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Abstract. In this paper enhanced red-breasted sapsucker (ERBS) algorithm has been proposed to solve the power 

loss lessening problem. RBS algorithm is designed on the copulate actions of RBS. Male RBS (MRBS) will attract 

the female with an exclusive tone. Concerning the concentration of the tone female RBS (FMBS) will progress in the 

direction of the MRBS. Various tone engendered by MRBS will catch the fancy of FRBS, and this action is 

analogous to data contribution in Evolutionary techniques. Naturally, so many MRBS will put huge efforts 

simultaneously to attract the FRBS for copulate. RBS has been integrated with the sine-cosine algorithm (SCA) and 

opposition-based learning (OBL). SCA process shifts resourcefully from exploration to exploitation by acclimatizing 

the functions. Solutions are frequently streamlined to the premium solution and optimization of the premium region 

of the exploration zone. OBL is one of the significant optimization procedures to improve the convergence pace of 

different optimization procedures. The successful execution of the OBL holds the assessment of the opposite 

population and present population in the analogous generation to find out the better contender solution. The proposed 

enhanced RBS (ERBS) algorithm is corroborated in IEEE 30 bus test systems. Power discrepancy compressed, power 

reliability amplified, and power loss condensed. 
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1 Introduction 

Power loss lessening is a fundamental problem in 

Electrical power systems. Bountiful numeric procedures 

[1-6] and evolutionary approaches [9-19] solved the real 

power loss lessening problem. Carpentier [1] done the 

work on contribution to “à l’étude du dispatching 

économique” problem. Dommel et al. [2] researched 

optimal power flow solutions. 

Takapoui et al. [3] did work on a simple, effective 

heuristic for embedded mixed-integer quadratic 

programming. Abaci et al. [4] solved optimal reactive-

power dispatch using a differential search algorithm. 

Pulluri et al. [5] worked on an enhanced self-adaptive 

differential evolution-based solution methodology for 

multiobjective optimal power flow. Sahli et al. [10] 

applied a hybrid PSO-tabu search to solve the problem. 

Mouassa et al. [11] used an ant lion optimizer for 

solving the optimal reactive power problem. Using quasi-

oppositional teaching learning-based optimization, 

Mandal et al. [12] solved optimal reactive power 

dispatch. Tran et al. [14] researched optimal reactive 

power dispatch solutions by using a novel improved 

stochastic fractal search optimization algorithm. 

Polprasert et al. [15] solved optimal reactive power 

dispatch using improved pseudo-gradient search particle 

swarm optimization. Muhammad et al. [26] found a 

solution of optimal reactive power dispatch with FACTS 

devices. Das et al. [27] solved the optimal reactive power 

dispatch problem considering load uncertainty using a 

modified JAYA algorithm. 

Das et al. [28] integrated the PV system with optimal 

reactive power dispatch for voltage security using the 

JAYA algorithm. Muhammad et al. [29] designed 

fractional evolutionary processing for reactive power 

planning with FACTS devices. Shanono et al. [30] did a 

bibliometric analysis of optimal reactive power dispatch. 

Tudose et al. [31] solved single- and multi-objective 

optimal reactive power dispatch problems using an 

improved Salp swarm algorithm. Balancing the 

exploration and exploitation is essential in the progress of 

the algorithms. Few algorithms are good in exploration, 

but exploitation property will be poor. Then some 

algorithms are worthy of exploitation, but it has deprived 

performance in exploration. 
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The optimal solution cannot be reached when both 

exploration and exploitation are not balanced [21-25]. In 

this article, the ERBS algorithm has been proposed to 

solve the power loss lessening problem. RBS algorithm is 

designed on the copulate actions of RBS. MRBS will 

attract the female with an exclusive tone. Various tone 

engendered by MRBS will catch the fancy of FRBS, and 

this action is analogous to data contribution in 

Evolutionary techniques. 

Naturally, so many numbers of MRBS will put huge 

efforts simultaneously to attract the FRBS for copulate. 

Mainly, there will be tone variation among MRBS, which 

subsequently modifies the FRBS direction of movement 

towards males concerning the concentration of the tone. 

MRBS and FRBS are considered populations. Initially, 

MRBS will be in mammoth quantity and the duration of 

the preliminary stage of copulate – the amount of MRBS 

diminish owing to copulate. 

When iteration increases precisely, the population 

diminishes. Exploration will be there initially, and regular 

exploitation will be followed. In the initial phase, FRBS 

will get fascinated with reverence to the concentration of 

tone. 

However, at the concluding phase, it will be 

fascinated in the direction of the most excellent MRBS. 

