
Ministry of Education and Science of Ukraine
Sumy State University

Dvornichenko A. V.,
Lysenko O. V.

DISCRETE MATHEMATICS
AND THEORY OF ALGORITHMS

Lecture notes

In four parts
Part II

Sumy
Sumy State University

2022

Ministry of Education and Science of Ukraine
Sumy State University

DISCRETE MATHEMATICS
AND THEORY OF ALGORITHMS

Lecture notes
for students of speciality 113”Applied Mathematics”

of full-time course of studies

In four parts
Part II

Approved at the meeting
of the department of Applied
Mathematics and Complex Sys-
tems Modeling as a lecture
notes on the discipline ”Discrete
Mathematics and Theory of Al-
gorithms”.
Minutes №5 of 29.06.2022.

Sumy
Sumy State University

2022

Discrete Mathematics and Theory of Algorithms : lecture notes :
in four parts / compilers: A. V. Dvornichenko, O. V. Lysenko. —
Sumy : Sumy State University, 2022. — Part II. — 148 p.

Department of Applied Mathematics and Modeling of Complex Sys-
tems

Introduction

A discrete mathematics and theory of algorithms course has more
than one purpose. Students should learn a particular set of mathe-
matical facts and how to apply them; more importantly, such a course
should teach students how to think logically and mathematically. To
achieve these goals, this text stresses mathematical reasoning and the
different ways problems are solved. Two important themes are interwo-
ven in this text: inductions and recursions and counting. A successful
discrete mathematics and theory of algorithms course should carefully
blend and balance two these themes.

In the lecture materials, we used a number of books, among which
we will single out the wonderful book by [1]. In the second part of
the lecture notes, we consider the following sections: “Inductions and
Recursions” and “Counting”.

4

Contents

1 Induction and Recursion 7
1.1 Mathematical Induction 9

1.1.1 Introduction . 9
1.1.2 Mathematical Induction 10
1.1.3 Why Mathematical Induction is Valid 13
1.1.4 Choosing the Correct Basis Step 13
1.1.5 Guidelines for Proofs by Mathematical Induction 14
1.1.6 The Good and the Bad of Mathematical Induction 15
1.1.7 Examples of Proofs by Mathematical Induction . 15
1.1.8 Mistaken Proofs By Mathematical Induction . . 34

1.2 Recursive Definitions and Structural Induction 36
1.2.1 Introduction . 36
1.2.2 Recursively Defined Functions 36
1.2.3 Recursively Defined Sets and Structures 41
1.2.4 Structural Induction 47
1.2.5 Generalized Induction 52

1.3 Recursive Algorithms . 54
1.3.1 Introduction . 54
1.3.2 Proving Recursive Algorithms Correct 59
1.3.3 Recursion and Iteration 61
1.3.4 The Merge Sort 64

1.4 Program Correctness . 70
1.4.1 Introduction . 70
1.4.2 Program Verification 70
1.4.3 Rules of Inference 72
1.4.4 Conditional Statements 72

5

6 CONTENTS

1.4.5 Loop Invariants 74

2 Counting 78
2.1 The Basics of Counting 79

2.1.1 Introduction . 79
2.1.2 Basic Counting Principles 79
2.1.3 More Complex Counting Problems 88
2.1.4 The Subtraction Rule (Inclusion–Exclusion for Two

Sets) . 90
2.1.5 The Division Rule 94
2.1.6 Tree Diagrams 95

2.2 The Pigeonhole Principle 98
2.2.1 Introduction . 98
2.2.2 The Generalized Pigeonhole Principle 100
2.2.3 Some Elegant Applications of the Pigeonhole Prin-

ciple . 104
2.3 Permutations and Combinations 108

2.3.1 Introduction . 108
2.3.2 Permutations . 108
2.3.3 Combinations . 112

2.4 Binomial Coefficients and Identities 118
2.4.1 The Binomial Theorem 118
2.4.2 Pascal’s Identity and Triangle 122
2.4.3 Other Identities Involving Binomial Coefficients . 124

2.5 Generalized Permutations and Combinations 127
2.5.1 Introduction . 127
2.5.2 Permutations with Repetition 127
2.5.3 Combinations with Repetition 128
2.5.4 Permutations with Indistinguishable Objects . . 133
2.5.5 Distributing Objects into Boxes 135

2.6 Generating Permutations and Combinations 141
2.6.1 Introduction . 141
2.6.2 Generating Permutations 141
2.6.3 Generating Combinations 144

Chapter 1

Induction and Recursion

Many mathematical statements assert that a property is true for
all positive integers. Examples of such statements are that for every
positive integer n : n! ≤ nn, n3 − n is divisible by 3; a set with n
elements has 2n subsets; and the sum of the first n positive integers is
n(n+ 1)/2. A major goal of this chapter, and the book, is to give the
student a thorough understanding of mathematical induction, which is
used to prove results of this kind.

Proofs using mathematical induction have two parts. First, they
show that the statement holds for the positive integer 1. Second, they
show that if the statement holds for a positive integer then it must also
hold for the next larger integer. Mathematical induction is based on the
rule of inference that tells us that if P (1) and ∀k(P (k) → P (k+1)) are
true for the domain of positive integers, then ∀nP (n) is true. Mathe-
matical induction can be used to prove a tremendous variety of results.
Understanding how to read and construct proofs by mathematical in-
duction is a key goal of learning discrete mathematics.

In Chapter 2 we explicitly defined sets and functions. That is, we
described sets by listing their elements or by giving some property that
characterizes these elements.We gave formulae for the values of func-
tions. There is another important way to define such objects, based
on mathematical induction. To define functions, some initial terms are
specified, and a rule is given for finding subsequent values from values
already known. (We briefly touched on this sort of definition in Chapter

7

8 CHAPTER 1. INDUCTION AND RECURSION

2 when we showed how sequences can be defined using recurrence rela-
tions.) Sets can be defined by listing some of their elements and giving
rules for constructing elements from those already known to be in the
set. Such definitions, called recursive definitions, are used throughout
discrete mathematics and computer science. Once we have defined a
set recursively, we can use a proof method called structural induction
to prove results about this set.

When a procedure is specified for solving a problem, this procedure
must always solve the problem correctly. Just testing to see that the
correct result is obtained for a set of input values does not show that
the procedure always works correctly. The correctness of a procedure
can be guaranteed only by proving that it always yields the correct
result. The final section of this chapter contains an introduction to the
techniques of program verification. This is a formal technique to verify
that procedures are correct. Program verification serves as the basis
for attempts under way to prove in a mechanical fashion that programs
are correct.

1.1. MATHEMATICAL INDUCTION 9

1.1 Mathematical Induction

1.1.1 Introduction

Suppose that we have an infinite ladder, as shown in Figure 1.1, and
we want to know whether we can reach every step on this ladder. We
know two things:

1. We can reach the first rung of the ladder.
2. If we can reach a particular rung of the ladder, then we can reach

the next rung.

Can we conclude that we can reach every runng? By (1), we know that
we can reach the first rung of the ladder. Moreover, because we can
reach the first rung, by (2), we can also reach the second rung; it is
the next rung after the first rung. Applying (2) again, because we can
reach the second rung, we can also reach the third rung. Continuing in
this way, we can show that can reach the fourth rung, the fifth rung,
and so on. For example, after 100 uses of (2), we know that we can
reach the 101st rung. But can we conclude that we are able to reach
every rung of this infinite ladder? The answer is yes, something we
can verify using an important proof technique called mathematical
induction. That is, we can show that P (n) is true for every positive
integer n, where P (n) is the statement that we can reach the nth rung
of the ladder. Mathematical induction is an extremely important proof
technique that can be used to prove assertions of this type. As we will
see in this section and in subsequent sections of this chapter and later
chapters, mathematical induction is used extensively to prove results
about a large variety of discrete objects. For example, it is used to prove
results about the complexity of algorithms, the correctness of certain
types of computer programs, theorems about graphs and trees, as well
as a wide range of identities and inequalities.

In this section, we will describe how mathematical induction can be
used and why it is a valid proof technique. It is extremely important
to note that mathematical induction can be used only to prove results
obtained in some other way. It is not a tool for discovering formulae or
theorems.

10 CHAPTER 1. INDUCTION AND RECURSION312 5 / Induction and Recursion

Step 1

Step 2

Step 3

Step 4

Step k + 1

... ...

Step k

We can reach
step 1

We can reach step k + 1 if
we can reach step k

FIGURE 1 Climbing an Infinite Ladder.

can reach the fourth rung, the fifth rung, and so on. For example, after 100 uses of (2), we know
that we can reach the 101st rung. But can we conclude that we are able to reach every rung
of this infinite ladder? The answer is yes, something we can verify using an important proof
technique called mathematical induction. That is, we can show that P(n) is true for every
positive integer n, where P(n) is the statement that we can reach the nth rung of the ladder.

