and to add value of f. To expression x+y+z/3+f would 

not work. Because division comes before addition, you would actually 

be calculating x +  y +  
𝑧

3
+ 𝑓 instead of 

𝑥+𝑦+𝑧

3
+ 𝑓. This is easily 

fixed by using parentheses: (x+y+z)/3+f. 

In general, if you're not sure about something, adding 

parentheses might help and usually doesn't do any harm. 

 

2.3 Random numbers 

 

Python comes with a module, called random, that allows us to use 

random numbers in our programs. 

Before we get to random numbers, we should first explain what 

a module is. The core part of the Python language consists of things 

like for loops, if statements, math operators, and some functions, like 

print and input. Everything else is contained in modules, and if 

we want to use something from a module we have to first import it — 

that is, tell Python that we want to use it. 

At this point, there is only one function, called randint, that 

we will need from the random module. To load this function, we use 

the following statement: 

 
from random import randint 
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Using randint is simple: randint(a,b) will return a 

random integer between a and b including both a and b. (Note that 

randint includes the right endpoint b unlike the range function). 

Here is a short example: 
 

from random import randint 

x = randint(1,20) 

print('A random number between 1 and 20: ',x) 

As a result we will get: 
 

A random number between 1 and 20: 7 

 

The random number will be different every time we run the program. 

 

2.4 Math module  

 

Python has a module called math that contains familiar math 

functions. There are also the inverse trig functions, hyperbolic 

functions, and the constants pi and e. Here is the list of all the 

functions and attributes defined in math module with a brief 

explanation of what they do. 

 

List of Functions in Python Math Module 

 

Function Description 

ceil(x) Returns the smallest integer greater than or 

equal to x 

copysign(x,y) Returns x with the sign of y 

fabs(x) Returns the absolute value of x 

factorial(x) Returns the factorial of x 

floor(x) Returns the largest integer less than or 

equal to x 

fmod(x,y) Returns the remainder when x is divided 

by y 

frexp(x) Returns the mantissa and exponent of x as 
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Function Description 

the pair (m, e) 

fsum(iterable) Returns an accurate floating point sum of 

values in the iterable 

isfinite(x) Returns True if x is neither an infinity nor 

a NaN (Not a Number) 

isinf(x) Returns True if x is a positive or negative 

infinity 

isnan(x) Returns True if x is a NaN 

ldexp(x,i) Returns x*(2**i) 

modf(x) Returns the fractional and integer parts 

of x 

trunc(x) Returns the truncated integer value of x 

exp(x) Returns e**x 

expm1(x) Returns e**x-1 

log(x[,b]) Returns the logarithm of x to the base b 

(defaults to e) 

log1p(x) Returns the natural logarithm of 1+x 

log2(x) Returns the base-2 logarithm of x 

log10(x) Returns the base-10 logarithm of x 

pow(x,y) Returns x raised to the power y 

sqrt(x) Returns the square root of x 

acos(x) Returns the arc cosine of x 

asin(x) Returns the arc sine of x 

atan(x) Returns the arc tangent of x 

atan2(y,x) Returns atan(y/x) 

cos(x) Returns the cosine of x 

hypot(x,y) Returns the Euclidean norm, 

sqrt(x*x+y*y) 

sin(x) Returns the sine of x 

tan(x) Returns the tangent of x 

degrees(x) Converts angle x from radians to degrees 

radians(x) Converts angle x from degrees to radians 

acosh(x) Returns the inverse hyperbolic cosine of x 
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Function Description 

asinh(x) Returns the inverse hyperbolic sine of x 

atanh(x) Returns the inverse hyperbolic tangent of x 

cosh(x) Returns the hyperbolic cosine of x 

sinh(x) Returns the hyperbolic cosine of x 

tanh(x) Returns the hyperbolic tangent of x 

erf(x) Returns the error function at x 

erfc(x) Returns the complementary error function 

at x 

gamma(x) Returns the Gamma function at x 

lgamma(x) Returns the natural logarithm of the 

absolute value of the Gamma function at x 

pi Mathematical constant, the ratio of 

circumference of a circle to it's diameter 

(3.14159...) 

e Mathematical constant e (2.71828...) 

 

Here is a short example: 
 

import math  

number = -21.19  

print('The given number is :', number)  

print('Floor value is :', math.floor(number))  

print('Ceiling value is :', math.ceil(number)) 

print('Absolute value is :', math.fabs(number)) 

 

There are two built in math functions, abs (absolute value) 

and round that are available without importing the math module. 

Here are some examples: 
 

print(abs(-2.3))  

print(round(5.436, 2))  

print(round(116.2, -1)) 
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As a result we will get 
 

2.3 

5.43 

120.0 

 

The round function takes two arguments: the first is the 

number to be rounded and the second is the number of decimal places 

to round to. The second argument can be negative. 
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LECTURE 3  

CONDITIONAL FLOW CONTROL 

 

3.1 Simple Conditions 

 

Let us consider simple arithmetic comparisons that directly translate 

from math into Python 
 

2 < 5 

3 > 7 

x = 11 

x > 10 

2 * x < x 

type(True) 

 

You see that conditions are either True or False. These are 

the only possible Boolean values. In Python the name Boolean is 

shortened to the type bool. It is the type of the results of true-false 

conditions or tests. 
 

3.2 Simple if Statements 

 

Run this example program. Try it at least twice, with inputs: 30 and 

then 55. As you see, you get an extra result, depending on the input. 

The main code is: 

 
weight = float(input("How many pounds does 

      your suitcase weigh? ")) 

if weight > 50: 

    print("There is a $25 charge for luggage  

         that heavy.") 

print("Thank you for your business.") 

https://www.oreilly.com/library/view/java-programming-basics/9780133975154/Lesson_02_04.html
https://www.oreilly.com/library/view/java-programming-basics/9780133975154/Lesson_02_04.html
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The middle two line are an if statement. If it is true that the 

weight is greater than 50, then print the statement about an extra 

charge. If it is not true that the weight is greater than 50, then don’t do 

the indented part: skip printing the extra luggage charge. In any event, 

when you have finished with the if statement (whether it actually 

does anything or not), go on to the next statement that is not indented 

under the if. In this case that is the statement printing “Thank you”. 

The general Python syntax for a simple if statement is 

 
if condition : 

 indented Statement Block 

 

If the condition is true, then do the indented statements. If the 

condition is not true, then skip the indented statements. 

In the examples above the choice is between doing something 

(if the condition is True) or nothing (if the condition is False). Often 

there is a choice of two possibilities, only one of which will be done, 

depending on the truth of a condition. 

 

3.3 if-else Statements 

 

Try the program below at least twice, with inputs 50 and then 80. As 

you can see, you get different results, depending on the input. 
 

temperature = float(input('What is the  

      temperature? ')) 

if temperature > 70: 

 print('Wear shorts') 

else: 

 print('Wear long pants') 

print('Get some exercise outside') 

 

The middle four lines are an if-else statement. Again it is close to 

English, though you might say “otherwise” instead of “else” (but else 

is shorter!). There are two indented blocks: One, like in the simple if 

statement, comes right after the if heading and is executed when the 



21 

condition in the if heading is true. In the if-else form this is 

followed by an else: line, followed by another indented block that is 

only executed when the original condition is false. In an if-else 

statement exactly one of two possible indented blocks is executed. 

The general Python if-else syntax is  
 

if condition : 

 indented Statement Block For True  

       Condition 

else: 

 indented Statement Block For False  

       Condition 

 

These statement blocks can have any number of statements, 

and can include about any kind of statement. 

All the usual arithmetic comparisons may be made, but many 

do not use standard mathematical symbolism, mostly for lack of 

proper keys on a standard keyboard. 

Meaning Math Symbol Python Symbols 

Less than < < 

Greater than > > 

Less than or equal ≤ <= 

Greater than or equal ≥ >= 

Equals = == 

Not equal ≠ != 

 

There should not be space between the two-symbol Python 

substitutes. 

Tests for equality do not make an assignment, and they do not 

require a variable on the left. Any expressions can be tested for 

equality or inequality (!=). They do not need to be numbers! Predict 

the results for these commands: 
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x = 5 

x == 5 

x != 6 

x = 6 

6 == x 

6 != x 

'hi' == 'h' + 'i' 

'HI' != 'hi' 

[1, 2] != [2, 1] 

'a' > 5 

 

There are three additional operators used to construct more 

complicated conditions: and, or, and not. Here are an example: 
 

if(score<100 or time>2) and turns_remain==0:  

 print(‘Game over.’) 

 

In terms of order of operations, and is done before or, so if you have 

a complicated condition that contains both, you may need parentheses 

around the or condition. Think of and as being like multiplication 

and or as being like addition. 

 On the other hand, there is a nice shortcut that does work in 

Python (though not in many other programming languages): 

 
if 80<=score<90: 

 … 

Here are some handy shortcuts: 

 

Statement Shortcut 

if a==0 and b==0 and c==0:  if a==b==c==0: 

if 1<a and a<b and b<5:  if 1<a<b<5: 

 

3.4 Multiple Tests and if-elif Statements 

 

Often you want to distinguish between more than two distinct cases, 

but conditions only have two possible results, True or False, so the 
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only direct choice is between two options. As anyone who has played 

“20 Questions” knows, you can distinguish more cases by further 

questions. If there are more than two choices, a single test may only 

reduce the possibilities, but further tests can reduce the possibilities 

further and further. Since most any kind of statement can be placed in 

an indented statement block, one choice is a further if statement. For 

instance consider a function to convert a numerical grade to a letter 

grade, ‘A’, ‘B’, ‘C’, ‘D’ or ‘F’, where the cutoffs for ‘A’, ‘B’, ‘C’, and 

‘D’ are 90, 80, 70, and 60 respectively. One way to write the function 

would be test for one grade at a time, and resolve all the remaining 

possibilities inside the next else clause: 
 

if score >= 90: 

 letter = 'A' 

else:   # grade must be B, C, D or F 

 if score >= 80: 

      letter = 'B' 

     else:  # grade must be C, D or F 

      if score >= 70: 

           letter = 'C' 

          else:    # grade must D or F 

           if score >= 60: 

                letter = 'D' 

               else: 

           letter = 'F 

print(letter) 

 

This repeatedly increasing indentation with an if statement as 

the else block can be annoying and distracting. A preferred 

alternative in this situation, that avoids all this indentation, is to 

combine each else and if block into an elif block: 
 

if score >= 90: 

 letter = 'A' 

elif score >= 80: 

 letter = 'B' 

elif score >= 70: 
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     letter = 'C' 

elif score >= 60: 

 letter = 'D' 

else: 

 letter = 'F' 

The most elaborate syntax for an if-elif-else statement 

is indicated in general below: 

if condition1 : 

 indented Statement Block For True  

       Condition 1 

elif condition2 : 

 indented Statement Block For First True  

       Condition 2 

elif condition3 : 

 indented Statement Block For First True  

       Condition 3 

elif condition4 : 

 indented Statement Block For First True  

       Condition 4 

else: 

 indented Statement Block For Each  

      Condition False 

The if, each elif, and the final else lines are all aligned. 

There can be any number of elif lines, each followed by an indented 

block. (Three happen to be illustrated above.) With this construction 

exactly one of the indented blocks is executed. It is the one 

corresponding to the first True condition, or, if all conditions are 

False, it is the block after the final else line. 
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LECTURE 4  

LOOPS 
 

 Loops are among the most basic and powerful of programming 

concepts. A loop in a computer program is an instruction that repeats 

until a specified condition is reached. In a loop structure, the loop asks 

a question. If the answer requires action, it is executed. The same 

question is asked again and again until no further action is required. 

Each time the question is asked is called an iteration. A computer 

programmer who needs to use the same lines of code many times in a 

program can use a loop to save time. 

 

4.1 for loop 

 

The following program will print Hello and How are you? 

twenty times: 
 

for i in range(20): 

 print ('Hello') 

 print ('How are you?') 

 

The structure of a for loop is as follows: 

 
for variable name in range(number of times to  
           repeat):  

statements to be repeated 

 

The syntax is important here. The word for must be in 

lowercase, the first line must end with a colon, and the statements to 

be repeated must be indented. Indentation is used to tell Python which 

statements will be repeated. 