FRBS only listens to a single MRBS tone, and at the 

concluding phase, it is a seal to the FRBS and most 

excellent concentration tone. RBS is at variance based on 

the objective function. 

MRBS is the most excellent position established in 

the exploration space, and FRBS is the main investigate 

representative. The location of the FRBS is entirely 

grounded on the MRBS. When an enhanced contender 

solution is attained, subsequently, there will be 

modernization of the MRBS. RBS arbitrarily instigates, 

and each RBS is performing as a contender solution. The 

population and fitness value of RBS is appraised. Most 

excellent MRBS is considered as ME-population, and it 

will be mainly striking MRBS, progressively FRBS shift 

near to particular MRBS. 

In the proposed ERBS algorithm, SCA and OBL 

algorithm has been integrated with the RBS algorithm. 

SCA process shifts resourcefully from exploration to 

exploitation by adapting the functions. Solutions are 

frequently streamlined to the premium solution and 

optimization of the premium region of the exploration 

zone. OBL is one of the significant optimization 

procedures to improve the convergence pace of different 

optimization procedures. 

The successful execution of the OBL holds the 

assessment of the opposite population and present 

population in the analogous generation to find the better 

contender solution. The proposed ERBS algorithm is 

corroborated in IEEE 30 bus test systems. Power 

discrepancy compressed, power reliability amplified, and 

power loss condensed. 

2 Research Methodology 

2.1 Problem formulation 

Power loss minimization is defined by: 

 , (1) 

subjected to: 

 ; (2) 

 ; (3) 

 ; (4) 

  . (5) 

The fitness function  is designed for power 

loss (MW) reduction, Voltage deviation, voltage stability 

index (L-index) is defined by: 

      (6) 

  (7) 

 ; (8) 

 ; (9) 

  (10) 

 . (11) 

Equality constraints are: 

  (12) 

  (13) 

Inequality constraints are: 

 ; (14) 

 ; (15) 

  ; (16) 

 ; (17) 

 ; (18) 

 ; (19) 

 . (20) 
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Multi objective fitness: 

  (21) 

  (22) 

  (23) 

2.2 RBS algorithm 

RBS algorithm is designed on the copulate actions of 

RBS. MRBS will attract the female with an exclusive 

tone. Concerning the concentration of the tone FRBS will 

progress in the direction of the MRBS. 

Modulation in the tone will vary with time, and this 

tone concentration induces the FRBS to progress 

gradually in the direction of the MRBS for copulating. 

Various tones engendered by MRBS will catch the 

fancy of FRBS, and this action is analogous to data 

contribution in Evolutionary techniques. 

Naturally, so many male RBSs will put huge efforts 

simultaneously to attract the FRBS for copulate. There 

will mainly be tone variation among MRBS, which 

subsequently modifies the FRBS direction of movement 

towards males concerning the concentration of the tone. 

Tone concentration (TC) is defined as: 

 . (24) 

Proliferation velocity of the tone mathematically 

described as: 

 . (25) 

Based on the space Concentration of the Tone is 

calculated by 

     . (26) 

Concerning tone concentration, fascination will occur 

between males and females, leading to copulation. RBS 

fitness value has been calculated. FRBS will get 

fascinated by the most excellent MRBS, and the 

prettiness is considered to be similar to fitness value. 

Tone source is essential because minor space will 

augment tone strength, which is similar to sound 

emission. Expanse amplifies; subsequently, the pace of 

concentration of tone diminishes. MRBS and FRBS are 

considered populations. Initially, MRBS will be in 

mammoth quantity, and in the duration of the preliminary 

stage of copulating, the amount of MRBS will diminish 

owing to copulate. When iteration increases precisely, the 

population diminishes. Exploration will be there initially, 

and regular exploitation will be followed. In the initial 

phase, FRBS will get fascinated with reverence to the 

concentration of tone. However, at the concluding phase, 

it will be fascinated in the direction of the most excellent 

MRBS. FRBS only listens to a single MRBS tone, and at 

the concluding phase, it is a seal to the FRBS and most 

excellent concentration tone. RBS is at variance based on 

the objective function. 

Male RBS is the most excellent position established 

in the exploration space, and FRBS is the main 

investigate representative. The location of the FRBS is 

entirely grounded on the MRBS. When an enhanced 

contender solution is attained, subsequently, there will be 

modernization of the MRBS. RBS arbitrarily instigates, 

and each RBS is performing as a contender solution. The 

population and fitness value of RBS is appraised. Most 

excellent MRBS is considered as ME-population, and it 

will be mainly striking MRBS, progressively FRBS shift 

near to particular MRBS. 