Mathematical induction is an extremely important proof technique that can be used to prove
assertions of this type. As we will see in this section and in subsequent sections of this chapter
and later chapters, mathematical induction is used extensively to prove results about a large
variety of discrete objects. For example, it is used to prove results about the complexity of
algorithms, the correctness of certain types of computer programs, theorems about graphs and
trees, as well as a wide range of identities and inequalities.

In this section, we will describe how mathematical induction can be used and why it is a
valid proof technique. It is extremely important to note that mathematical induction can be used
only to prove results obtained in some other way. It is not a tool for discovering formulae or
theorems.

Mathematical Induction

In general, mathematical induction ∗ can be used to prove statements that assert that P(n) is
true for all positive integers n, where P(n) is a propositional function. A proof by mathematical

∗Unfortunately, using the terminology “mathematical induction” clashes with the terminology used to describe different types
of reasoning. In logic, deductive reasoning uses rules of inference to draw conclusions from premises, whereas inductive
reasoning makes conclusions only supported, but not ensured, by evidence. Mathematical proofs, including arguments that
use mathematical induction, are deductive, not inductive.

Figure 1.1: Climbing an Infinite Ladder.

1.1.2 Mathematical Induction

In general, mathematical induction 1 can be used to prove state-
ments that assert that P (n) is true for all positive integers n, where
P (n) is a propositional function. A proof by mathematical induction
has two parts, a basis step, where we show that P (1) is true, and an
inductive step, where we show that for all positive integers k, if P (k)
is true, then P (k + 1) is true.

PRINCIPLE OF MATHEMATICAL INDUCTION To prove
that P (n) is true for all positive integers n, where P (n) is a propo-
sitional function, we complete two steps:

BASIS STEP: We verify that P (1) is true.

1Unfortunately, using the terminology “mathematical induction” clashes with the
terminology used to describe different types of reasoning. In logic, deductive rea-
soning uses rules of inference to draw conclusions from premises, whereas inductive
reasoning makes conclusions only supported, but not ensured, by evidence. Mathe-
matical proofs, including arguments that use mathematical induction, are deductive,
not inductive.

1.1.2 Mathematical Induction 11

INDUCTIVE STEP: We show that the conditional statement
P (k) → P (k + 1) is true for all positive integers k.

To complete the inductive step of a proof using the principle of
mathematical induction, we assume that P (k) is true for an arbitrary
positive integer k and show that under this assumption, P (k+1) must
also be true. The assumption that P (k) is true is called the inductive
hypothesis. Once we complete both steps in a proof by mathematical
induction, we have shown that P (n) is true for all positive integers,
that is, we have shown that ∀nP (n) is true where the quantification is
over the set of positive integers. In the inductive step, we show that
∀k(P (k) → P (k + 1)) is true, where again, the domain is the set of
positive integers.

Expressed as a rule of inference, this proof technique can be stated
as

(P (1) ∧ ∀k(P (k) → P (k + 1))) → ∀nP (n)

when the domain is the set of positive integers. Because mathematical
induction is such an important technique, it isworthwhile to explain in
detail the steps of a proof using this technique. The first thing we do
to prove that P (n) is true for all positive integers n is to show that
P (1) is true. This amounts to showing that the particular statement
obtained when n is replaced by 1 in P (n) is true. Then we must show
that P (k) → P (k + 1) is true for every positive integer k. To prove
that this conditional statement is true for every positive integer k, we
need to show that P (k + 1) cannot be false when P (k) is true. This
can be accomplished by assuming that P (k) is true and showing that
under this hypothesis P (k + 1) must also be true.

Remark! In a proof by mathematical induction it is not assumed
that P (k) is true for all positive integers! It is only shown that if
it is assumed that P (k) is true, then P (k + 1) is also true. Thus,
a proof by mathematical induction is not a case of begging the
question, or circular reasoning.

After completing the basis and inductive steps of a proof that P (n)
is true for all positive integers n, we know that P (1) is true. That is

12 CHAPTER 1. INDUCTION AND RECURSION314 5 / Induction and Recursion

FIGURE 2 Illustrating How Mathematical Induction Works Using Dominoes.

WAYS TO REMEMBER HOW MATHEMATICAL INDUCTION WORKS Thinking of
the infinite ladder and the rules for reaching steps can help you remember how mathematical
induction works. Note that statements (1) and (2) for the infinite ladder are exactly the basis
step and inductive step, respectively, of the proof that P(n) is true for all positive integers n,
where P(n) is the statement that we can reach the nth rung of the ladder. Consequently, we can
invoke mathematical induction to conclude that we can reach every rung.

Another way to illustrate the principle of mathematical induction is to consider an infinite
row of dominoes, labeled 1, 2, 3, . . . , n, . . . , where each domino is standing up. Let P(n) be
the proposition that domino n is knocked over. If the first domino is knocked over—i.e., if P(1)

is true—and if, whenever the kth domino is knocked over, it also knocks the (k + 1)st domino
over—i.e., if P(k)→ P(k + 1) is true for all positive integers k—then all the dominoes are
knocked over. This is illustrated in Figure 2.

Why Mathematical Induction is Valid

Why is mathematical induction a valid proof technique? The reason comes from the well-
ordering property, listed in Appendix 1, as an axiom for the set of positive integers, which
states that every nonempty subset of the set of positive integers has a least element. So, suppose
we know that P(1) is true and that the proposition P(k)→P(k + 1) is true for all positive
integers k. To show that P(n) must be true for all positive integers n, assume that there is at
least one positive integer for which P(n) is false. Then the set S of positive integers for which
P(n) is false is nonempty. Thus, by the well-ordering property, S has a least element, which
will be denoted by m. We know that m cannot be 1, because P(1) is true. Because m is positive
and greater than 1, m− 1 is a positive integer. Furthermore, because m− 1 is less than m, it is
not in S, so P(m− 1) must be true. Because the conditional statement P(m− 1)→P(m) is
also true, it must be the case that P(m) is true. This contradicts the choice of m. Hence, P(n)

must be true for every positive integer n.

The Good and the Bad of Mathematical Induction

An important point needs to be made about mathematical induction before we commence a
study of its use. The good thing about mathematical induction is that it can be used to prove

Figure 1.2: Illustrating How Mathematical InductionWorks Using
Dominoes.

what is shown in the basis step. We can conclude that P (2) is true,
because we know that P (1) is true and from the inductive step we know
that P (1) → P (2). Furthermore, we know that P (3) is true because
P (2) is true and we know that P (2) → P (3) from the inductive step.
Continuing along these lines using a finite number of implications, we
can show that P (n) is true for any particular positive integer n.

WAYS TO REMEMBER HOW MATHEMATICAL IN-
DUCTION WORKS

Thinking of the infinite ladder and the rules for reaching steps can
help you remember how mathematical induction works. Note that
statements (1) and (2) for the infinite ladder are exactly the basis step
and inductive step, respectively, of the proof that P (n) is true for all
positive integers n, where P (n) is the statement that we can reach the
nth rung of the ladder. Consequently, we can invoke mathematical
induction to conclude that we can reach every rung.

Another way to illustrate the principle of mathematical induction is
to consider an infinite row of dominoes, labeled 1, 2, 3, . . . , n, . . . , where
each domino is standing up. Let P(n) be the proposition that domino
n is knocked over. If the first domino is knocked over—i.e., if P (1) is

1.1.3 Why Mathematical Induction is Valid 13

true—and if, whenever the kth domino is knocked over, it also knocks
the (k+1)st domino over—i.e., if P (k) → P (k+1) is true for all positive
integers k—then all the dominoes are knocked over. This is illustrated
in Figure 1.2.

1.1.3 Why Mathematical Induction is Valid

Why is mathematical induction a valid proof technique? The reason
comes from the wellordering property, as an axiom for the set of positive
integers, which states that every nonempty subset of the set of positive
integers has a least element. So, suppose we know that P (1) is true and
that the proposition P (k) → P (k+1) is true for all positive integers k.
To show that P (n) must be true for all positive integers n, assume that
there is at least one positive integer for which P (n) is false. Then the
set S of positive integers for which P (n) is false is nonempty. Thus, by
the well-ordering property, S has a least element, which will be denoted
by m. We know that m cannot be 1, because P (1) is true. Because m
is positive and greater than 1, m−1 is a positive integer. Furthermore,
because m− 1 is less than m, it is not in S, so P (m− 1) must be true.
Because the conditional statement P (m − 1) → P (m) is also true, it
must be the case that P (m) is true. This contradicts the choice of m.
Hence, P (n) must be true for every positive integer n.