Since the second and third lines are indented, Python knows 

that these are the statements to be repeated. If a line is not indented, so 

https://www.thoughtco.com/loops-2034224
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it is not part of the loop and only gets executed once, after the loop has 

completed. 

Looking at the above example, we see where the term for loop 

comes from: we can picture the execution of the code as starting at the 

for statement, proceeding to the second and third lines, then looping 

back up to the for statement. 

There is one part of a for loop that is a little tricky, and that is 

the loop variable. In the example below, the loop variable is the 

variable i. The output of this program will be the numbers 0,1,..., 99, 

each printed on its own line. 

 
for i in range(100):  

 print(i) 

 

When the loop first starts, Python sets the variable i to 0. Each 

time we loop back up, Python increases the value of i by 1. The 

program loops 100 times, each time increasing the value of i by until 

we have looped 100 times. At this point the value of i is 99. 

You may be wondering why i starts with 0 instead of 1. Well, 

there doesn't seem to be any really good reason why other than that 

starting at 0 was useful in the early days of computing and it has stuck 

with us. In fact most things in computer programming start at 0 instead 

of 1. This does take some getting used to. 

 It's a convention in programming to use the letters i, j, and k 

for loop variables, unless there's a good reason to give the variable a 

more descriptive name. 

 

4.2 The range function 
 

The value we put in the range function determines how many times 

we will loop. The way range works is it produces a list of numbers 

from zero to the value minus one. For instance, range(5) produces 

five values: 0, 1, 2, 3, and 4. 

If we want the list of values to start at a value other than 0, we 

can do that by specifying the starting value. The statement 

range(1,5) will produce the list 1, 2, 3, 4. This brings up one quirk 
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of the range function - it stops one short of where we think it should. 

If we wanted the list to contain the numbers 1 through 5 (including 5), 

then we would have to do range(1,6). 

Another thing we can do is to get the list of values to go up by 

more than one at a time. To do this, we can specify an optional step as 

the third argument. The statement range(1,10,2) will step 

through the list by twos, producing 1, 3, 5, 7, 9. 

To get the list of values to go backwards, we can use a step of 

-1. For instance, range (5,1,-1) will produce the values 5, 4, 3, 

2, in that order. Note that the range function stops one short of the 

ending value 1. Here are a few more examples: 

 

Statement Values generated 

range(8) 0,1,2,3,4,5,6,7 

range(1,8) 1,2,3,4,5,6,7 

range(2,7) 2,3,4,5,6 

range(2,13,2) 2,4,6,8,10,12 

range(9,2,-1) 9,8,7,6,5,4,3 

 

Here is an example program that counts down from 5 and then 

prints a message. 

 
for i in range(4,0,-1): 

 print (i, end=' ')  

print('Stop') 

 

 
4 3 2 1 Stop 

 

The end=' ' just keeps everything on the same line. 

 The program below prints a triangle of symbols ‘o’ that is 4 

rows tall 

 
for i in range(4):  

 print('o'*(i+1)) 
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The triangle produced by this code is shown below 
o 

oo 

ooo 

oooo 

 

The code 'o'*(i+1) is something we'll cover in next 

lecture; it just repeats character 'o' six times. 

Sometimes, though, we need to repeat something, but we don't 

know ahead of time exactly how many times it has to be repeated. For 

instance, a game of Tic-tac-toe keeps going until someone wins or 

there are no more moves to be made, so the number of turns will vary 

from game to game. This is a situation that would call for a while loop. 

 

4.3 while loop 

  

Let's go back to the first program we wrote back in Lecture 1, the 

temperature converter. One annoying thing about it is that the user has 

to restart the program for every new temperature. A while loop will 

allow the user to repeatedly enter temperatures. A simple way for the 

user to indicate that they are done is to have them enter a nonsense 

temperature like 66. This is done below: 
 

temp = 0 

while temp!=66: 

 temp = eval(input('Enter a temperature  

      (66 to quit):'))  

 print('In Kelvin, that is', temp+273) 

 

Look at the while statement first. It says that we will keep 

looping, that is, keep getting and converting temperatures, as long as 

the temperature entered is not 66. As soon as 66 is entered, the while 

loop stops. Tracing through, the program first compares temp to 66. 

If temp is not 66, then the program asks for a temperature and 

converts it. The program then loops back up and again compares temp 

to 66. If temp is not 66, the program will ask for another temperature, 
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convert it, and then loop back up again and do another comparison. It 

continues this process until the user enters 66. 

We need the line temp=0 at the start, as without it, we would 

get a name error. The program would get to the while statement, try 

to see if temp is not equal to 66 and run into a problem because temp 

doesn't yet exist. To take care of this, we just declare temp equal to 0. 

There is nothing special about the value 0 here. We could set it to 

anything except 66. (Setting it to 66 would cause the condition on the 

while loop to be false right from the start and the loop would never 

run.) 

Note that is natural to think of the while loop as continuing 

looping until the user enters 66. However, when we construct the 

condition, instead of thinking about when to stop looping, we instead 

need to think in terms of what has to be true in order to keep going. 

 We can use a while loop to mimic a for loop, as shown 

below. Both loops have the exact same effect: 

 
 

 

for i in range(10): 

 print(i) 

 

 

i=0 

while i<10:  

 print(i) 

 i=i+1 

 

Remember that the for loop starts with the loop variable i 

equal to 0 and ends with it equal to 9. To use a while loop to mimic 

the for loop, we have to manually create our own loop variable i. 

We start by setting it to 0. In the while loop we have the same print 

statement as in the for loop, but we have another statement, i=i+1, 

to manually increase the loop variable, something that the for loop 

does automatically. 

 When working with while loops, sooner or later you will 

accidentally send Python into a never-ending loop. Here is an 

example: 

 
while True: 

 # statements to be repeated go here 
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In this program, the condition is always true (you may replace 

True by any positive number, e. g. while 1). Python will 

continuously repeat intended statements below while. To stop a 

program caught in a never-ending loop, use Restart Shell under 

the Shell menu. You can use this to stop a Python program before it 

is finished executing.  

Another example of an infinite loop is here: 
 

i=0 

n=l 

while i<1 and n>0:  # Conditions are always true 

 print(0) 

 

The break statement can be used to break out of a for or 

while loop before the loop is finished. 

Here is a program that allows the user to enter up to 10 

numbers. The user can stop early by entering a negative number. 

 
for i in range(10): 

 n = eval(input('Enter a number:')) 

 if n<0: 

   break 

 

When a for loop is present inside another for loop then it is called a 

nested for loop. Let’s take an example of nested for loop. 

for num1 in range(3): 

 for num2 in range(10, 14): 

  print(num1, ",", num2) 

 

As a result we will get: 
 

0,10 

0,11 

0,12 

0,13 
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1,10 

1,11 

1,12 

1,13 

2,10 

2,11 

2,12 

2,13 

 

 Unlike other languages we can use else for loops. When the 

loop condition of "for" or "while" statement fails then code part in 

"else" is executed. If a break statement is executed inside the for 

loop then the "else" part is skipped. Note that the "else" part is 

executed even if there is a continue statement. Let’s consider 

another that allows us to print out 0, 1, 2, 3, 4 and then print “count 

value reached 5”.  
 

count=0 

while(count<5): 

    print(count) 

    count +=1 

else: 

    print("count value reached %d" %(count)) 

 

# Prints out 1,2,3,4 

for i in range(1, 10): 

    if(i%5==0): 

        break 

    print(i) 

else: 

    print("this is not printed because for 

loop is terminated because of break but not 

due to fail in condition") 
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LECTURE 5  

STRING TREATMENT 
 

Strings are a data type in Python for dealing with text. Python 

has a number of powerful features for manipulating strings.  

A string is created by enclosing text in quotes. You can use 

either single quotes, ', or double quotes, ". A triple-quote can be used 

for multi-line strings. Here are some examples: 

 
s = 'Hi' 

t = "Hello" 

I = """This Is a long string that is  

spread across two lines.""" 

 

 In previous lectures when getting numerical input we used an 

eval statement with the input statement, but when getting text, we 

do not use eval.  

 The empty string '' is the string equivalent of the number 0. 

It is a string with nothing in it. We have seen it before, in the print 

statement's optional argument, sep=''. 

 To get the length of a string (how many characters it has), use 

the built-in function len. For example, len('How are you') is 

11 (spaces are symbols too). 

The operators + and * can be used on strings. The + operator 

combines two strings. This operation is called concatenation. The * 

repeats a string a certain number of times. Here are some examples. 

 

Expression Result 

'AB'+'cd' 'ABcd' 

'A'+'7'+'B' 'A7B' 

'Hi'*4 'HiHiHiHi' 

 

https://stackoverflow.com/questions/57699348/string-treatment-with-blacklist-and-whitelist-in-python
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The in operator is used to tell if a string contains something. 

For example: 
 

string='Hello. How are you?' 

if 'H' in string: 

 print('Your string contains H') 

 

We will often want to pick out individual characters from a 

string. Python uses square brackets to do this. The table below gives 

some examples of indexing the string s='Python'. 

 

Statement Result Description 

s[0] P first character of s 

s[1] y second character of s 

s[-1] n last character of s 

s[-2] o second-to-last character of s 

 

Note, that the first character of s is s[0], not s[1]. Remember that 

in programming, counting usually starts at 0, not 1. Negative indices 

count backwards from the end of the string. 

A common error Suppose s='Python' and we try to do 

s[12]. There are only six characters in the string and Python will 

raise the following error message: 

 
IndexError: string index out of range 

 

A slice is used to pick out part of a string. It behaves like a 

combination of indexing and the range function. Below we have 

some examples with the string s='abcdefghij'. 

 

Code Result Description 

s[2:5] cde characters at indices 2, 3, 4 

s[ :5] abcde first five characters 

s[5: ] fghij characters from index 5 to the 

end 
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Code Result Description 

s[-2: ] ij last two characters 

s[ : ] abcdefghij entire string 

s[1:7:2] bdf characters from index 1 to 6, 

by twos 

s[ : :-1] jihgfedcba a negative step reverses the 

string 

 

Slices have the same quirk as the range function in that they 

does not include the ending location. For instance, in the example 

above, s[2:5] gives the characters in indices 2, 3, and 4 but not the 

character in index 5. 

 We can leave either the starting or ending locations blank. If we 

leave the starting location blank, it defaults to the start of the string. 

So s[:5] gives the first five characters of s. If we leave the ending 

location blank, it defaults to the end of the string. So s[5:] will give 

all the characters from index 5 to the end. If we use negative indices, 

we can get the ending characters of the string. For instance, s[-2:] 

gives the last two characters. 

 There is an optional third argument, just like in the range 

statement, that can specify the step. For example, s[1:7:2] steps 

through the string by twos, selecting the characters at indices 1,3, and 

5 (but not 7, because of the aforementioned quirk). The most useful 

step is -1, which steps backwards through the string, reversing the 

order of the characters. 

Suppose we have a string called s and we want to change the 

character at index 4 of s to 'X'. It is tempting to try s[4]='X', but 

that unfortunately will not work. Python strings are immutable, which 

means we can't modify any part of them. If we want to change a 

character of s, we have to instead build a new string from s and 

reassign it to s. Here is code that will change the character at index 4 

to 'X': 
 

s = s[:4] + 'X' + s[5:] 

The idea of this is we take all the characters up to index 4, then 
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X, and then all of the characters after index 4. 

Very often we will want to scan through a string one character 

at a time. A for loop like the one below can be used to do that. It loops 

through a string called s, printing the string, character by character, 

each on a separate line: 

 
for i in range(len(s)):  

 print(s[i]) 

 

In the range statement we have len(s) that returns how 

long s is. So, if s were 5 characters long, this would be like having 

range(5) and the loop variable i would run from 0 to 4. This means 

that s[i] will run through the characters of s. This way of looping is 

useful if we need to keep track of our location in the string during the 

loop. 

If we don't need to keep track of our location, then there is a 

simpler type of loop we can use: 
 

for c in s:  

 print(c) 

 

This loop will step through s, character by character, with c 

holding the current character.  