Progress of the RBS is modernized by: 

  (27) 

where  – the preceding location of RBS;  

indicates the location of most excellent RBS;  

specifies the location of MRBS;  is coefficient of RBS 

in t-th iteration; R is random: 

 , (28) 

where the factor is 0.79 to 0 during the iterations. 

 and  specify the location of FRBS 

which attaining the MRBS: 

  , (29) 

where γ signifies the lure possibility grounded on the 

tone concentration with reverence to location (close to or 

remote); γ possesses enormous consequence over the 

exploitation segment. 

Tangent sigmoid Ts is employed in the procedure: 

  . (30) 

Quantity of MRBS in the iteration is defined as: 

 (31) 

The most excellent MRBS based on ME-population is 

described as: 

       . (32) 

Alteration in the path and location is based on the 

concentration of stone, and in addition, if some danger 

brings into being from others, then RBS will shift from 

the position: 

 , (33) 

where Tγ indicates the threshold: 
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 , (34) 

where LB, UB are lower and upper bound: 

Based on tone adaptableness, the RBS locate, and as 

soon as there is an elevated concentration of tone from 

the most excellent MRBS subsequently the FRBS will 

progress towards it: 

      , (35) 

where  specifies the possibility 

of RBS population progress: 

  (36) 

Subsequently, the location of FRBS is described as 

 (37) 

The corresponding procedure is as follows: 
 

a. Start 

b. RBS population initialized 

c. Red-breasted sapsucker fitness value computed 

d. Calculate Tγ 

e.  

f. The quantity of MRBS is calculated by 

 
g. Categorize the RBS 

h. For every RBS; decide MRBS 

i.  

j.  

k. Location of the RBS modernized by 

l.  

m. Calculate the progression of RBS 

n.  

o.  

p. End if 

q. Modify the location of FRBS 

r. Once the most excellent solution is established, 

subsequently modernize MEpop 

s. End for 

t.  

u. End while 

v. End 

w. Revisit the MEpop 
 

In the proposed ERBS algorithm, SCA and OBL 

algorithms have been integrated with RBS. 

SCA [32] processes shift resourcefully from 

exploration to exploitation by adapting the functions. 

Solutions are frequently streamlined to the premium 

solution and optimization of the premium region of the 

exploration zone. 

 ; (38) 

 ; (39) 

 ; (40) 

where  is the present position at m-th iteration 

with  population. 

OBL [33] is one of the significant optimization 

procedures to improve the convergence pace of different 

optimization procedures. The successful execution of the 

OBL holds the assessment of the opposite population and 

present population in the analogous generation to find out 

the better contender solution. 

Fix  by an actual number and  

(opposite number) is described as follows: 

 . (41) 

Exploration augmented by: 

 , (42) 

where  is a spot in “d” exploration 

space; ; . 

The corresponding procedures are as follows: 
 

a. Start 

b. Initialize parameters 

c. Engender opposite population; For j = 1; 

population size: for i = 1; umber of control 

variables 

d.  
 

a. Categorize the present and opposite population 

from most excellent to poor 

b. RBS population initialized 

c. RBS fitness value computed 

d. Calculate Tγ 

e.  

f.  

g. The quantity of RBS is calculated by 

 
h. Categorize the RBS 

i. For every RBS; decide MRBS 

j.  

k.  
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l. Location of the RBS modernized by 

m.  

n.  

o.  

p.  

q. Calculate the progression of RBS 

r.  

s.  

t. End if 

u. Modify the location of FRBS 

v. Once the most excellent solution is established, 

subsequently modernize MEpop 

w. End for 

x.  

y. End while 

z. End 

aa. Revise the MEpop 

3 Results 

Projected RBS and ERBS algorithms have been 

corroborated in IEEE 30 bus system [20]. 

Table 1 shows the loss appraisal, Table 2 – the voltage 

aberration evaluation, and Table 3 – the L-index 

assessment. 

Table 1 – Assessment of entire power loss 

Technique Power loss, MW 

Basic PSO-TS [10] 4.52 

Standard TS [10] 4.68 

Basic PSO [10] 4.69 

Ant LO [11] 4.59 

Basic QO-TLBO [12] 4.56 

Standard TLBO [12] 4.56 

Standard GA [13] 4.94 

Basic PSO [13] 4.92 

HAS [13] 4.91 

Standard FS [14] 4.58 

IS-FS [14] 4.51 

Standard FS [16] 4.53 

RBS 4.50 

ERBS 4.50 
 

Figures 1–3 give the graphical appraisal of the 

methods. MSO and EMSO abridged the power loss 

efficiently. 