1.1.4 Choosing the Correct Basis Step

Mathematical induction can be used to prove theorems other than
those of the form “P (n) is true for all positive integers n.” Often, we
will need to show that P (n) is true for n = b, b + 1, b + 2, . . . , where
b is an integer other than 1. We can use mathematical induction to
accomplish this, as long as we change the basis step by replacing P (1)
with P (b). In other words, to use mathematical induction to show that
P (n) is true for n = b, b+1, b+2, . . ., where b is an integer other than
1, we show that P (b) is true in the basis step. In the inductive step,
we show that the conditional statement P (k) → P (k + 1) is true for
k = b, b+ 1, b+ 2, Note that b can be negative, zero, or positive.
Following the domino analogy we used earlier, imagine that we begin

14 CHAPTER 1. INDUCTION AND RECURSION

by knocking down the bth domino (the basis step), and as each domino
falls, it knocks down the next domino (the inductive step).

We will illustrate this notion in Example 3, which states that a sum-
mation formula is valid for all nonnegative integers. In this example,we
need to prove that P (n) is true for n = 0, 1, 2, So, the basis step
in Example 3 will show that P (0) is true.

1.1.5 Guidelines for Proofs by Mathematical Induction

Examples 1–14 will illustrate how to use mathematical induction to
prove a diverse collection of theorems. Each of these examples includes
all the elements needed in a proof by mathematical induction. We will
also present an example of an invalid proof by mathematical induction.
Before we give these proofs, we will provide some useful guidelines for
constructing correct proofs by mathematical induction.

Template for Proofs by Mathematical Induction

1. Express the statement that is to be proved in the form “for
all n ≥ b, P (n)” for a fixed integer b. For statements of
the form “P (n) for all positive integers n,” let b = 1, and
for statements of the form “P (n) for all nonnegative integers
n,” let b = 0. For some statements of the form P (n), such as
inequalities, you may need to determine the appropriate value
of b by checking the truth values of P (n) for small values of
n, as is done in Example 6.

2. Write out the words “Basis Step.” Then show that P (b) is
true, taking care that the correct value of b is used. This
completes the first part of the proof.

3. Write out the words “Inductive Step” and state, and clearly
identify, the inductive hypothesis, in the form “Assume that
P (k) is true for an arbitrary fixed integer k ≥ b.”

4. State what needs to be proved under the assumption that the
inductive hypothesis is true. That is, write out what P (k+1)
says.

1.1.6 The Good and the Bad of Mathematical Induction 15

5. Prove the statement P (k + 1) making use of the assumption
P (k). (Generally, this is the most difficult part of a mathe-
matical induction proof. Decide on the most promising proof
strategy and look ahead to see how to use the induction hy-
pothesis to build your proof of the inductive step. Also, be
sure that your proof is valid for all integers k with k ≥ b, tak-
ing care that the proof works for small values of k, including
k = b.)

6. Clearly identify the conclusion of the inductive step, such as
by saying “This completes the inductive step.”

7. After completing the basis step and the inductive step, state
the conclusion, namely, “By mathematical induction, P (n) is
true for all integers n with n ≥ b”.

1.1.6 The Good and the Bad of Mathematical Induction

An important point needs to be made about mathematical induc-
tion before we commence a study of its use. The good thing about
mathematical induction is that it can be used to prove a conjecture
once it is has been made (and is true). The bad thing about it is that
it cannot be used to find new theorems. Mathematicians sometimes
find proofs by mathematical induction unsatisfying because they do
not provide insights as to why theorems are true. Many theorems can
be proved in many ways, including by mathematical induction. Proofs
of these theorems by methods other than mathematical induction are
often preferred because of the insights they bring. (See Example 8 and
the subsequent remark for an example of this.)

1.1.7 Examples of Proofs by Mathematical Induction

Many theorems assert that P (n) is true for all positive integers n,
where P (n) is a propositional function. Mathematical induction is a
technique for proving theorems of this kind. In other words, mathe-
matical induction can be used to prove statements of the form ∀nP (n),

16 CHAPTER 1. INDUCTION AND RECURSION

where the domain is the set of positive integers. Mathematical induc-
tion can be used to prove an extremely wide variety of theorems, each
of which is a statement of this form. (Remember, many mathematical
assertions include an implicit universal quantifier. The statement “if n
is a positive integer, then n3−n is divisible by 3” is an example of this.
Making the implicit universal quantifier explicit yields the statement
“for every positive integer n, n3 − n is divisible by 3.”)

We will use a variety of examples to illustrate how theorems are
proved using mathematical induction. The theorems we will prove in-
clude summation formulae, inequalities, identities for combinations of
sets, divisibility results, theorems about algorithms, and some other
creative results.

There are many opportunities for errors in induction proofs. We will
describe some incorrect proofs by mathematical induction at the end of
this section and in the exercises. To avoid making errors in proofs by
mathematical induction, try to follow the guidelines for such proofs.

SEEING WHERE THE INDUCTIVE HYPOTHESIS IS
USED

To help the reader understand each of the mathematical induction
proofs in this section, we will note where the inductive hypothesis is
used. We indicate this use in three different ways: by explicit mention
in the text, by inserting the acronym IH (for inductive hypothesis) over
an equals sign or a sign for an inequality, or by specifying the inductive
hypothesis as the reason for a step in a multi-line display.

PROVING SUMMATION FORMULAE
We begin by using mathematical induction to prove several summa-

tion formulae. As we will see, mathematical induction is particularly
well suited for proving that such formulae are valid. However, sum-
mation formulae can be proven in other ways. This is not surprising
because there are often different ways to prove a theorem. The major
disadvantage of using mathematical induction to prove a summation
formula is that you cannot use it to derive this formula. That is, you
must already have the formula before you attempt to prove it by math-
ematical induction.

1.1.7 Examples of Proofs by Mathematical Induction 17

Examples 1–4 illustrate how to use mathematical induction to prove
summation formulae. The first summation formula we will prove by
mathematical induction, in Example 1, is a closed formula for the sum
of the smallest n positive integers.

�
EXAMPLE. 1

Show that if n is a positive integer, then

1 + 2 + . . .+ n =
n(n+ 1)

2
.

�� ��Solution: Let P (n) be the proposition that the sum of the first n positive
integers, 1 + 2 + . . . n = n(n+1)

2 , is n(n + 1)/2.bWe must do two things to
prove that P (n) is true for n = 1, 2, 3, Namely, we must show that P (1)
is true and that the conditional statement P (k) implies P (k + 1) is true for
k = 1, 2, 3,

BASIS STEP: P (1) is true, because 1 = 1(1+1)
2 . (The left-hand side of this

equation is 1 because 1 is the sum of the first positive integer. The right-hand
side is found by substituting 1 for n in n(n+ 1)/2.)

INDUCTIVE STEP: For the inductive hypothesis we assume that P (k)
holds for an arbitrary positive integer k. That is, we assume that

1 + 2 + . . .+ k =
k(k + 1)

2
.

Under this assumption, it must be shown that P (k + 1) is true, namely, that

1 + 2 + . . .+ k + (k + 1) =
(k + 1)[(k + 1) + 1]

2
=

(k + 1)(k + 2)

2

is also true.
We now look ahead to see how we might be able to prove that P (k + 1)

holds under the assumption that P (k) is true. We observe that the summation
in the left-hand side of P (k + 1) is k + 1 more than the summation in the
left-hand side of P (k). Our strategy will be to add k + 1 to both sides of
the equation in P (k) and simplify the result algebraically to complete the
inductive step.

We now return to the proof of the inductive step. When we add k + 1 to

18 CHAPTER 1. INDUCTION AND RECURSION

both sides of the equation in P (k), we obtain

1 + 2 + . . .+ k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
.

This last equation shows that P (k+1) is true under the assumption that
P (k) is true. This completes the inductive step.

We have completed the basis step and the inductive step, so by mathe-
matical induction we know that P (n) is true for all positive integers n. That
is, we have proven that 1+2+. . .+n = n(n+1)/2 for all positive integers n.

As we noted, mathematical induction is not a tool for finding the-
orems about all positive integers. Rather, it is a proof method for
proving such results once they are conjectured. In Example 2, using
mathematical induction to prove a summation formula, we will both
formulate and then prove a conjecture.

�
EXAMPLE. 2

Conjecture a formula for the sum of the first n positive odd integers. Then
prove your conjecture using mathematical induction.�� ��Solution: The sums of the first n positive odd integers for n = 1, 2, 3, 4, 5
are

1 = 1 1 + 3 = 4 1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 9 = 25

From these values it is reasonable to conjecture that the sum of the first n
positive odd integers is n2, that is, 1 + 3 + 5 + . . .+ (2n− 1) = n2. We need
a method to prove that this conjecture is correct, if in fact it is.