Strings come with a ton of methods, functions that return 

information about the string or return a new string that is a modified 

version of the original. Here are some of the most useful ones: 

 

Method Description 

lower() returns a string with every letter of the original 

in lowercase 
upper() returns a string with every letter of the original 

in uppercase 

replace(x,y) returns a string with every occurrence of x 

replaced by y 
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Method Description 

count(x) counts the number of occurrences of x in the 

string 

index(x) returns the location of the first occurrence of x 

isalpha() returns True if every character of the string is 

a letter 
 

One very important note about lower, upper, and replace is 

that they do not change the original string. If you want to change a 

string, s, to all lowercase, it is not enough to just use s.lower(). 

You need to do the following: 

 
s = s.lower() 

 

Here are some examples of string methods in action: 

 

Statement Description 

print(s.count('')) prints the number of 

spaces in the string s=s.upper() changes the string to all 

caps s=s.replace('Hi','Hello') replaces each 'Hi' in s 

with 'Hello' print(s.index('a')) prints location of the first 

'a' in s  

The isalpha method is used to tell if a character is a letter or not. It 

returns True if the character is a letter and False otherwise. When 

used with an entire string, it will only return True if every character 

of the string is a letter. The values True and False are called 

Booleans. For now, though, just remember that you can use isalpha 

in if conditions.  

 If you try to find the index of something that is not in a string, 

Python will raise an error. For instance, if s='abc' and you try 

s.index('z'), you will get an error.  

 Let’s consider an example. Replace all occurrences of "is" with 

"WAS" 
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string = "This is nice. This is good." 

newString = string.replace("is","WAS") 

print(newString) 

 

As a result we will get 
ThWAS WAS nice. ThWAS WAS good. 

 

Let’s write a program that asks the user for a string and prints out the 

location of each 'e' in the string and calculates a number of locations. 

We use a loop to scan through the string one character at a time. 

The loop variable i keeps track of our location in the string, and s[i] 

gives the character at that location. Thus, the third line checks each 

character to see if it is an 'a', and if so, it will print out i, the location 

of that 'a'. 

 
s = input('Enter a sentence: ')  

num=0 

for i in range(len(s)):  

 if s[i]=='e':  

  print(i) 

  num=num+1 

  

Here is another example. Let’s consider a very old method of sending 

secret messages based on the substitution cipher. Basically, each letter 

of the alphabet gets replaced by another letter of the alphabet, say 

every a gets replaced with an x, and every b gets replaced by a z, etc.  

  
alphabet = 'abcdefghijklmnopqrstuvwxyz'  

key = 'xznlwebgjhqdyvtkfuompciasr' 

message = input('Enter your text: ').lower() 

for c in message:  

 if c.isalpha(): 

  print(key[alphabet.index(c)],end='') 

 else: 

  print(c, end='') 
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The string key is a random reordering of the alphabet. 

The only tricky part of the program is the for loop. What it 

does is go through the message one character at a time, and, for every 

letter it finds, it replaces it with the corresponding letter from the key. 

This is accomplished by using the index method to find the position 

in the alphabet of the current letter and replacing that letter with the 

letter from the key at that position. All non-letter characters are copied 

as is. The program uses the isalpha method to tell whether the 

current character is a letter or not. 

The code to decipher a message is nearly the same. Just change 
key[alphabet.index(c)] to  alphabet[key.index(c)].  
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LECTURE 6 

PYTHON LISTS 
 

 Lists are used to store multiple items in a single variable. Lists 

are one of 4 built-in data types in Python used to store collections of 

data, the other 3 are Tuple, Set, and Dictionary, all with 

different qualities and usage. 

Here is a simple list: 
 
L=[4,1,4,7,8] 

 

Use square brackets to indicate the start and end of the list, and 

separate the items by commas.  

 

The empty list is []. It is the list equivalent of 0 or ''. We can use 

eval(input()) to allow the user to enter a list and the print 

function to print the entire contents of a list.. Here is an example: 

 
L = eval(input ('Enter a list: '))  

print(L) 

 

Lists can contain all kinds of things, even other lists. For example, the 

following is a valid list: 

 
['physics', 'chemistry', 1997, 2000] 

 

Making copies of lists is a little tricky due to the way Python handles 

lists. Say we have a list L and we want to make a copy of the list and 

call it M. For now, do the following in place of M=L: 

 

M = L[:] 

 

There are a number of things which work the same way for lists as for 

https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp
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strings. E. g.: 

• len –  the number of items in L is given by len(L). 

• in  –  the in operator tells you if a list contains something.  

 

Here are some examples: 

 
if 'physics' in L: 

  print('Your list contains  

       'physics'.') 

 

• Indexing and slicing. These work exactly as with strings. For 

example, L[0] is the first item of the list L and L[:3] gives the first 

three items. 

• index and count. These methods work the same as they do 

for strings. 

• + and *.  The + operator adds one list to the end of another. The * 

operator repeats a list. Here are some examples: 

 

Expression Result 

[1,2]+[3,4,5]  [1,2,3,4,5] 

[2,3]*3 [2,3,2,3,2,3] 

[0]*5 [0,0,0,0,0] 

 

The last example is particularly useful for quickly creating a list of 

zeroes. 

• Looping. The same two types of loops that work for strings also 

work for lists. Both of the following examples print out the items of a 

list, one-by-one, on separate lines. 
 

for i in range(len(L)): 

 print(L[i]) 

for item in L:     

  print(item) 

 

 

The left loop is useful for problems where you need to use the loop 

variable i to keep track of where you are in the loop. If that is not 

needed, then use the right loop, as it is a little simpler. 
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 There are several built-in functions that operate on lists. Here 

are some useful ones: 

 

Function Description 

len returns the number of items in the list 

sum returns the sum of the items in the list 

min returns the minimum of the items in the list 

max returns the maximum of the items in the list 

 

For example, the following computes the average of the values in a 

list L: 

 
average = sum(L)/len(L) 

 

Let’s consider a program which allows us to count the number of 

strings where the string length is 2 or more and the first and last 

character are same from a given list of strings. 

 
list=(['mk','abc', 'xyz', 'aba', '3344']) 

num = 0 

for word in list: 

 if len(word) > 1 and word[0] == word[-1]: 

      num += 1 

print(num) 

 

Output: 2 
 

 Here are some list methods: 

 

Method Description 

append(x) adds x to the end of the list 

sort() sorts the list 

count(x) returns the number of times x occurs in the list 

index(x) returns the location of the first occurrence of x 

reverse() reverses the list 
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Method Description 

remove(x) removes first occurrence of x from the list 

pop(p) removes the item at index p and returns its 

value 

insert(p,x) inserts x at index p of the list 

split() Returns a list of the words of a string. The 

method assumes that words are separated by 

whitespace, which can be either spaces, tabs or 

newline characters. Here is an example: 
s = 'My name is Ivan'  

print(s.split()) 

Result: 

['My','name','is','Ivan'] 

join(L) takes a list L of strings and joins them together 

into a single string 

 

There is a big difference between list methods and string methods: 

String methods do not change the original string, but list methods do 

change the original list. To sort a list L, just use L.sort() and not 

L=L.sort(). In fact, the latter will not work at all. 

 Let’s consider a program that takes a sequence of numbers and 

returns a list containing the square root of each number: 

 
import math 

numbers = [1, 4, 9, 16, 25, 36, 49, 64, 81] 

result = [] 

for number in numbers: 

 result.append(math.sqrt(number)) 

print(result) 

 

Output: 

 

[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 

 

 



43 

 Changing a specific item in a list is easier than with strings. To 

change the value in location 1 of L to 10, we simply say L[1]=10. If 

we want to insert the value 10 into location without overwriting what 

is currently there, we can use the insert method. To delete an entry 

from a list, we can use the del operator. Some examples are shown 

below. Assume L=[6,7,8] for each operation. 

 

Operation New L Description 

L[1] = 9 [6,9,8] replace item at index 1 with 9 

L.insert(1,9) [6,9,7,8] insert a 9 at index 1 without 

replacing 

del L[1] [6,8] delete second item 

del L[:2] [8] delete first two items 

 

There is a module called string that contains, among other 

things, a string variable called punctuation that contains common 

punctuation. We can remove the punctuation from a string s with the 

following code: 

 
from string import punctuation  

for c in punctuation:  

 s = s.replace(c, '') 

 

The join method is in some sense the opposite of split. It 

is a string method that takes a list of strings and joins them together 

into a single string. Here are some examples, using the list 
L = ['A','B','C'] 

 

Operation Result 

' '.join(L) A B C 

''.join(L) ABC 

', '.join(L) A, B, C 

'***'.join(L) A***B***C 
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A powerful way to create lists is using for loops. Here is a simple 

example: 

 
L = [i for i in range(5)] 

  

This creates the list [0,1,2,3,4]. Notice that the syntax of a list 

comprehension is somewhat reminiscent of set notation in 

mathematics. Another example: 

 
str='HELLO' 

L=[c*2 for c in str] 

L 

 

Output: 
['HH','EE',LL','LL','OO'] 

 

Another example: 

 

sentence = 'the rocket came back from mars' 

vowels = [i for i in sentence if i in 'aeiou'] 

vowels 

 

Output: 

['e', 'o', 'e', 'a', 'e', 'a', 'o', 'a'] 

 

You can use more than one for in a list comprehension: 
 

L = [[i,j] for i in range(2) for j in   

       range(2)] 

 

We will get 

 
[[0, 0], [0, 1], [1, 0], [1, 1]] 
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This is the equivalent of the following code: 

 
L=[] 

for i in range(2):  

 for j in range(2):  

  L.append([i,j]) 

 

 There are a number of common things that can be represented 

by two-dimensional list. In Python, one way to create a two-

dimensional list is to create a list whose items are themselves lists. 

Here is an example: 
 

L = [[1,2,3], 

  [4,5,6],  

 [7,8,9]] 

 

We use two indices to access individual items, e. g., L[1][2] to get the 

entry in row 1 and column 2. To print a two-dimensional list, you can 

use nested for loops: 

 
for i in range(3): 

 for j in range(3): 

  print(L[i][j], end=' ')  

print() 

 

Nested for loops, like the ones used in printing a two-dimensional list, 

can also be used to process the items in a two-dimensional list. Here 

is an example that counts how many entries in a 10 x 5 list are even. 

 
count = 0 

for i in range(l0): 

 for j in range(5): 

  if L[i][j]%2==0: 

   count = count + 1 
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 To create a larger list, you can use a list comprehension like 

below: 

 
L = [[0]*300 for i in range(10)] 

 

This creates a list of zeroes with 10 rows and 300 columns. 
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LECTURE 7 

SUBPROGRAM: FUNCTIONS 
 

Functions are useful for breaking up a large program to make 

it easier to read and maintain. They are also useful if find yourself 

writing the same code at several different points in your program. You 

can put that code in a function and call the function whenever you want 

to execute that code. You can also use functions to create your own 

utilities, math functions, etc. 

Functions are defined with the def statement. The statement 

ends with a colon, and the code that is part of the function is indented 

below the def statement. Here we create a simple function that just 

prints something. 
def my_print():  

 print('Student') 

my_print()  

print(' Ivan')  

my_print()  

print(' Alexey')  

my_print() 

 

Output: 
Student 

 Ivan 

Student 

 Alexey 

Student 

 

The first two lines define the function. In the last five lines we 

call the function three times. 

One use for functions is if you are using the same code over 

and over again in various parts of your program, you can make your 

program shorter and easier to understand by putting the code in a 



48 

function. For instance, suppose for some reason you need to print a 

box of stars like the one below at several points in your program. 

Put the code into a function, and then whenever you need a 

box, just call the function rather than typing several lines of redundant 

code. Here is the function. 

 
def recta():  

 print('o'*15)  

 print('o', ' '*11, 'o')  

 print('o', ' '*11, 'o')  

 print('o', ' '*11, 'o')  

 print('o', ' '*11, 'o')  

 print ('o'*15) 

 

Output: 

 
ooooooooooooooo 

o             o 

o             o 

o             o 

o             o 

ooooooooooooooo 

 

One benefit of this is that if you decide to change the size of 

the box, you just have to modify the code in the function, whereas if 

you had copied and pasted the box-drawing code everywhere you 

needed it, you would have to change all of them. 