Table 2 – Comparison of voltage aberration 

Technique Voltage deviancy, PU 

Basic PSO-TVIW [15] 0.104 

Basic PSO-TVAC [15] 0.206 

Standard PSO-TVAC [15] 0.135 

Basic PSO-CF [15] 0.129 

PG-PSO [15] 0.120 

SWT-PSO [15] 0.161 

PGSWT-PSO [15] 0.154 

MPG-PSO [15] 0.089 

QO-TLBO [12] 0.086 

TLBO [12] 0.091 

Standard FS [14] 0.122 

ISFS [14] 0.089 

Standard FS [16] 0.088 

RBS 0.086 

ERBS 0.085 

Table 3 – Appraisal of voltage constancy 

Technique 
Voltage constancy  

L-index, PU 

Basic PSO-TVIW [15] 0.126 

Basic PSO-TVAC [15] 0.150 

Standard PSO-TVAC [15] 0.127 

Basic PSO-CF [15] 0.126 

PG-PSO [15] 0.126 

SWT-PSO [15] 0.149 

PGSWT-PSO [15] 0.139 

MPG-PSO [15] 0.124 

QO-TLBO [12] 0.119 

Standard TLBO [12] 0.118 

ALO [11] 0.116 

ABC [11] 0.116 

Standard GWO [11] 0.124 

Basic BA [11] 0.125 

Standard FS [14] 0.125 

IS-FS [14] 0.125 

Standard FS [16] 0.101 

RBS 0.100 

ERBS 0.100 

 

Figure 1 –Assessment of power loss, MW 
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Figure 2 – Appraisal of voltage aberration, PU 

 

Figure 3 – Assessment of voltage constancy index, PU 

Appraisal of loss has been done with PSO, adapted 

PSO, enhanced PSO, comprehensive learning PSO, 

Adaptive genetic algorithm, Canonical genetic algorithm, 

enhanced genetic algorithm, Hybrid PSO-Tabu search 

(PSO-TS), Ant lion (ALO), quasi-oppositional teaching 

learning-based (QOTBO), enhanced stochastic fractal 

search optimization algorithm (ISFS), harmony search 

(HS), upgraded pseudo-gradient search particle swarm 

optimization and cuckoo search algorithm. Power loss 

abridged competently, and the proportion of the power 

loss lessening has been enhanced. Predominantly voltage 

constancy augmentation attained with minimized voltage 

deviancy. 

Then Projected RBS and ERBS algorithm 

substantiated in IEEE 14, 30, 57, 118, and 300 bus test 

systems [19] deprived of L-index. Loss appraisal is 

shown in Tables 4–8. 

Figures 4–8 give a graphical comparison between the 

approaches with orientation to power loss. Proposed RBS 

and ERBS are compared with Adapted PSO, PSO, EP, 

SARGA, CGA, AGA, EPSO, CLPSO, AGA, FEA, and 

CSO. 

 

Figure 4 – Power loss appraisal (IEEE 14 bus system) 

 

Figure 5 – Appraisal of power loss (IEEE 30 bus system) 

 

Figure 6 – Power loss appraisal (IEEE 57 bus system) 

 

Figure 7 – Power loss appraisal (IEEE 118 bus system) 
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Figure 8 – Power loss appraisal (IEEE 300 bus system)

Table 4 – Assessment of results (IEEE 14 bus system) 

Parameter Base case [24] Adapted PSO [24] PSO [23] EP [23] SARGA [22] RBS ERBS 

Ratio of loss diminution 0.000 9.2000 9.1000 1.500 2.500 25.892 26.169 

True Loss (MW) 13.550 12.293 12.315 13.346 13.216 10.029 10.004 

Table 5 – Appraisal of loss (IEEE 30 bus system) 

Parameter Actual power loss, MW 
The proportion of lessening  

in power loss 

Base case value [24] 17.5500 0.000 

M-PSO [24] 16.0700 8.400 

Basic-PSO [23] 16.2500 7.400 

EP [21] 16.3800 6.600 

S -GA [22] 16.0900 8.300 

PSO [25] 17.5246 0.145 

DEPSO [25] 17.52 0.171 

JAYA [25] 17.536 0.080 

RBS 14.100 19.658 

ERBS 14.034 20.034 

Table 6 – Assessment of parameters (IEEE 57 bus system) 

Parameter Base case [24] Adapted PSO [24] PSO [23] CGA [22] AGA [22] RBS ERBS 

Ratio of loss diminution  0.00 15.40 14.10 9.20 11.60 23.76 24.33 

True loss, MW 27.80 23.51  23.86  25.24 24.56 21.20 21.04 

Table 7 – Assessment of results (IEEE 118 bus system) 