Let P (n) denote the proposition that the sum of the first n odd positive
integers is n2. Our conjecture is that P (n) is true for all positive integers
n. To use mathematical induction to prove this conjecture, we must first
complete the basis step; that is, we must show that P (1) is true. Then we
must carry out the inductive step; that is, we must show that P (k+1) is true
when P (k) is assumed to be true. We now attempt to complete these two
steps.

1.1.7 Examples of Proofs by Mathematical Induction 19

BASIS STEP: P (1) states that the sum of the first one odd positive
integer is 12. This is true because the sum of the first odd positive integer is
1. The basis step is complete.

INDUCTIVE STEP: To complete the inductive step we must show that
the proposition P (k) → P (k + 1) is true for every positive integer k. To do
this, we first assume the inductive hypothesis. The inductive hypothesis is
the statement that P (k) is true for an arbitrary positive integer k, that is,

1 + 3 + 5 + . . .+ (2k − 1) = k2.

(Note that the kth odd positive integer is (2k − 1), because this integer is
obtained by adding 2 a total of k − 1 times to 1.)

To show that ∀k(P (k) → P (k + 1)) is true, we must show that if P (k) is
true (the inductive hypothesis), then P (k + 1) is true. Note that P (k + 1) is
the statement that

1 + 3 + 5 + . . .+ (2k − 1) + (2k + 1) = (k + 1)2.

Before we complete the inductive step, we will take a time out to figure out
a strategy. At this stage of a mathematical induction proof it is time to look
for a way to use the inductive hypothesis to show that P (k+1) is true. Here
we note that 1+3+5+ . . .+(2k− 1)+ (2k+1) is the sum of its first k terms
1+3+5+ . . .+(2k−1) and its last term 2k−1. So, we can use our inductive
hypothesis to replace 1 + 3 + 5 + . . .+ (2k − 1) by k2.

We now return to our proof. We find that

1 + 3 + 5 + . . .+ (2k − 1) + (2k + 1) = [1 + 3 + . . .+ (2k − 1)] + (2k + 1)
= k2 + (2k + 1)
= k2 + 2k + 1
= (k + 1)2.

This shows that P (k+1) follows from P (k). Note that we used the inductive
hypothesis P (k) in the second equality to replace the sum of the first k odd
positive integers by k2.

We have now completed both the basis step and the inductive step.
That is, we have shown that P (1) is true and the conditional statement
P (k) → P (k + 1) is true for all positive integers k. Consequently, by the
principle of mathematical induction we can conclude that P (n) is true for all
positive integers n. That is, we know that 1 + 3 + 5 + . . .+ (2n− 1) = n2 for
all positive integers n.

20 CHAPTER 1. INDUCTION AND RECURSION

�
EXAMPLE. 3

Use mathematical induction to show that

1 + 2 + 22 + . . .+ 2n = 2n+1 − 1

for all nonnegative integers n.�� ��Solution: Let P (n) be the proposition that 1+2+22+ . . .+2n = 2n+1−1
for the integer n.

BASIS STEP: P (0) is true because 20 = 1 = 21 − 1. This completes the
basis step.

INDUCTIVE STEP: For the inductive hypothesis, we assume that P (k)
is true for an arbitrary nonnegative integer k. That is, we assume that

1 + 2 + 22 + . . .+ 2k = 2k+1 − 1.

To carry out the inductive step using this assumption, we must show that
when we assume that P (k) is true, then P (k + 1) is also true. That is, we
must show that

1 + 2 + 22 + . . .+ 2k + 2k+1 = 2(k+1)+1 − 1 = 2k+2 − 1

assuming the inductive hypothesis P (k). Under the assumption of P (k), we
see that

1 + 2 + 22 + . . .+ 2k + 2k+1 = (1 + 2 + 22 + . . .+ 2k) + 2k+1

= (2k+1 − 1) + 2k+1

= 2 · 2k+1 − 1
= 2k+2 − 1.

Note that we used the inductive hypothesis in the second equation in this
string of equalities to replace 1 + 2 + 22 + . . . + 2k by 2k+1 − 1. We have
completed the inductive step.

Becausewe have completed the basis step and the inductive step, by math-
ematical induction we know that P (n) is true for all nonnegative integers n.
That is, 1 + 2 + . . .+ 2n = 2n+1 − 1 for all nonnegative integers n.

The formula given in Example 3 is a special case of a general result
for the sum of terms of a geometric progression. We will use mathe-
matical induction to provide an alternative proof of this formula.

1.1.7 Examples of Proofs by Mathematical Induction 21

�
EXAMPLE. 4

Sums of Geometric Progressions
Use mathematical induction to prove this formula for the sum of a finite

number of terms of a geometric progression with initial term a and common
ratio r:

n∑
j=0

arj = a+ ar + ar2 + . . .+ arn =
arn+1 − a

r − 1
when r ̸= 1,

where n is a nonnegative integer.�� ��Solution: To prove this formula using mathematical induction, let P (n) be
the statement that the sum of the first n+1 terms of a geometric progression
in this formula is correct.

BASIS STEP: P (0) is true, because

ar0+1 − a

r − 1
=

ar − a

r − 1
=

a(r − 1)

r − 1
= a.

INDUCTIVE STEP: The inductive hypothesis is the statement that P (k)
is true, where k is an arbitrary nonnegative integer. That is, P (k) is the
statement that

a+ ar + ar2 + . . .+ ark =
ark+1 − a

r − 1
.

To complete the inductive step we must show that if P (k) is true, then P (k+1)
is also true. To show that this is the case, we first add ark+1 to both sides of
the equality asserted by P (k). We find that

a+ ar + ar2 + . . .+ ark + ark+1 =
ark+1 − a

r − 1
+ ark+1.

Rewriting the right-hand side of this equation shows that

ark+1−a
r−1 + ark+1 = ark+1−a

r−1 + ark+2−ark+1

r−1

= ark+2−a
r−1 .

Combining these last two equations gives

a+ ar + ar2 + . . .+ ark + ark+1 =
ark+2 − a

r − 1
.

22 CHAPTER 1. INDUCTION AND RECURSION

This shows that if the inductive hypothesis P (k) is true, then P (k + 1)

must also be true. This completes the inductive argument. We have com-
pleted the basis step and the inductive step, so by mathematical induction
P (n) is true for all nonnegative integers n. This shows that the formula for
the sum of the terms of a geometric series is correct.

As previously mentioned, the formula in Example 3 is the case of
the formula in Example 4 with a = 1 and r = 2. The reader should
verify that putting these values for a and r into the general formula
gives the same formula as in Example 3.

PROVING INEQUALITIES
Mathematical induction can be used to prove a variety of inequali-

ties that hold for all positive integers greater than a particular positive
integer, as Examples 5–7 illustrate.

�
EXAMPLE. 5

Use mathematical induction to prove the inequality

n < 2n

for all positive integers n.�� ��Solution: Let P (n) be the proposition that n < 2n.
BASIS STEP: P (1) is true, because 1 < 21 = 2. This completes the basis

step.
INDUCTIVE STEP: We first assume the inductive hypothesis that P (k)

is true for an arbitrary positive integer k. That is, the inductive hypothesis
P (k) is the statement that k < 2k. To complete the inductive step, we need
to show that if P (k) is true, then P (k + 1), which is the statement that
k + 1 < 2k + 1 is true. That is, we need to show that if k < 2k, then
k+1 < 2k+1. To show that this conditional statement is true for the positive
integer k, we first add 1 to both sides of k < 2k, and then note that 1 ≤ 2k.
This tells us that

k + 1 < 2k + 1 ≤ 2k + 2k = 2 · 2k = 2k+1.

This shows that P (k + 1) is true, namely, that k + 1 < 2k+1, based on the
assumption that P (k) is true. The induction step is complete.

1.1.7 Examples of Proofs by Mathematical Induction 23

Therefore, because we have completed both the basis step and the in-
ductive step, by the principle of mathematical induction we have shown that
n < 2n is true for all positive integers n.

�
EXAMPLE. 6

Use mathematical induction to prove that 2n < n! for every integer n with
n ≥ 4. (Note that this inequality is false for n = 1, 2, and 3.)�� ��Solution: Let P (n) be the proposition that 2n < n!.

BASIS STEP: To prove the inequality for n ≥ 4 requires that the basis
step be P (4). Note that P (4) is true, because 24 = 16 < 24 = 4!