We can pass values to functions. Here is an example: 
 

def recta(n,m):  

 print('o'*n)  

 print('o', ' '*m, 'o')  

 print('o', ' '*m, 'o')  

 print('o', ' '*m, 'o')  

 print('o', ' '*m, 'o')  

 print ('o'*n) 
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When we call the recta(8,4) function with the values 8 

and 4, that value gets stored in the variables n and m. We can then 

refer to that variables n and m in our function’s code. 

 

Output: 
oooooooo 

o      o 

o      o 

o      o 

o      o 

oooooooo 

 

We can write functions that perform calculations and return a 

result.  Here is a simple function that solves quadratic equations:  

 
from math import sqrt 
def roots(a,b,c): 

 disc = b**2 - 4*a*c 

 if disc >= 0: 

 return ("x= ",(-b + sqrt(disc))/(2*a),  

   "x= ",(-b - sqrt(disc))/(2*a)) 

 if disc < 0: 

  return ("x= ",-b/(2*a),"+",  

   sqrt(disc*(-1))/(2*a),"i"  

               "x= ",-b/(2*a),"-", 

    sqrt(disc*(-1))/(2*a),"i") 

# --- The end of function’s code -- 

a=float(input("a= ")) 
b=float(input("b= ")) 

c= float(input("c= ")) 

print(roots(a,b,c)) 

 

The return statement is used to send the result of a 

function’s calculations back to the caller. 

Notice that the function itself does not do any printing. The 

printing is done outside of the function. That way, we can do math 
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with the result, like below. 
 

print(roots(a+2,b-1,c)) 

 

If we had just printed the result in the function instead of 

returning it, the result would have been printed to the screen and 

forgotten about, and we would never be able to do anything with it. 

 A return statement by itself can be used to end a function 

early. 
 

def Chk(string, wrong_words): 

 if string in wrong_words:  

  return 

 print('Warning!!!') 

 

Chk('root',['table','luck','pen']) 

 

Output: 
 

Warning!!! 

 

The same effect can be achieved with an if/else statement, but 

in some cases, using return can make your code simpler and more 

readable. 

 

7.1 Default and Keyword arguments 

 

You can specify a default value for an argument. This makes it 

optional, and if the caller decides not to use it, then it takes the default 

value. Here is an example: 

 
def mult_print(string, n=2) : 

 print(string * n) 

 

mult_print('Student', 4)  

mult_print('Student') 
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Output: 

 
StudentStudentStudentStudent 

StudentStudent 

 

Default arguments need to come at the end of the function 

definition, after all of the non-default arguments. 

 A related concept to default arguments is keyword arguments. 

Say we have the following function definition: 
 

def fancy_print(text, color, background,  

      style, justify): 

 

Every time you call this function, you have to remember the 

correct order of the arguments. Fortunately, Python allows you to 

name the arguments when calling the function, as shown below: 
 

fancy_print(text, color='yellow',  

  background='black', style='bold',  

      justify='left') 

fancy_print(text, style='bold',  

   color='yellow', justify='left', 

     background='black') 

 

As we can see, the order of the arguments does not matter when 

you use keyword arguments. 

When defining the function, it would be a good idea to give 

defaults. For instance, most of the time, the caller would want left 

justification, a white background, etc. Using these values as defaults 

means the caller does not have to specify every single argument every 

time they call the function. 

 Here is an example: 
 

fancy_print('Student', style='Italic') 
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7.2 Local and Global variables 

 

Let’s say we have two functions like the ones below that each use a 

variable i: 
 

def fun1(): 

 for i in range(6): 

  print (i) 

 

def fun2(): 

 i=20  

 fun1() 

 print(i) 

 

A problem that could arise here is that when we call fun1, we 

might mess up the value of i in fun2. In a large program it would be 

a nightmare trying to make sure that we don’t repeat variable names 

in different functions, and, fortunately, we don’t have to worry about 

this. When a variable is defined inside a function, it is local to that 

function, which means it essentially does not exist outside that 

function. This way each function can define its own variables and not 

have to worry about if those variable names are used in other 

functions. 

 On the other hand, sometimes you actually do want the same 

variable to be available to multiple functions. Such a variable is called 

a global variable. You have to be careful using global variables, 

especially in larger programs, but a few global variables used 

judiciously are fine in smaller programs. Here is a short example: 
 

def output():  

 place = "Cape Town"  

 print("%s lives in %s." % (name, place)) 

 return  

 

place = "Berlin"  

name = "Dominic"  
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print("%s lives in %s." % (name, place)) 

output() 

 

Output: 
Dominic lives in Berlin.  

Dominic lives in Cape Town. 

 

The output consists of these two lines, whereas the first line originates 

from the main program and the second line from the print statement 

in the function output(). At first the two variables name and 

place are defined in the main program and printed to stdout. Calling 

the output() function, the variable place is locally redefined and 

name comes from the global namespace, instead. 

 Let’s consider another example: 
 

def fun1(x): 

 x = x + 1 

 

def fun2(L): 

 L = L + [4] 

 

p=3 

LIST1=[1,2,3]  

fun1(p)  

fun2(LIST1) 

 

When we call fun1 with p and fun2 with L, a question arises: 

do the functions change the values of p and L? The answer may 

surprise you. The value of p is unchanged, but the value of L is 

changed. The reason has to do with a difference in the way that Python 

handles numbers and lists. Lists are said to be mutable objects, 

meaning they can be changed, whereas numbers and strings are 

immutable, meaning they cannot be changed. 

If we want to reverse the behavior of the above example so that 

p is modified and L is not, do the following: 
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def funl(x): 

 x = x + 1  

 return x 

def fun2(L): 

 copy = L[:]  

 copy = copy + [1] 

 

p=3 

LIST1=[1,2,3] 

a=funl(a)  

fun2(LIST1) 
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LECTURE 8  

PYTHON FOR DATA ANALYSIS 
 

8.1 Data Analysis  

 

We live in the digital era of high technologies, smart devices, and 

mobile solutions. Data is an essential aspect of any enterprise and 

business. It’s crucial to gather, process, and analyze the data flow and 

to do that as quickly and accurately as possible. Nowadays, the data 

volume can be large, which makes information handling time-

consuming and expensive. Due to this precise reason, the data science 

industry is growing at a rapid pace, creating new vacancies and 

possibilities. 

Data analysis is defined as a process of cleaning, 

transforming, and modeling data to discover useful information for 

business decision-making. The purpose of Data Analysis is to extract 

useful information from data and taking the decision based upon the 

data analysis. 

A simple example of Data analysis is whenever we take any 

decision in our day-to-day life is by thinking about what happened last 

time or what will happen by choosing that particular decision. This is 

nothing but analyzing our past or future and making decisions based 

on it. For that, we gather memories of our past or dreams of our future. 

So that is nothing but data analysis. Now same thing analyst does for 

business purposes, is called Data Analysis. 

Data analysis tools make it easier for users to process and 

manipulate data, analyze the relationships and correlations between 

data sets, and it also helps to identify patterns and trends for 

interpretation. Here is a complete list of tools used for data analysis in 

research: 

https://www.guru99.com/big-data-analytics-tools.html
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There are several types of Data Analysis techniques that exist 

based on business and technology. However, the major Data Analysis 

methods are: 

 Text Analysis 

 Statistical Analysis 

 Diagnostic Analysis 

 Predictive Analysis 

 Prescriptive Analysis 

 Text Analysis is also referred to as Data Mining. It is one of 

the methods of data analysis to discover a pattern in large data sets 

using databases or data mining tools. It used to transform raw data into 

business information. Business Intelligence tools are present in the 

market which is used to take strategic business decisions. Overall it 

offers a way to extract and examine data and deriving patterns and 

finally interpretation of the data. 

 Statistical Analysis shows “What happen?” by using past data 

in the form of dashboards. Statistical Analysis includes collection, 

Analysis, interpretation, presentation, and modeling of data. It 

analyses a set of data or a sample of data.  

 Diagnostic Analysis shows “Why did it happen?” by finding 

the cause from the insight found in Statistical Analysis. This Analysis 

is useful to identify behavior patterns of data. If a new problem arrives 

in your business process, then you can look into this Analysis to find 

similar patterns of that problem. And it may have chances to use 

similar prescriptions for the new problems. 

 Predictive Analysis shows “what is likely to happen” by using 

previous data. The simplest data analysis example is like if last year I 

bought two dresses based on my savings and if this year my salary is 

increasing double then I can buy four dresses. But of course it's not 

easy like this because you have to think about other circumstances like 

https://www.guru99.com/best-data-mining-tools.html
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chances of prices of clothes is increased this year or maybe instead of 

dresses you want to buy a new bike, or you need to buy a house! 

 So here, this Analysis makes predictions about future outcomes 

based on current or past data. Forecasting is just an estimate. Its 

accuracy is based on how much detailed information you have and 

how much you dig in it. 

 Prescriptive Analysis combines the insight from all previous 

Analysis to determine which action to take in a current problem or 

decision. Most data-driven companies are utilizing Prescriptive 

Analysis because predictive and descriptive Analysis are not enough 

to improve data performance. Based on current situations and 

problems, they analyze the data and make decisions. 

 The Data Analysis Process is nothing but gathering 

information by using a proper application or tool which allows you to 

explore the data and find a pattern in it. Based on that information and 

data, you can make decisions, or you can get ultimate conclusions. 

 Data Analysis consists of the following phases: 

 Data Requirement Gathering 

 Data Collection 

 Data Cleaning 

 Data Analysis 

 Data Interpretation 

 Data Visualization 

 Data Requirement Gathering 

 First of all, you have to think about why do you want to do this 

data analysis? All you need to find out the purpose or aim of doing the 

Analysis of data. You have to decide which type of data analysis you 

wanted to do! In this phase, you have to decide what to analyze and 

how to measure it, you have to understand why you are investigating 

and what measures you have to use to do this Analysis. 

 Data Collection. After requirement gathering, you will get a 

clear idea about what things you have to measure and what should be 

your findings. Now it's time to collect your data based on 

requirements. Once you collect your data, remember that the collected 
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data must be processed or organized for Analysis. As you collected 

data from various sources, you must have to keep a log with a 

collection date and source of the data. 

 Data Cleaning. Now whatever data is collected may not be 

useful or irrelevant to your aim of Analysis, hence it should be cleaned. 

The data which is collected may contain duplicate records, white 

spaces or errors. The data should be cleaned and error free. This phase 

must be done before Analysis because based on data cleaning, your 

output of Analysis will be closer to your expected outcome. 

 Data Analysis. Once the data is collected, cleaned, and 

processed, it is ready for Analysis. As you manipulate data, you may 

find you have the exact information you need, or you might need to 

collect more data. During this phase, you can use data analysis tools 

and software which will help you to understand, interpret, and derive 

conclusions based on the requirements. 

 Data Interpretation. After analyzing your data, it's finally 

time to interpret your results. You can choose the way to express or 

communicate your data analysis either you can use simply in words or 

maybe a table or chart. Then use the results of your data analysis 

process to decide your best course of action. 

 Data Visualization. Data visualization is very common in 

your day to day life; they often appear in the form of charts and graphs. 

In other words, data shown graphically so that it will be easier for the 

human brain to understand and process it. Data visualization often 

used to discover unknown facts and trends. By observing relationships 

and comparing datasets, you can find a way to find out meaningful 

information. 
 

8.2 Why Python is widely used for Data Analysis  
 

Python is an increasingly popular tool for data analysis. In recent 

years, a number of libraries have reached maturity, allowing R and 

Stata users to take advantage of the beauty, flexibility, and 

performance of Python without sacrificing the functionality these 

https://www.guru99.com/what-is-data-analysis.html
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older programs have accumulated over the years.  Python is a cross-

functional, maximally interpreted language that has lots of advantages 

to offer. The object-oriented programming language is commonly 

used to streamline large complex data sets. Over and above, having a 

dynamic semantics plus unmeasured capacities of RAD (rapid 

application development), Python is heavily utilized to script as well. 