Parameter  Base case [24] Adapted PSO [24] PSO [23] EPSO [21] CLPSO [21] RBS ERBS 

Ratio of loss diminution 0.00 11.70 10.10 0.60 1.30 14.97 15.56 

True loss, MW 132.80  117.19  119.34  131.99  130.96 112.92 112.14 

Table 8 – Power loss appraisal (IEEE 300 bus system) 

Parameter  AGA [35] FEA [35] CSO [34] RBS ERBS 

True loss, MW 646.30 650.60 635.89 626.15 626.09 
 

4 Discussion 

Projected RBS and ERBS algorithms compressed the 

power loss resourcefully. With and devoid of power 

stability index, proposed algorithms performed well. The 

ratio of power loss diminution improved sufficiently, and 

assessment has been done with other standard reported 

algorithms. 

At first, the projected RBS and ERBS algorithm was 

substantiated in IEEE 30 bus system with considering 

voltage stability. Appraisal of loss has been done with 

PSO, adapted PSO, enhanced PSO, comprehensive 

learning PSO, Adaptive genetic algorithm, Canonical 

genetic algorithm, enhanced genetic algorithm, Hybrid 

PSO-Tabu search (PSO-TS), Ant lion (ALO), quasi-

oppositional teaching learning-based (QOTBO), 

enhanced stochastic fractal search optimization algorithm 

(ISFS), harmony search (HS), upgraded pseudo-gradient 

search particle swarm optimization and cuckoo search 

algorithm. 

Then Projected RBS and ERBS algorithm was 

substantiated in IEEE 14, 30, 57, 118, and 300 bus test 
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systems deprived of L-index. Loss appraisal and 

graphical comparison between the approaches with 

orientation to power loss are reported. Proposed RBS and 

ERBS are compared with Adapted PSO, PSO, EP, 

SARGA, CGA, AGA, EPSO, CLPSO, AGA, FEA, and 

CSO. The ratio of power loss reduction has been 

improved. 

5 Conclusions 

ERBS algorithm condensed the power loss with 

amplifying of power constancy. MRBS and FRBS are 

considered populations. Initially, MRBS will be in 

mammoth quantity and the duration of the preliminary 

stage of copulate – the amount of MRBS diminish owing 

to copulate. 

When iteration increases precisely, the population 

diminishes. Exploration will be there initially, and regular 

exploitation will be followed. In the initial phase, FRBS 

will get fascinated with reverence to the concentration of 

tone; however, at the concluding phase, it will be 

fascinated in the direction of the most excellent MRBS. 

FRBS only listens to a single MRBS tone, and at the 

concluding phase, it is a seal to the FRBS and most 

excellent concentration tone. RBS is at variance based on 

the objective function. MRBS is the most excellent 

position established in the exploration space, and FRBS 

is the main investigate representative. The location of the 

FRBS is entirely grounded on the MRBS. 

When an enhanced contender solution is attained, 

subsequently, there will be modernization of the MRBS. 

RBS arbitrarily instigates, and each RBS is performing as 

a contender solution. The population and fitness value of 

RBS is appraised. Most excellent MRBS is considered 

ME-population, and it will be mainly striking MRBS, 

progressively FRBS shift near to particular MRBS. 

In the proposed ERBS algorithm, SCA and OBL 

algorithm has been integrated with RBS. SCA process 

shifts resourcefully from exploration to exploitation by 

adapting the functions. Solutions are frequently 

streamlined to the premium solution and optimization of 

the premium region of the exploration zone. 

OBL is one of the significant optimization procedures 

to improve the convergence pace of different 

optimization procedures. The successful execution of the 

OBL holds the assessment of the opposite population and 

present population in the analogous generation to find the 

better contender solution. ERBS and RBS algorithms are 

verified in IEEE 30 bus test system with and devoid of L-

index. 

Both algorithms commendably reduced the power loss, 

and the percentage of real power loss lessening has been 

enhanced. Convergence characteristics show the better 

performance of the proposed optimization algorithms. 

The comparison of power loss has been made with other 

standard reported algorithms. 

Nomenclature 

OBF – minimization of the objective function; 

r – consist of control variables; 

Qc – reactive power compensators; 

T – dynamic tap setting of transformers; 

Vg – level of the voltage in the generation units; 

u – consist of dependent variables; 

PGslack – slack generator; 

VL – voltage on transmission lines; 

QG – generation unit’s reactive power; 

SL – apparent power; 

NTL – number of the transmission line; 

VLk – load voltage in k-th load bus; 

 voltage desired; 

QGK – reactive power; 

 reactive power limitation; 

NLB, Ng – number load and generating units; 

T – transformer tap. 
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