INDUCTIVE STEP: For the inductive step, we assume that P (k) is true
for an arbitrary integer k with k ≥ 4. That is, we assume that 2k < k! for
the positive integer k with k ≥ 4. We must show that under this hypothesis,
P (k + 1) is also true. That is, we must show that if 2k < k! for an arbitrary
positive integer k where k ≥ 4, then 2k + 1 < (k + 1)!. We have

2k+1 = 2 · 2k by definition of exponent
< 2 · k! by the inductive hypothesis
< (k + 1)k! because 2 < k + 1
= (k + 1)! by definition of factorial function.

This shows that P (k + 1) is true when P (k) is true. This completes the
inductive step of the proof.

We have completed the basis step and the inductive step. Hence, by
mathematical induction P (n) is true for all integers n with n ≥ 4. That is,
we have proved that 2n < n! is true for all integers n with n ≥ 4.
An important inequality for the sum of the reciprocals of a set of positive
integers will be proved in Example 7.

�
EXAMPLE. 7

An Inequality for Harmonic Numbers. The harmonic numbers Hj , j =
1, 2, 3, . . ., are defined by

Hj = 1 +
1

2
+

1

3
+ . . .+

1

j
.

For instance,

H4 = 1 +
1

2
+

1

3
+

1

4
=

25

12
.

24 CHAPTER 1. INDUCTION AND RECURSION

Use mathematical induction to show that

H2n ≥ 1 +
n

2
,

whenever n is a nonnegative integer.�� ��Solution: To carry out the proof, let P (n) be the proposition that H2n ≥
1 + n

2 .
BASIS STEP: P (0) is true, because H20 = H1 = 1 ≥ 1 + 0

2 .
INDUCTIVE STEP: The inductive hypothesis is the statement that P (k)

is true, that is, H2k ≥ 1+ k
2 , where k is an arbitrary nonnegative integer. We

must show that if P (k) is true, then P (k + 1), which states that H2k+1 ≥
1 + k+1

2 , is also true. So, assuming the inductive hypothesis, it follows that

H2k+1 = 1 + 1
2 + 1

3 + . . .+
+ 1

2k
+ 1

2k+1
+ . . .+ 1

2k+1 by the definition of
harmonic number

= H2k + 1
2k+1

+ . . .+ 1
2k+1 by the definition of 2kth

harmonic number
≥ (1 + k

2) +
1

2k+1
+ . . .+ 1

2k+1 by the inductive
hypothesis

≥ (1 + k
2) + 2k · 1

2k+1 because there are 2k terms
each ≥ 1/2k+1

≥ (1 + k
2) +

1
2 canceling a common

factor of 2k in second term
= 1 + k+1

2

This establishes the inductive step of the proof.
We have completed the basis step and the inductive step. Thus, by math-

ematical induction P (n) is true for all nonnegative integers n. That is, the
inequality H2n ≥ 1 + n

2 for the harmonic numbers holds for all nonnegative
integers n.

Remark! The inequality established here shows that the har-
monic series

1 +
1

2
+

1

3
+ . . .+

1

n
+ . . .

is a divergent infinite series. This is an important example in the
study of infinite series.

1.1.7 Examples of Proofs by Mathematical Induction 25

PROVING DIVISIBILITY RESULTS
Mathematical induction can be used to prove divisibility results

about integers. Although such results are often easier to prove using
basic results in number theory, it is instructive to see how to prove such
results using mathematical induction, as Examples 8 and 9 illustrate.

�
EXAMPLE. 8

Use mathematical induction to prove that n3 − n is divisible by 3 whenever
n is a positive integer.�� ��Solution: To construct the proof, let P (n) denote the proposition: “n3−n
is divisible by 3.”

BASIS STEP: The statement P (1) is true because 13 − 1 = 0 is divisible
by 3. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis we assume that P (k)
is true; that is, we assume that k3 − k is divisible by 3 for an arbitrary
positive integer k. To complete the inductive step, we must show that when
we assume the inductive hypothesis, it follows that P (k + 1), the statement
that (k + 1)3 − (k + 1) is divisible by 3, is also true. That is, we must show
that (k + 1)3 − (k + 1) is divisible by 3. Note that

(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1)− (k + 1)
= (k3 − k) + 3(k2 + k).

Using the inductive hypothesis, we conclude that the first term k3 − k
is divisible by 3. The second term is divisible by 3 because it is 3 times an
integer. We know that (k+1)3− (k+1) is also divisible by 3. This completes
the inductive step.

Because we have completed both the basis step and the inductive step,
by the principle of mathematical induction we know that n3 − n is divisible
by 3 whenever n is a positive integer.

Remark! We have included Example 8 as an illustration how a
divisibility result can be proved by mathematical induction. How-
ever, there are simpler proofs. For example, we can prove that
n3 − n is divisible by 3 for all positive integers n using the factor-
ization n3 − n = n(n2 − 1) = n(n − 1)(n + 1) = (n − 1)n(n + 1).
Hence, n3 − 1 is divisible by 3 because it is the product of three

26 CHAPTER 1. INDUCTION AND RECURSION

consecutive integers, one of which is divisible by 3.

Example 9 presents a more challenging proof by mathematical in-
duction of a divisibility result.

�
EXAMPLE. 9

Use mathematical induction to prove that 7n+2 + 82n+1 is divisible by 57 for
every nonnegative integer n.�� ��Solution: To construct the proof, let P (n)4 denote the proposition: “7n+2+
82n+1 is divisible by 57”

BASIS STEP: To complete the basis step, we must show that P (0) is true,
because we want to prove that P (n) is true for every nonnegative integer n.
We see that P (0) is true because 70+2 + 82·0+1 = 72 + 81 = 57 is divisible by
57. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis we assume that P (k)
is true for an arbitrary nonnegative integer k; that is, we assume that 7k+2 +
82k+1 is divisible by 57. To complete the inductive step, we must show that
when we assume that the inductive hypothesis P (k) is true, then P (k + 1),
the statement that 7(k+1)+2 + 82(k+1)+1 is divisible by 57, is also true.

The difficult part of the proof is to see how to use the inductive hypothesis.
To take advantage of the inductive hypothesis, we use these steps:

7(k+1)+2 + 82(k+1)+1 = 7k+3 + 82k+3

= 7 · 7k+2 + 82 · 82k+1

= 7 · 7k+2 + 64 · 82k+1

= 7(7k+2 + 82k+1) + 57 · 82k+1.

We can now use the inductive hypothesis, which states that 7k+2 + 82k+1 is
divisible by 57. We conclude that the first termin this last sum, 7(7k+2 +
82k+1), is divisible by 57. The second term in this sum, 57 · 82k+1, is divisible
by 57. Hence, we conclude that 7(7k+2 + 82k+1) + 57 · 82k+1 = 7k+3 + 82k+3

is divisible by 57. This completes the inductive step.
Because we have completed both the basis step and the inductive step, by

the principle of mathematical induction we know that 7n+2+82n+1 is divisible
by 57 for every nonnegative integer n.

PROVING RESULTS ABOUT SETS

1.1.7 Examples of Proofs by Mathematical Induction 27

Mathematical induction can be used to prove many results about
sets. In particular, in Example 10 we prove a formula for the number
of subsets of a finite set and in Example 11 we establish a set identity.

�
EXAMPLE. 10

The Number of Subsets of a Finite Set Use mathematical induction to
show that if S is a finite set with n elements, where n is a nonnegative integer,
then S has 2n subsets.�� ��Solution: Let P (n) be the proposition that a set with n elements has 2n

subsets.
BASIS STEP: P (0) is true, because a set with zero elements, the empty

set, has exactly 20 = 1 subset, namely, itself.
INDUCTIVE STEP: For the inductive hypothesis we assume that P (k) is

true for an arbitrary nonnegative integer k, that is, we assume that every set
with k elements has 2k subsets. It must be shown that under this assumption,
P (k+1), which is the statement that every set with k+1 elements has 2k+1
subsets, must also be true. To show this, let T be a set with k + 1 elements.
Then, it is possible to write T = S ∪ {a}, where a is one of the elements of T
and S = T − {a} (and hence |S| = k). The subsets of T can be obtained in
the following way. For each subset X of S there are exactly two subsets of T ,
namely, X and X ∪ {a}. (This is illustrated in Figure 1.3.) These constitute
all the subsets of T and are all distinct. We now use the inductive hypothesis
to conclude that S has 2k subsets, because it has k elements. We also know
that there are two subsets of T for each subset of S. Therefore, there are
2 · 2k = 2k+1 subsets of T . This finishes the inductive argument.

Becausewe have completed the basis step and the inductive step, by math-
ematical induction it follows that P (n) is true for all nonnegative integers n.
That is, we have proved that a set with n elements has 2n subsets whenever
n is a nonnegative integer.