There is one more way to apply Python – as a coupling language. 

Another Python’s advantage is high readability that helps 

engineers to save time by typing fewer lines of code for accomplishing 

the tasks. Being fast, Python jibes well with data analysis. And that’s 

due to heavy support; availability of a whole slew of open-source 

libraries for different purposes, including but not limited to scientific 

computing. Therefore, it’s not surprising at all that it’s claimed to be 

the preferred programming language for data science. There is a scope 

of unique features provided that makes Python a-number-one option 

for data analysis. Python is one of the most supported languages 

nowadays. It has a long list of totally free libraries available for all the 

users. That’s a key factor that gives a strong push for Python at all, and 

in the data science, too. If you’re involved in the field, more than 

likely, you are acquainted with such names as Pandas, SciPy, 

StatsModels, other libraries that are intensively utilized in the data 

science community. Noteworthy is that the libraries constantly grow, 

providing robust solutions. Herewith, you can easily find a solution 

needed hassle-free without additional expenses. 

 

8.3 Python Data Structures for Data Science 
 

Following are some data structures, which are used in Python. You 

should be familiar with them in order to use them as appropriate. 

 Lists are one of the most versatile data structure in Python. A 

list can simply be defined by writing a list of comma separated values 

in square brackets. Lists might contain items of different types, but 

usually the items all have the same type. Python lists are mutable and 

individual elements of a list can be changed. 

  

  

https://blog.capterra.com/what-is-rapid-application-development/
https://towardsdatascience.com/top-10-python-libraries-for-data-science-cd82294ec266
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Here is a quick example to define a list and then access it: 
 
# empty list 

my_list = [] 

# list of integers 

my_list = [1, 2, 3] 

# list with mixed data types 

my_list = [1, "Hello", 3.4] 

 

 A list can also have another list as an item. This is called a 

nested list. 

 
# nested list 

my_list = ["mouse", [8, 4, 6], ['a']] 

# List indexing 

my_list = ['p', 'r', 'o', 'b', 'e'] 

# Output: p 

print(my_list[0]) 

# Output: o 

print(my_list[2]) 

# Output: e 

print(my_list[4]) 

# Nested List 

n_list = ["Happy", [2, 0, 1, 5]] 

# Nested indexing 

print(n_list[0][1]) 

print(n_list[1][3]) 

# Error! Only integer can be used for indexing 

print(my_list[4.0]) 

 

Output: 

p 

o 

e 

a 

5 

Traceback (most recent call last): 
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  File "<string>", line 21, in <module> 

TypeError: list indices must be integers or 

slices, not float 

 Strings can simply be defined by use of single ('), double (') 

or triple (''') inverted commas. Strings enclosed in tripe quotes 

(''') can span over multiple lines and are used frequently in 

docstrings (Python’s way of documenting functions). \ is used as an 

escape character. Please note that Python strings are immutable, so you 

can not change part of strings. 
 

# defining strings in Python 

# all of the following are equivalent 

my_string = 'Hello' 

print(my_string) 

my_string = "Hello" 

print(my_string) 

my_string = '''Hello''' 

print(my_string) 

# triple quotes string can extend multiple 

lines 

my_string = """Hello, welcome to  

           the world of Python""" 

print(my_string) 

 

Output: 

Hello 

Hello 

Hello 

Hello, welcome to 

           the world of Python 

 Tuples. A tuple is represented by a number of values separated 

by commas. Tuples are immutable and the output is surrounded by 

parentheses so that nested tuples are processed correctly. Additionally, 

even though tuples are immutable, they can hold mutable data if 

needed. 

 Since Tuples are immutable and can not change, they are faster 

https://www.analyticsvidhya.com/wp-content/uploads/2014/07/python_strings.png
https://www.analyticsvidhya.com/wp-content/uploads/2014/07/python_strings.png
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in processing as compared to lists. Hence, if your list is unlikely to 

change, you should use tuples, instead of lists. 
 

# Different types of tuples 

# Empty tuple 

my_tuple = () 

print(my_tuple) 

# Tuple having integers 

my_tuple = (1, 2, 3) 

print(my_tuple) 

# tuple with mixed datatypes 

my_tuple = (1, "Hello", 3.4) 

print(my_tuple) 

# nested tuple 

my_tuple = ("mouse", [8, 4, 6], (1, 2, 3)) 

print(my_tuple) 

 

Output: 

 () 

(1, 2, 3) 

(1, 'Hello', 3.4) 

('mouse', [8, 4, 6], (1, 2, 3)) 

 

 Dictionary is an unordered set of key: value pairs, with the 

requirement that the keys are unique (within one dictionary). A pair of 

braces creates an empty dictionary: {}.  
 

# empty dictionary 

my_dict = {} 

# dictionary with integer keys 

my_dict = {1: 'apple', 2: 'ball'} 

# dictionary with mixed keys 

my_dict = {'name': 'John', 1: [2, 4, 3]} 

# using dict() 

my_dict = dict({1:'apple', 2:'ball'}) 

# from sequence having each item as a pair 

my_dict = dict([(1,'apple'), (2,'ball')]) 
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# get vs [] for retrieving elements 

my_dict = {'name': 'Jack', 'age': 26} 

# Output: Jack 

print(my_dict['name']) 

# Output: 26 

print(my_dict.get('age')) 

# Trying to access keys which doesn't exist 

throws error 

# Output None 

print(my_dict.get('address')) 

# KeyError 

print(my_dict['address']) 

 

Output: 

Jack 

26 

None 

Traceback (most recent call last): 

  File "<string>", line 15, in <module> 

    print(my_dict['address']) 

KeyError: 'address' 

 

 Python Numpy Arrays are a bit like Python lists, but still very 

much different at the same time. As the name kind of gives away, a 

NumPy array is a central data structure of the numpy library. The 

library’s name is actually short for "Numeric Python" or "Numerical 

Python". 

 Simplest way to create an array in Numpy is to use Python List 
 

myPythonList = [1,9,8,3] 

 

To convert python list to a numpy array by using the object np.array. 

 
numpy_array_from_list = np.array(myPythonList) 
 
In practice, there is no need to declare a Python List. The 

operation can be combined. 
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a  = np.array([1,9,8,3])     
 

You can also create a numpy array from a Tuple 

 You could perform mathematical operations like additions, 

subtraction, division and multiplication on an array. The syntax is the 

array name followed by the operation (+.-,*,/) followed by the operand 

 

Example: 
numpy_array_from_list + 10 

 

Output: 

array([11, 19, 18, 13]) 

 

This operation adds 10 to each element of the numpy array. 

 You can check the shape of the array with the object shape 

preceded by the name of the array. In the same way, you can check the 

type with dtypes. 
 

import numpy as np 

a  = np.array([1,2,3]) 

print(a.shape) 

print(a.dtype) 

 

Output: 

(3,) 

int64 

 

An integer is a value without decimal. If you create an array with 

decimal, then the type will change to float. 
 

#### Different type 

b  = np.array([1.1,2.0,3.2]) 

print(b.dtype) 

Output: 

float64 
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 You can add a dimension with a "," coma 

Note that it has to be within the bracket [] 
 

### 2 dimension 

c = np.array([(1,2,3), 

              (4,5,6)]) 

print(c.shape) 

Output: 
(2, 3) 

 

 Series and Dataframe. Series is a type of list in Python 

Pandas which can take integer values, string values, double values and 

more. But in Pandas Series we return an object in the form of 

list, having index starting from 0 to n, Where n is the length of values 

in series. Pandas DataFrame is a 2-dimensional labeled data 

structure with columns of potentially different types. It is generally the 

most commonly used pandas object. Series can only contain single 

list with index, whereas dataframe can be made of more than one 

series or we can say that a dataframe is a collection of series that 

can be used to analyse the data. 

 Creating a simple Series 
 

import pandas as pd  

import matplotlib.pyplot as plt  

author = ['Jitender', 'Purnima', 'Arpit',  

       'Jyoti']  

auth_series = pd.Series(author)  

print(auth_series) 

 

Output: 
0    Jitender 

1     Purnima 

2       Arpit 

3       Jyoti 

dtype: object 

https://www.geeksforgeeks.org/python-pandas-series/
https://www.geeksforgeeks.org/python-pandas-dataframe/
https://www.geeksforgeeks.org/python-pandas-series/
https://www.geeksforgeeks.org/python-pandas-series/
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Creating Dataframe from Series 
import pandas as pd  

import matplotlib.pyplot as plt  

author = ['Jitender', 'Purnima', 'Arpit', 

        'Jyoti']  

article = [210, 211, 114, 178]  

auth_series = pd.Series(author)  

article_series = pd.Series(article)  

frame = { 'Author': auth_series, 'Article':  

      article_series }  

result = pd.DataFrame(frame)  

print(result) 

 

Output: 
     Author  Article 
0  Jitender      210 

1   Purnima      211 

2     Arpit      114 

3     Jyoti      178 

 
 We are combining two series Author and Article 

published. Create a dictionary so that we can combine the metadata 

for series. Metadata is the data of data that can define the series of 

values. Pass this dictionary to pandas DataFrame and finally you 

can see the result as combination of two series i. e for author and 

number of articles. 

  We can add series externally in dataframe: 

 

import pandas as pd  

import matplotlib.pyplot as plt  

author = ['Jitender', 'Purnima', 'Arpit',  

       'Jyoti']  

article = [210, 211, 114, 178]  

auth_series = pd.Series(author)  

article_series = pd.Series(article)  
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frame = { 'Author': auth_series, 'Article':  

      article_series }  

result = pd.DataFrame(frame)  

age = [21, 21, 24, 23]  

result['Age'] = pd.Series(age)  

print(result) 

 

Output: 
     Author  Article  Age 

0  Jitender      210   21 

1   Purnima      211   21 

2     Arpit      114   24 

3     Jyoti      178   23 

 

We have added one more series externally named as age of the 

authors, then directly added this series in the pandas dataframe. 

Remember one thing if any value is missing then by default it will be 

converted into NaN value i. e null by default. 

 Pandas DataFrame can be created by passing lists of 

dictionaries as a input data. By default dictionary keys taken as 

columns. 
 

# Python code demonstrate how to create   

# Pandas DataFrame by lists of dicts.  

import pandas as pd  

# Initialise data to lists.  

data = [{'a': 1, 'b': 2, 'c':3},  

        {'a':10, 'b': 20, 'c': 30}]  

# Creates DataFrame.  

df = pd.DataFrame(data)  

# Print the data  

df 
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Output:  
  a b c  

first NaN 2 3  

second   10.0 20  30 

 

 

8.4 Python Libraries for Data Science 
 

Following are a list of libraries, you will need for any scientific 

computations and data analysis: 

 NumPy stands for Numerical Python. The most powerful feature 

of NumPy is n-dimensional array. This library also contains basic 

linear algebra functions, Fourier transforms,  advanced random 

number capabilities and tools for integration with other low level 

languages like Fortran, C and C++. 

 SciPy stands for Scientific Python. SciPy is built on NumPy. It is 

one of the most useful library for variety of high level science and 

engineering modules like discrete Fourier transform, Linear 

Algebra, Optimization and Sparse matrices. 

 Matplotlib for plotting vast variety of graphs, starting from 

histograms to line plots to heat plots. You can use Pylab feature 

in ipython notebook (ipython notebook –pylab = inline) to use 

these plotting features inline. If you ignore the inline option, then 

pylab converts ipython environment to an environment, very 

similar to Matlab. You can also use Latex commands to add math 

to your plot. 

 Pandas for structured data operations and manipulations. It is 

extensively used for data munging and preparation. Pandas were 

added relatively recently to Python and have been instrumental in 

boosting Python’s usage in data scientist community. 

 Scikit Learn for machine learning. Built on NumPy, SciPy and 

matplotlib, this library contains a lot of efficient tools for machine 

learning and statistical modeling including classification, 

regression, clustering and dimensionality reduction. 

https://www.analyticsvidhya.com/machine-learning/?utm_source=blog&utm_medium=k-nearest-neighbors
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 Statsmodels for statistical modeling. Statsmodels is a Python 

module that allows users to explore data, estimate statistical 

models, and perform statistical tests. An extensive list of 

descriptive statistics, statistical tests, plotting functions, and result 

statistics are available for different types of data and each 

estimator. 