�
EXAMPLE. 11

Use mathematical induction to prove the following generalization of one of De
Morgan’s laws:

n⋂
j=1

Aj =

n⋃
j=1

Āj

28 CHAPTER 1. INDUCTION AND RECURSION
5.1 Mathematical Induction 345

X

S

X

T

a∙

Ta∙
X ∪ {a}

FIGURE 3 Generating subsets of a set with k + 1 elements. Here T = S ∪ {a}.

Solution: Let P(n) be the identity for n sets.

BASIS STEP: The statement P(2) asserts that A1 ∩ A2 = A1 ∪ A2. This is one of De Morgan’s

laws; it was proved in Example 11 of Section 2.2.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, where k is an

arbitrary integer with k ≥ 2; that is, it is the statement that

k⋂

j= 1

Aj =
k⋃

j= 1

Aj

whenever A1, A2,… , Ak are subsets of the universal set U. To carry out the inductive step, we

need to show that this assumption implies that P(k + 1) is true. That is, we need to show that

if this equality holds for every collection of k subsets of U, then it must also hold for every

collection of k + 1 subsets of U. Suppose that A1, A2,… , Ak, Ak+1 are subsets of U. When the

inductive hypothesis is assumed to hold, it follows that

k+1⋂

j= 1

Aj =
(k⋂

j= 1

Aj

)

∩ Ak+1
by the definition of intersection

=
(k⋂

j= 1

Aj

)

∪ Ak+1 by De Morgan’s law (where the two sets are
⋂k

j= 1
Aj and Ak+1)

IH
=
(k⋃

j= 1

Aj

)

∪ Ak+1 by the inductive hypothesis

=
k+1⋃

j= 1

Aj by the definition of union.

This completes the inductive step.

Figure 1.3: Generating subsets of a set with k + 1 elements. Here
T = S ∪ {a}.

whenever A1, A2, . . . , An are subsets of a universal set U and n ≥ 2.�� ��Solution: Let P (n) be the identity for n sets.
BASIS STEP: The statement P (2) asserts that A1 ∩A2 = Ā1 ∪ Ā2. This

is one of De Morgan’s laws.
INDUCTIVE STEP: The inductive hypothesis is the statement that P (k)

is true, where k is an arbitrary integer with k ≥ 2; that is, it is the statement
that

k⋂
j=1

Aj =

k⋃
j=1

Āj

whenever A1, A2, . . . , Ak are subsets of the universal set U . To carry out the
inductive step, we need to show that this assumption implies that P (k+1) is
true. That is, we need to show that if this equality holds for every collection
of k subsets of U , then it must also hold for every collection of k+1 subsets of
U . Suppose that A1, A2, . . . , Ak, Ak+1 are subsets of U . When the inductive
hypothesis is assumed to hold, it follows that

⋂k+1
j=1Aj =

(⋂k
j=1 Aj

)
∩Ak+1 by the definition of intersection

=
(⋂k

j=1 Aj

)
∪Ak+1 by De Morgan’s law (where the

two sets are ∩k
j=1 Aj and Ak+1)

=
(⋂k

j=1 Aj

)
∪Ak+1 by the inductive hypothesis

=
⋃k+1

j=1 Aj by the definition of union.

This completes the inductive step.

1.1.7 Examples of Proofs by Mathematical Induction 29

Because we have completed both the basis step and the inductive step, by
mathematical induction we know that P (n) is true whenever n is a positive
integer, n ≥ 2. That is, we know that

n⋂
j=1

Aj =

n⋃
j=1

Aj

whenever A1, A2, . . . , An are subsets of a universal set U and n ≥ 2.

PROVING RESULTS ABOUT ALGORITHMS Next, we
provide an example (somewhat more difficult than previous examples)
that illustrates one of many ways mathematical induction is used in
the study of algorithms. We will show how mathematical induction can
be used to prove that a greedy algorithm we introduced in Section 3.1
always yields an optimal solution.

�
EXAMPLE. 12

Recall the algorithm for scheduling talks discussed in Example 7 of Section
3.1. The input to this algorithm is a group of m proposed talks with preset
starting and ending times. The goal is to schedule as many of these lectures
as possible in the main lecture hall so that no two talks overlap. Suppose that
talk tj begins at time sj and ends at time ej .

Without loss of generality, we assume that the talks are listed in order
of nondecreasing ending time, so that e1 ≤ e2 ≤ . . . ≤ em. The greedy
algorithm proceeds by selecting at each stage a talk with the earliest ending
time among all those talks that begin no sooner than when the last talk
scheduled in the main lecture hall has ended. Note that a talk with the
earliest end time is always selected first by the algorithm. We will show that
this greedy algorithm is optimal in the sense that it always schedules the
most talks possible in the main lecture hall. To prove the optimality of this
algorithm we use mathematical induction on the variable n, the number of
talks scheduled by the algorithm. We let P (n) be the proposition that if the
greedy algorithm schedules n talks in the main lecture hall, then it is not
possible to schedule more than n talks in this hall.

BASIS STEP: Suppose that the greedy algorithm managed to schedule
just one talk, t1, in the main lecture hall. This means that no other talk can
start at or after e1, the end time of t1. Otherwise, the first such talk we come
to as we go through the talks in order of nondecreasing end times could be

30 CHAPTER 1. INDUCTION AND RECURSION

added. Hence, at time e1 each of the remaining talks needs to use the main
lecture hall because they all start before e1 and end after e1. It follows that
no two talks can be scheduled because both need to use the main lecture hall
at time e1. This shows that P (1) is true and completes the basis step.

INDUCTIVE STEP: The inductive hypothesis is that P (k) is true, where
k is an arbitrary positive integer, that is, that the greedy algorithm always
schedules the most possible talks when it selects k talks, where k is a positive
integer, given any set of talks, no matter how many. We must show that
P (k+1) follows from the assumption that P (k) is true, that is, we must show
that under the assumption of P (k), the greedy algorithm always schedules
the most possible talks when it selects k + 1 talks.

Now suppose that the greedy algorithm has selected k+1 talks. Our first
step in completing the inductive step is to show there is a schedule including
the most talks possible that contains talk t1, a talk with the earliest end time.
This is easy to see because a schedule that begins with the talk ti in the list,
where i > 1, can be changed so that talk t1 replaces talk ti. To see this, note
that because e1 ≤ ei, all talks thatwere scheduled to followtalk ti can still be
scheduled. Once we included talk t1, scheduling the talks so that as many
as possible are scheduled is reduced to scheduling as many talks as possible
that begin at or after time e1. So, if we have scheduled as many talks as
possible, the schedule of talks other than talk t1 is an optimal schedule of the
original talks that begin once talk t1 has ended. Because the greedy algorithm
schedules k talks when it creates this schedule, we can apply the inductive
hypothesis to conclude that it has scheduled the most possible talks. It follows
that the greedy algorithm has scheduled the most possible talks, k+ 1, when
it produced a schedule with k + 1 talks, so P (k + 1) is true. This completes
the inductive step.

We have completed the basis step and the inductive step. So, by mathe-
matical induction we know that P (n) is true for all positive integers n. This
completes the proof of optimality. That is, we have proved that when the
greedy algorithm schedules n talks, when n is a positive integer, then it is not
possible to schedule more than n talks.

CREATIVE USES OF MATHEMATICAL INDUCTION
Mathematical induction can often be used in unexpected ways. We
will illustrate two particularly clever uses of mathematical induction
here, the first relating to survivors in a pie fight and the second relat-
ing to tilings with regular triominoes of checkerboards with one square
missing.

1.1.7 Examples of Proofs by Mathematical Induction 31

�
EXAMPLE. 13

Odd Pie Fights An odd number of people stand in a yard at mutually
distinct distances. At the same time each person throws a pie at their nearest
neighbor, hitting this person. Use mathematical induction to show that there
is at least one survivor, that is, at least one person who is not hit by a pie.�� ��Solution: Let P (n) be the statement that there is a survivor whenever
2n + 1 people stand in a yard at distinct mutual distances and each person
throws a pie at their nearest neighbor. To prove this result, we will show that
P (n) is true for all positive integers n. This follows because as n runs through
all positive integers, 2n+1 runs through all odd integers greater than or equal
to 3. Note that one person cannot engage in a pie fight because there is no
one else to throw the pie at.

BASIS STEP: When n = 1, there are 2n+ 1 = 3 people in the pie fight.
Of the three people, suppose that the closest pair are A and B, and C is
the third person. Because distances between pairs of people are different,
the distance between A and C and the distance between B and C are both
different from, and greater than, the distance between A and B. It follows
that A and B throw pies at each other, while C throws a pie at either A or
B, whichever is closer. Hence, C is not hit by a pie. This shows that at least
one of the three people is not hit by a pie, completing the basis step.

INDUCTIVE STEP: For the inductive step, assume that P (k) is true
for an arbitrary odd integer k with k ≥ 3. That is, assume that there is at
least one survivor whenever 2k + 1 people stand in a yard at distinct mutual
distances and each throws a pie at their nearest neighbor. We must show that
if the inductive hypothesis P (k) is true, then P (k + 1), the statement that
there is at least one survivor whenever 2(k + 1) + 1 = 2k + 3 people stand
in a yard at distinct mutual distances and each throws a pie at their nearest
neighbor, is also true.

So suppose that we have 2(k + 1) + 1 = 2k + 3 people in a yard with
distinct distances between pairs of people. Let A and B be the closest pair
of people in this group of 2k + 3 people. When each person throws a pie at
the nearest person, A and B throw pies at each other. We have two cases to
consider, (i) when someone else throws a pie at either A or B and (ii) when
no one else throws a pie at either A or B.

Case (i): Because A and B throw pies at each other and someone else
throws a pie at either A and B, at least three pies are thrown at A and B,
and at most (2k+3)−3 = 2k pies are thrown at the remaining 2k+1 people.
This guarantees that at least one person is a survivor, for if each of these

32 CHAPTER 1. INDUCTION AND RECURSION

2k+1 people was hit by at least one pie, a total of at least 2k+1 pies would
have to be thrown at them.

Case (ii): No one else throws a pie at either A and B. Besides A and B,
there are 2k + 1 people. Because the distances between pairs of these people
are all different, we can use the inductive hypothesis to conclude that there
is at least one survivor S when these 2k+ 1 people each throws a pie at their
nearest neighbor. Furthermore, S is also not hit by either the pie thrown by
A or the pie thrown by B because A and B throw their pies at each other, so
S is a survivor because S is not hit by any of the pies thrown by these 2k+3
people.

We have completed both the basis step and the inductive step, using a
proof by cases. So by mathematical induction it follows that P (n) is true for
all positive integers n. We conclude that whenever an odd number of people
located in a yard at distinct mutual distances each throws a pie at their near-
est neighbor, there is at least one survivor.

348 5 / Induction and Recursion

of these 2k + 1 people was hit by at least one pie, a total of at least 2k + 1 pies would have to be

thrown at them. (The reasoning used in this last step is an example of the pigeonhole principle

discussed further in Section 6.2.)

Case (ii): No one else throws a pie at either A and B. Besides A and B, there are 2k + 1 people.

Because the distances between pairs of these people are all different, we can use the induc-

tive hypothesis to conclude that there is at least one survivor S when these 2k + 1 people each

throws a pie at their nearest neighbor. Furthermore, S is also not hit by either the pie thrown

by A or the pie thrown by B because A and B throw their pies at each other, so S is a survivor

because S is not hit by any of the pies thrown by these 2k + 3 people.

We have completed both the basis step and the inductive step, using a proof by cases. So by

mathematical induction it follows that P(n) is true for all positive integers n. We conclude that

whenever an odd number of people located in a yard at distinct mutual distances each throws a

pie at their nearest neighbor, there is at least one survivor. ◂

In Section 1.8 we discussed the tiling of checkerboards by polyominoes. Example 14 illus-Links
trates how mathematical induction can be used to prove a result about covering checkerboards

with right triominoes, pieces shaped like the letter “L.”

EXAMPLE 14 Let n be a positive integer. Show that every 2n × 2n checkerboard with one square removed can

be tiled using right triominoes, where these pieces cover three squares at a time, as shown in

Figure 4.

FIGURE 4 A
right triomino.

Solution: Let P(n) be the proposition that every 2n × 2n checkerboard with one square removed

can be tiled using right triominoes. We can use mathematical induction to prove that P(n) is

true for all positive integers n.

BASIS STEP: P(1) is true, because each of the four 2 × 2 checkerboards with one square re-

moved can be tiled using one right triomino, as shown in Figure 5.

FIGURE 5 Tiling 2 × 2 checkerboards with one square removed.

INDUCTIVE STEP: The inductive hypothesis is the assumption that P(k) is true for the positive

integer k; that is, it is the assumption that every 2k × 2k checkerboard with one square removed

can be tiled using right triominoes. It must be shown that under the assumption of the inductive

hypothesis, P(k + 1) must also be true; that is, any 2k+1 × 2k+1 checkerboard with one square

removed can be tiled using right triominoes.

To see this, consider a 2k+1 × 2k+1 checkerboard with one square removed. Split this

checkerboard into four checkerboards of size 2k × 2k, by dividing it in half in both directions.

This is illustrated in Figure 6. No square has been removed from three of these four checker-

boards. The fourth 2k × 2k checkerboard has one square removed, so we now use the inductive

hypothesis to conclude that it can be covered by right triominoes. Now temporarily remove the

square from each of the other three 2k × 2k checkerboards that has the center of the original,

larger checkerboard as one of its corners, as shown in Figure 7. By the inductive hypothesis,

each of these three 2k × 2k checkerboards with a square removed can be tiled by right triomi-

noes. Furthermore, the three squares that were temporarily removed can be covered by one right

triomino. Hence, the entire 2k+1 × 2k+1 checkerboard can be tiled with right triominoes.

Figure 1.4: A right
triomino.

Example 14 illustrates how mathematical in-
duction can be used to prove a result about
covering checkerboards with right triominoes,
pieces shaped like the letter “L.”

�
EXAMPLE. 14

Let n be a positive integer. Show that every 2n×2n

checkerboard with one square removed can be tiled
using right triominoes, where these pieces cover three squares at a time, as
shown in Figure 1.4.�� ��Solution: Let P (n) be the proposition that every 2n × 2n checkerboard
with one square removed can be tiled using right triominoes. We can use
mathematical induction to prove that P (n) is true for all positive integers n.

BASIS STEP: P (1) is true, because each of the four 2× 2 checkerboards
with one square removed can be tiled using one right triomino, as shown in
Figure 1.5.

INDUCTIVE STEP: The inductive hypothesis is the assumption that
P (k) is true for the positive integer k; that is, it is the assumption that
every 2k × 2k checkerboard with one square removed can be tiled using right
triominoes. It must be shown that under the assumption of the inductive
hypothesis, P (k+1) must also be true; that is, any 2k+1×2k+1 checkerboard
with one square removed can be tiled using right triominoes.

1.1.7 Examples of Proofs by Mathematical Induction 33

348 5 / Induction and Recursion

of these 2k + 1 people was hit by at least one pie, a total of at least 2k + 1 pies would have to be

thrown at them. (The reasoning used in this last step is an example of the pigeonhole principle

discussed further in Section 6.2.)

Case (ii): No one else throws a pie at either A and B. Besides A and B, there are 2k + 1 people.

Because the distances between pairs of these people are all different, we can use the induc-

tive hypothesis to conclude that there is at least one survivor S when these 2k + 1 people each

throws a pie at their nearest neighbor. Furthermore, S is also not hit by either the pie thrown

by A or the pie thrown by B because A and B throw their pies at each other, so S is a survivor

because S is not hit by any of the pies thrown by these 2k + 3 people.

We have completed both the basis step and the inductive step, using a proof by cases. So by

mathematical induction it follows that P(n) is true for all positive integers n. We conclude that

whenever an odd number of people located in a yard at distinct mutual distances each throws a

pie at their nearest neighbor, there is at least one survivor. ◂

In Section 1.8 we discussed the tiling of checkerboards by polyominoes. Example 14 illus-Links
trates how mathematical induction can be used to prove a result about covering checkerboards

with right triominoes, pieces shaped like the letter “L.”

EXAMPLE 14 Let n be a positive integer. Show that every 2n × 2n checkerboard with one square removed can

be tiled using right triominoes, where these pieces cover three squares at a time, as shown in

Figure 4.

FIGURE 4 A
right triomino.

Solution: Let P(n) be the proposition that every 2n × 2n checkerboard with one square removed

can be tiled using right triominoes. We can use mathematical induction to prove that P(n) is

true for all positive integers n.

BASIS STEP: P(1) is true, because each of the four 2 × 2 checkerboards with one square re-

moved can be tiled using one right triomino, as shown in Figure 5.

FIGURE 5 Tiling 2 × 2 checkerboards with one square removed.

INDUCTIVE STEP: The inductive hypothesis is the assumption that P(k) is true for the positive

integer k; that is, it is the assumption that every 2k × 2k checkerboard with one square removed

can be tiled using right triominoes. It must be shown that under the assumption of the inductive

hypothesis, P(k + 1) must also be true; that is, any 2k+1 × 2k+1 checkerboard with one square

removed can be tiled using right triominoes.