 Seaborn for statistical data visualization. Seaborn is a library for 

making attractive and informative statistical graphics in Python. 

It is based on matplotlib. Seaborn aims to make visualization a 

central part of exploring and understanding data. 

 Bokeh for creating interactive plots, dashboards and data 

applications on modern web-browsers. It empowers the user to 

generate elegant and concise graphics in the style of D3.js. 

Moreover, it has the capability of high-performance interactivity 

over very large or streaming datasets. 

 Blaze for extending the capability of Numpy and Pandas to 

distributed and streaming datasets. It can be used to access data 

from a multitude of sources including Bcolz, MongoDB, 

SQLAlchemy, Apache Spark, PyTables, etc. Together with 

Bokeh, Blaze can act as a very powerful tool for creating effective 

visualizations and dashboards on huge chunks of data. 

 Scrapy for web crawling. It is a very useful framework for getting 

specific patterns of data. It has the capability to start at a website 

home url and then dig through web-pages within the website to 

gather information. 
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LECTURE 9  

DATA EXPLORATION IN PYTHON: USING PANDAS 
 

Data Exploration – finding out more about the data we have. In order 

to explore our data further, let’s use Pandas. Pandas is one of the most 

useful data analysis library in Python. They have been instrumental in 

increasing the use of Python in data science community. We will now 

use Pandas to read a data set from an Analytics Vidhya competition, 

perform exploratory analysis and build our first basic categorization 

algorithm for solving this problem. Before loading the data, lets 

understand the 2 key data structures in Pandas – Series and 

DataFrames 

 Series can be understood as a 1 dimensional labelled/indexed 

array. You can access individual elements of this series through these 

labels. 

 A dataframe is similar to Excel workbook – you have column 

names referring to columns and you have rows, which can be accessed 

with use of row numbers. The essential difference being that column 

names and row numbers are known as column and row index, in case 

of dataframes. 

 Series and dataframes form the core data model for Pandas in 

Python. The data sets are first to read into these dataframes and then 

various operations (e. g. group by, aggregation etc.) can be applied 

very easily to its columns. 

 Let’s use dataset which has the following description of the 

variables: 

 

Variable Description 

Loan_ID Unique Loan ID 

Gender Male/Female 

Married Applicant married (Y/N) 

Dependents Number of dependents 

Education Applicant Education 
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Variable Description 

(Graduate/ Under Graduate) 

Self_Employed Self employed (Y/N) 

ApplicantIncome Applicant income 

CoapplicantIncome Coapplicant income 

LoanAmount Loan amount in thousands 

Loan_Amount_Term Term of loan in months 

Credit_History Credit history meets 
guidelines 

Property_Area Urban/ Semi Urban/ Rural 

Loan_Status Loan approved (Y/N) 

 

 After importing the library (file train.csv), you read the 

dataset using function read_csv(). This is how the code looks like 

till this stage: 
 

import pandas as pd 

import numpy as np 

import matplotlib as plt 

#Reading the dataset in a dataframe using Pandas 

df = pd.read_csv("train.csv") 

 
Once you have read the dataset, you can have a look at few top rows 

by using the function head() 
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df.head(10)  

 

This should print 10 rows. Alternately, you can also look at more rows 

by printing the dataset. Next, you can look at summary of numerical 

fields by using describe() function 

 

df.describe() 

 

 

As we can see, describe() function would provide count, mean, 

standard deviation (std), min, quartiles and max in its 

output. Let’s remember what this basic statistics mean: 

 Mean. This is most common used measure of central tendency. 

The mean is simply the average value of a data set. We have all 

averaged a set of exam grades before. That is an example of mean. 

 Standard Deviation is a measure of variation that is the 

simply the square root of the variance.  

 Variance is a measure of variation. That is it describes how the 

data is distributed about the mean. 

 Quartiles are the values that divide a list of numbers into 

quarters. To calculate Quartiles put the list of numbers in order, then 

cut the list into four equal parts. The Quartiles are at the "cuts". Like 
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this: 

 

 Example: 5, 7, 4, 4, 6, 2, 8 

 

 Put them in order: 2, 4, 4, 5, 6, 7, 8 

 Cut the list into quarters: 

 

And the result is: 

 Quartile 1 (Q1) = 4 

 Quartile 2 (Q2), which is also the Median, = 5 

 Quartile 3 (Q3) = 7 

 

If we look at the output of describe() function, we can see: 

1. LoanAmount has (614 – 592) 22 missing values; 

2. Loan_Amount_Term has (614 – 600) 14 missing values; 

3. Credit_History has (614 – 564) 50 missing values; 

 

We can also look that about 84 % applicants have a credit history. 

How? The mean of Credit_History field is 0.84 (Remember, 

Credit_History has value 1 for those who have a credit history 

and 0 otherwise) 

 The ApplicantIncome distribution seems to be in line with 

expectation. Same with CoapplicantIncome 

  
df['Property_Area'].value_counts() 

 

Similarly, we can look at unique values of port of credit history. Note 

that dfname['column_name'] is a basic indexing technique to 

acess a particular column of the dataframe. It can be a list of columns 

as well.  

 

9.1 Distribution analysis 
 

Now that we are familiar with basic data characteristics, let us study 

distribution of various variables. Let us start with numeric variables – 

https://www.mathsisfun.com/median.html
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namely ApplicantIncome and LoanAmount. 

 Let’s start by plotting the histogram of ApplicantIncome 

using the following commands: 

 
df['ApplicantIncome'].hist(bins=50) 

 

Here we observe that there are few extreme values. This is also the 

reason why 50 bins are required to depict the distribution clearly. 

 Next, we look at box plots to understand the distributions. Box 

plot for fare can be plotted by: 
 

df.boxplot(column='ApplicantIncome') 

 

 This confirms the presence of a lot of outliers/extreme values. 

This can be attributed to the income disparity in the society. Part of 

this can be driven by the fact that we are looking at people with 

different education levels. Let us segregate them by Education: 
 

df.boxplot(column='ApplicantIncome', by =  

       'Education') 
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 We can see that there is no substantial different between the 

mean income of graduate and non-graduates. But there are a higher 

number of graduates with very high incomes, which are appearing to 

be the outliers. 

 Now, Let’s look at the histogram and boxplot of 

LoanAmount using the following command: 
 

df['LoanAmount'].hist(bins=50) 

 

 
 

  
df.boxplot(column='LoanAmount') 

 

Again, there are some extreme values. Clearly, both 

ApplicantIncome and LoanAmount require some amount of 

data munging. LoanAmount has missing and well as extreme values 

values, while ApplicantIncome has a few extreme values, which 

demand deeper understanding. We will take this up in coming 

subsection. 
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9.2 Categorical variable analysis 
 

Now that we understand distributions for ApplicantIncome and 

LoanIncome, let us understand categorical variables in more details. 

For instance, let us look at the chances of getting a loan based on credit 

history. Let us use the function pivot_table (from Pandas) to do 

this. Pivot tables are one of Excel’s most powerful features. 

A pivot table is a table of statistics that summarizes the data of 

a more extensive table (such as from a database, spreadsheet, or 

business intelligence program). This summary might include sums, 

averages, or other statistics, which the pivot table groups together in a 

meaningful way. Pivot tables are a technique in data processing. 

They arrange and rearrange (or "pivot") statistics in order to draw 

attention to useful information. 

 Pandas provides a similar function called 

pivot_table(). Pandas pivot_table() is a simple 

function but can produce very powerful analysis very quickly. 
  
temp1=df['Credit_History'].value_counts( 

      ascending=True) 

https://en.wikipedia.org/wiki/Table_(information)
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Spreadsheet
https://en.wikipedia.org/wiki/Business_intelligence_software
https://en.wikipedia.org/wiki/Data_processing
https://www.analyticsvidhya.com/wp-content/uploads/2016/01/output_14_1.png
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temp2=df.pivot_table(values='Loan_Status', 

index=['Credit_History'],aggfunc=lambda x:  

   x.map({'Y':1,'N':0}).mean()) 

# Loan status is coded as 1 for Yes and 0 for 

# No. So the mean represents the probability  

# of getting loan. 

print ('Frequency Table for Credit History:')  

print (temp1) 

print ('\nProbility of getting loan for each  

    Credit History class:') 

print (temp2) 

 

Output: 

 

This can be plotted as a bar chart using the “matplotlib” library with 

following code: 
 

import matplotlib.pyplot as plt fig = 

plt.figure(figsize=(8,4))  

ax1=fig.add_subplot(121) 

ax1.set_xlabel('Credit_History') 

ax1.set_ylabel('Count of Applicants') 

ax1.set_title("Applicants by Credit_History") 

temp1.plot(kind='bar')  

ax2 = fig.add_subplot(122)  

temp2.plot(kind = 'bar') 

ax2.set_xlabel('Credit_History') 

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/11.-pivot_python.png
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ax2.set_ylabel('Probability of getting loan') 

ax2.set_title("Probability of getting loan by  

      credit history") 

 

 

This shows that the chances of getting a loan are eight-fold if the 

applicant has a valid credit history. You can plot similar graphs by 

Married, Self-Employed, Property_Area, etc. 

 Alternately, these two plots can also be visualized by 

combining them in a stacked chart: 
 

temp3 = pd.crosstab(df['Credit_History'],  

     df['Loan_Status'])  

temp3.plot(kind='bar', stacked=True,  

  color=['red','blue'], grid=False) 

 

We have just created two basic classification algorithms here, one 

based on credit history, while other on 2 categorical variables.  

 We just saw how we can do exploratory analysis in Python 

using Pandas. Next let’s explore ApplicantIncome and 

LoanStatus variables further, perform data munging and create a 

dataset for applying various modeling techniques.  
 

https://www.analyticsvidhya.com/blog/2014/09/data-munging-python-using-pandas-baby-steps-python/
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9.3 Data Munging in Python 

 

While our exploration of the data, we found a few problems in the data 

set, which needs to be solved before the data is ready for a good model. 

Here are the problems, we are already aware of: 

1. There are missing values in some variables. We should estimate 

those values wisely depending on the amount of missing values 

and the expected importance of variables. 

2. While looking at the distributions, we saw that 

ApplicantIncome and LoanAmount seemed to contain 

extreme values at either end. Though they might make intuitive 

sense, but should be treated appropriately. 

In addition to these problems with numerical fields, we should also 

look at the non-numerical fields i. e. Gender, Property_Area, 

Married, Education and Dependents to see, if they contain 

any useful information. 
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 Let us look at missing values in all the variables because most 

of the models don’t work with missing data and even if they do, 

imputing them helps more often than not. So, let us check the number 

of nulls / NaNs in the dataset.  

 
df.apply(lambda x: sum(x.isnull()),axis=0)  

 

This command should tell us the number of missing values in each 

column as isnull() returns 1, if the value is null. 

 

 

Though the missing values are not very high in number, but many 

variables have them and each one of these should be estimated and 

added in the data.  

 It should be noted that missing values may not always be 

NaNs. For instance, if the Loan_Amount_Term is 0, does it makes 

sense or would you consider that missing? I suppose your answer is 

missing and you’re right. So we should check for values which are 

unpractical. 

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/4.-missing.png
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  There are numerous ways to fill the missing values of loan 

amount – the simplest being replacement by mean, which can be done 

by following code: 
 

df['LoanAmount'].fillna(df['LoanAmount']. 

     mean(), inplace=True) 

 

 The other extreme could be to build a supervised learning 

model to predict loan amount on the basis of other variables and then 

use age along with other variables to predict survival. 

 Since, the purpose now is to bring out the steps in data 

munging, let’s rather take an approach, which lies somewhere in 

between these 2 extremes. A key hypothesis is that the whether a 

person is educated or self-employed can combine to give a good 

estimate of loan amount. 

 First, let’s look at the boxplot to see if a trend exists: 

 

 

 

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/5.-loan-amount-boxplot.png
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Thus we see some variations in the median of loan amount for each 

group and this can be used to impute the values. But first, we have to 

ensure that each of Self_Employed and Education variables 

should not have a missing values. 

 As we say earlier, Self_Employed has some missing 

values. Let’s look at the frequency table: 
 

 

Since ~ 86 % values are “No”, it is safe to impute the missing values 

as “No” as there is a high probability of success. This can be done 

using the following code: 

 
df['Self_Employed'].fillna('No',inplace=True) 

 

Now, we will create a Pivot table, which provides us median 

values for all the groups of unique values of Self_Employed and 

Education features. Next, we define a function, which returns the 

values of these cells and apply it to fill the missing values of loan 

amount: 
  

table = df.pivot_table(values='LoanAmount',  

index='Self_Employed',columns='Education', 

      aggfunc=np.median) 

# Define function to return value of this  

# pivot_table 

def fage(x): 

 return table.loc[x['Self_Employed'], 

      x['Education']] 

 

# Replace missing values 

df['LoanAmount'].fillna(df[df['LoanAmount']. 

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/6.-self-emp.png


84 

  isnull()].apply(fage, axis=1),  

      inplace=True) 

 
This should provide you a good way to impute missing values of loan 

amount. It should be noted that еhis method will work only if you have 

not filled the missing values in Loan_Amount variable using the 

previous approach, i. e. using mean. 

 Let’s analyze Loan_Amount first. Since the extreme values 

are practically possible, i. e. some people might apply for high value 

loans due to specific needs. So instead of treating them as outliers, let’s 

try a log transformation to nullify their effect: 
 

df['LoanAmount_log']=np.log(df['LoanAmount']) 

df['LoanAmount_log'].hist(bins=20) 

 

Looking at the histogram again: 

 
 

Now the distribution looks much closer to normal and effect of 

extreme values has been significantly subsided. 

 Coming to ApplicantIncome. One intuition can be that 

some applicants have lower income but strong support Co-applicants. 

So it might be a good idea to combine both incomes as total income 

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/7.-loan-log.png
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and take a log transformation of the same. 

 
df['TotalIncome'] = df['ApplicantIncome'] +  

    df['CoapplicantIncome'] 

df['TotalIncome_log']=  

    np.log(df['TotalIncome']) 

df['LoanAmount_log'].hist(bins=20) 

  

 

Now we see that the distribution is much better than before. Next, we 

will look at making predictive models. 

  

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/8.-total-income-log.png
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LECTURE 10  

BUILDING A PREDICTIVE MODEL IN PYTHON 
 

After, we have made the data useful for modeling, let’s now look at 

the python code to create a predictive model on our data set. Skicit-

Learn (sklearn) is the most commonly used library in Python for this 

purpose and we will follow the trail.  

 Since, sklearn requires all inputs to be numeric, we should 

convert all our categorical variables into numeric by encoding the 

categories. Before that we will fill all the missing values in the dataset. 

This can be done using the following code: 

 
df['Gender'].fillna(df['Gender'].mode()[0],  

       inplace=True) 

df['Married'].fillna(df['Married'].mode()[0],  

       inplace=True) 

df['Dependents'].fillna(df['Dependents'].mode()[0]

      , inplace=True) 

df['Loan_Amount_Term']. 

 fillna(df['Loan_Amount_Term'].mode()[0],  

       inplace=True) 

df['Credit_History'].fillna(df['Credit_History 

  '].mode()[0], inplace=True) 

from sklearn.preprocessing import LabelEncoder 

var_mod=['Gender','Married','Dependents', 

 'Education','Self_Employed','Property_Area', 

      'Loan_Status'] 

le = LabelEncoder() 

for i in var_mod: 

    df[i] = le.fit_transform(df[i]) 

df.dtypes  

 

Next, we will import the required modules. Then we will define a 

generic classification function, which takes a model as input and 

determines the Accuracy and Cross-Validation scores.  
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#Import models from scikit learn module: 

from sklearn.linear_model import  

     LogisticRegression 

#For K-fold cross validation 

from sklearn.cross_validation import KFold    

from sklearn.ensemble import  

    RandomForestClassifier 

from sklearn.tree import  

 DecisionTreeClassifier, export_graphviz 

from sklearn import metrics 

# Generic function for making a classification  

# model and accessing performance: 

 

def classification_model(model, data,  

     predictors, outcome): 

  #Fit the model: 

  model.fit(data[predictors],data[outcome]) 

  #Make predictions on training set: 

  predictions=model.predict(data[predictors]) 

  #Print accuracy 

  accuracy=metrics.accuracy_score(predictions, 

      data[outcome]) 

  print("Accuracy:%s"%"{0:.3%}".format(accuracy)) 

  #Perform k-fold cross-validation with 5 folds 

  kf = KFold(data.shape[0], n_folds=5) 

  error = [] 
   

  for train, test in kf: 

    # Filter training data 

    train_predictors     

   =(data[predictors].iloc[train,:]) 

    # The target we're using to train the   

       algorithm. 

    train_target = data[outcome].iloc[train] 

    # Training the algorithm using the predictors  
       and target. 
    model.fit(train_predictors, train_target) 
    #Record error from each cross-validation run 

    error.append(model.score(data[predictors].iloc 
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  [test,:], data[outcome].iloc[test])) 

  print ("Cross-Validation Score : %s" %  

   "{0:.3%}".format(np.mean(error))) 

  # Fit the model again so that it can be refered  

  # outside the function: 

  model.fit(data[predictors],data[outcome])  

 

10.1 Logistic Regression 
 

Let’s make our first Logistic Regression model. One way would be to 

take all the variables into the model but this might result in overfitting. 

In simple words, taking all variables might result in the model 

understanding complex relations specific to the data and will not 

generalize well. Logistic regression is a fundamental classification 

technique. It belongs to the group of linear classifiers and is somewhat 

similar to polynomial and linear regression. Logistic regression is 

fast and relatively uncomplicated, and it’s convenient for you to 

interpret the results. Although it’s essentially a method for binary 

classification, it can also be applied to multiclass problems.  

 You’ll need an understanding of the sigmoid function and the 

natural logarithm function to understand what logistic regression is 

and how it works. 

 This image shows the sigmoid function (or S-shaped curve) of 

some variable 𝑥: 
 

 

https://en.wikipedia.org/wiki/Linear_classifier
https://realpython.com/linear-regression-in-python/
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Natural_logarithm
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 The sigmoid function has values very close to either 0 or 1 

across most of its domain. This fact makes it suitable for application 

in classification methods. 

 The next image depicts the natural logarithm log(𝑥) of some 

variable 𝑥, for values of 𝑥 between 0 and 1: 

 

 
 

When you’re implementing the logistic regression of some dependent 

variable 𝑦 on the set of independent variables 𝐱 = (𝑥₁, …, 𝑥ᵣ), where 𝑟 

is the number of predictors ( or inputs), you start with the known 

values of the predictors 𝐱ᵢ and the corresponding actual response (or 

output) 𝑦ᵢ for each observation 𝑖 = 1, …, 𝑛. 

 Our goal is to find the logistic regression function 𝑝(𝐱) such 

that the predicted responses 𝑝(𝐱ᵢ) are as close as possible to the 

actual response 𝑦ᵢ for each observation 𝑖 = 1, …, 𝑛. Remember that 

the actual response can be only 0 or 1 in binary classification 

problems! This means that each (𝐱ᵢ) should be close to either 0 or 1. 

That’s why it’s convenient to use the sigmoid function. Once you have 

the logistic regression function (𝐱), you can use it to predict the outputs 

for new and unseen inputs, assuming that the underlying mathematical 

dependence is unchanged.  

 Logistic regression is a linear classifier, so you’ll use a linear 

function (𝐱) = 𝑏₀ + 𝑏₁𝑥₁ + ⋯ + 𝑏ᵣ𝑥ᵣ, also called the logit. The variables 
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𝑏₀, 𝑏₁, …, 𝑏ᵣ are the estimators of the regression coefficients, which 

are also called the predicted weights or just coefficients. 

 The logistic regression function is the sigmoid function of 𝐱: 

(𝐱) = 1 / (1 + exp(−𝑓(𝐱)). As such, it’s often close to either 0 or 1. The 

function (𝐱) is often interpreted as the predicted probability that the 

output for a given 𝐱 is equal to 1. Therefore, 1 − (𝑥) is the probability 

that the output is 0. 

 Logistic regression determines the best predicted weights 𝑏₀, 

𝑏₁, …, 𝑏ᵣ such that the function 𝑝(𝐱) is as close as possible to all actual 

responses 𝑦ᵢ, 𝑖 = 1, …, 𝑛, where 𝑛 is the number of observations. The 

process of calculating the best weights using available observations is 

called model training or fitting. 

 To get the best weights, you usually maximize the log-

likelihood function (LLF) for all observations 𝑖 = 1, …, 𝑛. This 

method is called the maximum likelihood estimation and is 

represented by the equation  

 

LLF = Σᵢ(𝑦ᵢ log(𝑝(𝐱ᵢ)) + (1 − 𝑦ᵢ) log(1 −  𝑝(𝐱ᵢ))). 

 

When 𝑦ᵢ = 0, the LLF for the corresponding observation is equal to 

log(1 − 𝑝(𝐱ᵢ)). If (𝐱ᵢ) is close to 𝑦ᵢ = 0, then log(1 − 𝑝(𝐱ᵢ)) is close to 0. 

This is the result you want. If (𝐱ᵢ) is far from 0, then log(1 − 𝑝(𝐱ᵢ)) 

drops significantly. You don’t want that result because your goal is to 

obtain the maximum LLF. Similarly, when 𝑦ᵢ = 1, the LLF for that 

observation is 𝑦ᵢ log(𝑝(𝐱ᵢ)). If (𝐱ᵢ) is close to 𝑦ᵢ = 1, then log(𝑝(𝐱ᵢ)) is 

close to 0. If (𝐱ᵢ) is far from 1, then log(𝑝(𝐱ᵢ)) is a large negative 

number. 

 There are several mathematical approaches that will calculate 

the best weights that correspond to the maximum LLF, but that’s 

beyond the scope of this Lecture notes. For now, you can leave these 

details to the logistic regression Python libraries you’ll learn to use 

here! 

 Once you determine the best weights that define the function 

(𝐱), you can get the predicted outputs (𝐱ᵢ) for any given input 𝐱ᵢ. For 

each observation 𝑖 = 1, …, 𝑛, the predicted output is 1 if 𝑝(𝐱ᵢ) > 0.5 

and 0 otherwise. The threshold doesn’t have to be 0.5, but it usually 
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is. You might define a lower or higher value if that’s more convenient 

for your situation. 

 There’s one more important relationship between (𝐱) and (𝐱), 

which is that log(𝑝(𝐱) / (1 − 𝑝(𝐱))) = 𝑓(𝐱). This equality explains why 

(𝐱) is the logit. It implies that (𝐱) = 0.5 when (𝐱) = 0 and that the 

predicted output is 1 if (𝐱) > 0 and 0 otherwise. 

 Binary classification has four possible types of results: 

 True negatives: correctly predicted negatives (zeros). 

 True positives: correctly predicted positives (ones). 

 False negatives: incorrectly predicted negatives (zeros). 

 False positives: incorrectly predicted positives (ones). 

 

You usually evaluate the performance of your classifier by comparing 

the actual and predicted outputsand counting the correct and incorrect 

predictions. 

 The most straightforward indicator of classification 

accuracy is the ratio of the number of correct predictions to the total 

number of predictions (or observations). Other indicators of binary 

classifiers include the following: 

 The positive predictive value is the ratio of the number of true 

positives to the sum of the numbers of true and false positives. 

 The negative predictive value is the ratio of the number of true 

negatives to the sum of the numbers of true and false negatives. 

 The sensitivity (also known as recall or true positive rate) is the 

ratio of the number of true positives to the number of actual 

positives. 

 The specificity (or true negative rate) is the ratio of the number of 

true negatives to the number of actual negatives. 

 The most suitable indicator depends on the problem of interest. 

In this tutorial, you’ll use the most straightforward form of 

classification accuracy. 

  

Let’s return back to the data set from an Analytics Vidhya competition. 

We can easily make some intuitive hypothesis to set the ball rolling. 

The chances of getting a loan will be higher for: 

https://en.wikipedia.org/wiki/Logit
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values#Positive_predictive_value
https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values#Negative_predictive_value
https://en.wikipedia.org/wiki/Sensitivity_and_specificity#Sensitivity
https://en.wikipedia.org/wiki/Sensitivity_and_specificity#Specificity


92 

 Applicants having a credit history (remember we observed this in 

exploration?). 

 Applicants with higher applicant and co-applicant incomes. 

 Applicants with higher education level. 

 Properties in urban areas with high growth perspectives. 

 

So let’s make our first model with ‘Credit_History’. 
 

outcome_var = 'Loan_Status' 

model = LogisticRegression() 

predictor_var = ['Credit_History'] 

classification_model(model, df,predictor_var, 

       outcome_var) 

 

Output: 
Accuracy : 80.945% Cross-Validation Score : 

80.946% 

 

Generally we expect the accuracy to increase on adding variables. But 

this is a more challenging case. The accuracy and cross-validation 

score are not getting impacted by less important variables. 

Credit_History is dominating the mode. We have two options now: 

 Feature Engineering: derive new information and try to predict 

those.  

 Better modeling techniques. Let’s explore this next. 
  

10.2 Decision Tree 
 

Decision tree is another method for making a predictive model. It is 

known to provide higher accuracy than logistic regression model.  

 Decision Tree algorithm belongs to the family of supervised 

learning algorithms. Unlike other supervised learning algorithms, the 

decision tree algorithm can be used for solving regression and 

classification problems too. 

 The goal of using a Decision Tree is to create a training model 

that can use to predict the class or value of the target variable by 
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learning simple decision rules inferred from prior data (training 

data).  

 In Decision Trees, for predicting a class label for a record we 

start from the root of the tree. We compare the values of the root 

attribute with the record’s attribute. On the basis of comparison, we 

follow the branch corresponding to that value and jump to the next 

node. 

 Types of decision trees are based on the type of target variable 

we have. It can be of two types: 

 Categorical Variable Decision Tree: Decision Tree which has a 

categorical target variable then it called a Categorical variable 

decision tree. 

 Continuous Variable Decision Tree: Decision Tree has a 

continuous target variable then it is called Continuous Variable 

Decision Tree. 
Let’s say we have a problem to predict whether a customer will pay 

his renewal premium with an insurance company (yes/ no). Here we 

know that the income of customers is a significant variable but the 

insurance company does not have income details for all customers. 

Now, as we know this is an important variable, then we can build a 

decision tree to predict customer income based on occupation, 

product, and various other variables. In this case, we are predicting 

values for the continuous variables. 

 Important Terminology related to Decision Trees: 

 Root Node: It represents the entire population or sample and this 

further gets divided into two or more homogeneous sets. 

 Splitting: It is a process of dividing a node into two or more sub-

nodes. 

 Decision Node: When a sub-node splits into further sub-nodes, 

then it is called the decision node. 

 Leaf/Terminal Node: Nodes do not split is called Leaf or 

Terminal node. 

 Pruning: When we remove sub-nodes of a decision node, this 

process is called pruning. You can say the opposite process of 

splitting. 
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 Branch/Sub-Tree: A subsection of the entire tree is called branch 

or sub-tree. 

 Parent and Child Node: A node, which is divided into sub-nodes 

is called a parent node of sub-nodes whereas sub-nodes are the 

child of a parent node. 

 Decision trees classify the examples by sorting them down the 

tree from the root to some leaf/terminal node, with the leaf/terminal 

node providing the classification of the example. Each node in the tree 

acts as a test case for some attribute, and each edge descending from 

the node corresponds to the possible answers to the test case. This 

process is recursive in nature and is repeated for every subtree rooted 

at the new node. The decision of making strategic splits heavily affects 

a tree’s accuracy. The decision criteria are different for classification 

and regression trees. 

 Decision trees use multiple algorithms to decide to split a node 

into two or more sub-nodes. The creation of sub-nodes increases the 

homogeneity of resultant sub-nodes. In other words, we can say that 

the purity of the node increases with respect to the target variable. The 

decision tree splits the nodes on all available variables and then selects 

the split which results in most homogeneous sub-nodes. 

 Let us look at some ID3 algorithm used in Decision Trees. It 

begins with the original set S as the root node. On each iteration of the 

algorithm, it iterates through the very unused attribute of the set S and 

calculates Entropy and Information gain (IG) of this attribute. It 

then selects the attribute which has the smallest Entropy or Largest 

Information gain. The set S is then split by the selected attribute to 

produce a subset of the data. The algorithm continues to recur on each 

subset, considering only attributes never selected before. If the dataset 

consists of N attributes then deciding which attribute to place at the 

root or at different levels of the tree as internal nodes is a complicated 

step. By just randomly selecting any node to be the root can’t solve the 

issue. If we follow a random approach, it may give us bad results with 

low accuracy. 

 Let’s consider an algorithm of building of Decision Tree based 

on Entropy. Entropy is a measure of the randomness in the information 

being processed. The higher the entropy, the harder it is to draw any 
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conclusions from that information. ID3 follows the rule — a branch 

with an entropy of zero is a leaf node and a branch with entropy 

more than zero needs further splitting. 
Mathematically Entropy for 1 attribute is represented as: 

 

Entropy(S) = – Σᵢ pᵢ log(pᵢ), 

 

where S is Current state, pi → Probability of an event i of state S or 

Percentage of class i in a node of state S.  

 Information gain or IG is a statistical property that measures 

how well a given attribute separates the training examples according 

to their target classification. Constructing a decision tree is all about 

finding an attribute that returns the highest information gain and the 

smallest entropy. 

 

 
 

Information gain is a decrease in entropy. It computes the difference 

between entropy before split and average entropy after split of the 

dataset based on given attribute values.  

 Let’s return back to the data set from an Analytics Vidhya 

competition and make our model: 
  
model = DecisionTreeClassifier() 

predictor_var=['Credit_History','Gender','Married'

       ,'Education'] 

classification_model(model,df,predictor_var, 
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       outcome_var) 

Output: 
Accuracy : 81.930% Cross-Validation Score : 

76.656% 

Here the model based on categorical variables is unable to have an 

impact because Credit History is dominating over them. Let’s try a few 

numerical variables: 
 

predictor_var = 

['Credit_History','Loan_Amount_Term','LoanAmou

nt_log'] 

classification_model(model, 

df,predictor_var,outcome_var) 

 

Output: 
Accuracy : 92.345% Cross-Validation Score : 

71.009% 

 

Here we observed that although the accuracy went up on adding 

variables, the cross-validation error went down. This is the result of 

model over-fitting the data. Let’s try an even more sophisticated 

algorithm and see if it helps: 

  

10.3 Random Forest 

 

The common problem with Decision trees, especially having a table 

full of columns, they fit a lot. Sometimes it looks like the tree 

memorized the training data set. If there is no limit set on a decision 

tree, it will give you 100 % accuracy on the training data set because 

in the worst case it will end up making 1 leaf for each observation. 

Thus this affects the accuracy when predicting samples that are not 

part of the training set. One of the ways to remove overfitting is 

Random Forest. Random forest is another algorithm for solving the 

classification problem. An advantage with Random Forest is that we 

can make it work with all the features and it returns a feature 

importance matrix which can be used to select features. 
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Two key concepts that give it the name random: 

 A random sampling of training data set when building trees. 

 Random subsets of features considered when splitting nodes. 

 A technique known as bagging is used to create an ensemble 

of trees where multiple training sets are generated with replacement. 

In the bagging technique, a data set is divided into N samples using 

randomized sampling. Then, using a single learning algorithm a model 

is built on all samples. Later, the resultant predictions are combined 

using voting or averaging in parallel. 
 

model=RandomForestClassifier(n_estimators=100) 

predictor_var=['Gender', 'Married',  

    'Dependents', 'Education',       

  'Self_Employed', 'Loan_Amount_Term', 

  'Credit_History', 'Property_Area', 

        'LoanAmount_log','TotalIncome_log'] 

classification_model(model,df,predictor_var, 

       outcome_var) 

 

Output: 
 

Accuracy : 100.000% Cross-Validation Score : 

78.179% 

 

Here we see that the accuracy is 100 % for the training set. This is the 

ultimate case of overfitting and can be resolved in two ways: 

 Reducing the number of predictors. 

 Tuning the model parameters. 

 

Let’s try both of these. First we see the feature importance matrix from 

which we’ll take the most important features. 
 

featimp=pd.Series(model.feature_importances_, 

     index=predictor_var). 

   sort_values(ascending=False) 

print (featimp) 
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Output: 

 
 

Let’s use the top 5 variables for creating a model. Also, we will modify 

the parameters of random forest model a little bit: 

 
model=RandomForestClassifier(n_estimators=25,  

  min_samples_split=25, max_depth=7, 

      max_features=1) 

predictor_var=['TotalIncome_log', 

 'LoanAmount_log','Credit_History', 

   'Dependents','Property_Area'] 

classification_model(model,df,predictor_var, 

       outcome_var) 

 

Output: 
Accuracy : 82.899% Cross-Validation Score : 

81.461% 

 

Notice that although accuracy reduced, but the cross-validation score 

is improving showing that the model is generalizing well. Remember 

that random forest models are not exactly repeatable. Different runs 

will result in slight variations because of randomization. But the output 

should stay in the ballpark. 

You would have noticed that even after some basic parameter tuning 

on random forest, we have reached a cross-validation accuracy only 

https://www.analyticsvidhya.com/wp-content/uploads/2016/01/9.-rf-feat-imp.png
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slightly better than the original logistic regression model. This exercise 

gives us some very interesting and unique learning: 

1. Using a more sophisticated model does not guarantee better 

results. 

2. Avoid using complex modeling techniques as a black box without 

understanding the underlying concepts. Doing so would increase the 

tendency of overfitting thus making your models less interpretable. 

3. Feature Engineering is the key to success. Everyone can use an 

Xgboost models but the real art and creativity lies in enhancing your 

features to better suit the model. 

 

  

https://www.analyticsvidhya.com/blog/2015/03/feature-engineering-variable-transformation-creation/


100 

REFERENCES 

 

1. Eng Michael David. A Practical Introduction to Python 

Programming. Independently Published, 2020. 264 р. 

2. Ben Stephenson. The Python Workbook. A Brief Introduction 

with Exercises and Solutions. Springer, 2019. 219 p. 

3. Andrew Bird, Dr Lau Cher Han, Mario Corchero Jiménez, 

Graham Lee, Corey Wade. The Python Workshop. A Practical, 

No-Nonsense Introduction to Python Development. Packt, 2019. 

606 p. 

4. What is Data Analysis? Research | Types | Methods | Techniques. 

URL : http://surl.li/nayy. 

5. Why Python is Essential for Data Analysis. 

URL : https://www.rtinsights.com/why-python-is-essential-for-

data-analysis. 

6. A Complete Python Tutorial to Learn Data Science from Scratch. 

URL : http://surl.li/nbdy. 

7. KDnuggets. 

URL : https://www.kdnuggets.com/2020/01/decision-tree-

algorithm-explained.html. 

 

http://surl.li/nayy
https://www.rtinsights.com/why-python-is-essential-for-data-analysis
https://www.rtinsights.com/why-python-is-essential-for-data-analysis
http://surl.li/nbdy
https://www.kdnuggets.com/news/subscribe.html
https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html
https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html


 

Навчальне видання 

 

 

 

 

 

Конспект лекцій  

із курсу «Пайтон та наука про дані» 

 

(Англійською мовою) 

 

 

 

 
 Відповідальний за випуск І. В. Коплик 
 Редактор І. А. Іванов 

 Комп’ютерне верстання І. О. Князя 

 

 

 

 

 

 

 

 
Формат 60х84/16. Ум. друк. арк. 5,81. Обл.-вид. арк. 5,65.  

 

 
 

 

 
 

 

Видавець і виготовлювач 
Сумський державний університет,  

вул. Римського-Корсакова, 2, м. Суми, 40007 

Свідоцтво суб’єкта видавничої справи ДК № 3062 від 17.12.2007. 
 