To see this, consider a 2k+1 × 2k+1 checkerboard with one square removed. Split this

checkerboard into four checkerboards of size 2k × 2k, by dividing it in half in both directions.

This is illustrated in Figure 6. No square has been removed from three of these four checker-

boards. The fourth 2k × 2k checkerboard has one square removed, so we now use the inductive

hypothesis to conclude that it can be covered by right triominoes. Now temporarily remove the

square from each of the other three 2k × 2k checkerboards that has the center of the original,

larger checkerboard as one of its corners, as shown in Figure 7. By the inductive hypothesis,

each of these three 2k × 2k checkerboards with a square removed can be tiled by right triomi-

noes. Furthermore, the three squares that were temporarily removed can be covered by one right

triomino. Hence, the entire 2k+1 × 2k+1 checkerboard can be tiled with right triominoes.

Figure 1.5: Tiling 2× 2 checkerboards with one square removed.5.1 Mathematical Induction 349

FIGURE 6 Dividing a
2k+1 × 2k+1 checkerboard into
four 2k × 2k checkerboards.

FIGURE 7 Tiling the
2k+1 × 2k+1 checkerboard
with one square removed.

We have completed the basis step and the inductive step. Therefore, by mathematical in-

duction P(n) is true for all positive integers n. This shows that we can tile every 2n × 2n checker-

board, where n is a positive integer, with one square removed, using right triominoes. ◂

5.1.8 Mistaken Proofs By Mathematical Induction
As with every proof method, there are many opportunities for making errors when using mathe-

matical induction. Many well-known mistaken, and often entertaining, proofs by mathematical
Consult Common Errors
in Discrete Mathematics
on this book’s website

for more basic mistakes.

induction of clearly false statements have been devised, as exemplified by Example 15 and

Exercises 49–51. Often, it is not easy to find where the error in reasoning occurs in such mis-

taken proofs.

To uncover errors in proofs by mathematical induction, remember that in every such proof,

both the basis step and the inductive step must be done correctly. Not completing the basis step

in a supposed proof by mathematical induction can lead to mistaken proofs of clearly ridiculous

statements such as “n = n + 1 whenever n is a positive integer.” (We leave it to the reader to

show that it is easy to construct a correct inductive step in an attempted proof of this statement.)

Locating the error in a faulty proof by mathematical induction, as Example 15 illustrates, can

be quite tricky, especially when the error is hidden in the basis step.

EXAMPLE 15 Find the error in this “proof” of the clearly false claim that every set of lines in the plane, no

two of which are parallel, meet in a common point.

“Proof:” Let P(n) be the statement that every set of n lines in the plane, no two of which are

parallel, meet in a common point. We will attempt to prove that P(n) is true for all positive

integers n ≥ 2.

BASIS STEP: The statement P(2) is true because any two lines in the plane that are not parallel

meet in a common point (by the definition of parallel lines).

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true for the positive

integer k, that is, it is the assumption that every set of k lines in the plane, no two of which are

parallel, meet in a common point. To complete the inductive step, we must show that if P(k) is

true, then P(k + 1) must also be true. That is, we must show that if every set of k lines in the

plane, no two of which are parallel, meet in a common point, then every set of k + 1 lines in the

plane, no two of which are parallel, meet in a common point. So, consider a set of k + 1 distinct

lines in the plane. By the inductive hypothesis, the first k of these lines meet in a common point

Figure 1.6: Dividing a
2k+1 × 2k+1 checkerboard
into four 2k × 2k checker-
boards

5.1 Mathematical Induction 349

FIGURE 6 Dividing a
2k+1 × 2k+1 checkerboard into
four 2k × 2k checkerboards.

FIGURE 7 Tiling the
2k+1 × 2k+1 checkerboard
with one square removed.

We have completed the basis step and the inductive step. Therefore, by mathematical in-

duction P(n) is true for all positive integers n. This shows that we can tile every 2n × 2n checker-

board, where n is a positive integer, with one square removed, using right triominoes. ◂

5.1.8 Mistaken Proofs By Mathematical Induction
As with every proof method, there are many opportunities for making errors when using mathe-

matical induction. Many well-known mistaken, and often entertaining, proofs by mathematical
Consult Common Errors
in Discrete Mathematics
on this book’s website

for more basic mistakes.

induction of clearly false statements have been devised, as exemplified by Example 15 and

Exercises 49–51. Often, it is not easy to find where the error in reasoning occurs in such mis-

taken proofs.

To uncover errors in proofs by mathematical induction, remember that in every such proof,

both the basis step and the inductive step must be done correctly. Not completing the basis step

in a supposed proof by mathematical induction can lead to mistaken proofs of clearly ridiculous

statements such as “n = n + 1 whenever n is a positive integer.” (We leave it to the reader to

show that it is easy to construct a correct inductive step in an attempted proof of this statement.)

Locating the error in a faulty proof by mathematical induction, as Example 15 illustrates, can

be quite tricky, especially when the error is hidden in the basis step.

EXAMPLE 15 Find the error in this “proof” of the clearly false claim that every set of lines in the plane, no

two of which are parallel, meet in a common point.

“Proof:” Let P(n) be the statement that every set of n lines in the plane, no two of which are

parallel, meet in a common point. We will attempt to prove that P(n) is true for all positive

integers n ≥ 2.

BASIS STEP: The statement P(2) is true because any two lines in the plane that are not parallel

meet in a common point (by the definition of parallel lines).

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true for the positive

integer k, that is, it is the assumption that every set of k lines in the plane, no two of which are

parallel, meet in a common point. To complete the inductive step, we must show that if P(k) is

true, then P(k + 1) must also be true. That is, we must show that if every set of k lines in the

plane, no two of which are parallel, meet in a common point, then every set of k + 1 lines in the

plane, no two of which are parallel, meet in a common point. So, consider a set of k + 1 distinct

lines in the plane. By the inductive hypothesis, the first k of these lines meet in a common point

Figure 1.7: Tiling the 2k+1×
2k+1 checkerboard with one
square removed.

To see this, consider a 2k+1×2k+1 checkerboard with one square removed.
Split this checkerboard into four checkerboards of size 2k × 2k, by dividing
it in half in both directions. This is illustrated in Figure 1.6. No square
has been removed from three of these four checkerboards. The fourth 2k × 2k

checkerboard has one square removed, so we now use the inductive hypothesis
to conclude that it can be covered by right triominoes. Now temporarily
remove the square from each of the other three 2k × 2k checkerboards that
has the center of the original, larger checkerboard as one of its corners, as
shown in Figure 1.7. By the inductive hypothesis, each of these three 2k ×
2k checkerboards with a square removed can be tiled by right triominoes.
Furthermore, the three squares that were temporarily removed can be covered
by one right triomino. Hence, the entire 2k+1×2k+1 checkerboard can be tiled
with right triominoes.

We have completed the basis step and the inductive step. Therefore, by
mathematical induction P (n) is true for all positive integers n. This shows
that we can tile every 2n × 2n checkerboard, where n is a positive integer,
with one square removed, using right triominoes.

34 CHAPTER 1. INDUCTION AND RECURSION

1.1.8 Mistaken Proofs By Mathematical Induction

As with every proof method, there are many opportunities for mak-
ing errors when using mathematical induction. Many well-known mis-
taken, and often entertaining, proofs by mathematical induction of
clearly false statements have been devised, as exemplified by Exam-
ple 15. Often, it is not easy to find where the error in reasoning occurs
in such mistaken proofs.

To uncover errors in proofs by mathematical induction, remember
that in every such proof, both the basis step and the inductive step
must be done correctly. Not completing the basis step in a supposed
proof by mathematical induction can lead to mistaken proofs of clearly
ridiculous statements such as “n = n+ 1 whenever n is a positive inte-
ger.” Locating the error in a faulty proof by mathematical induction,
as Example 15 illustrates, can be quite tricky, especially when the error
is hidden in the basis step.

�
EXAMPLE. 15

Find the error in this “proof” of the clearly false claim that every set of lines
in the plane, no two of which are parallel, meet in a common point.

“Proof: :” Let P (n) be the statement that every set of n lines in the plane,
no two of which are parallel, meet in a common point. We will attempt to
prove that P (n) is true for all positive integers n ≥ 2.

BASIS STEP: The statement P (2) is true because any two lines in the
plane that are not parallel meet in a common point (by the definition of
parallel lines).

INDUCTIVE STEP: The inductive hypothesis is the statement that P (k)
is true for the positive integer k, that is, it is the assumption that every set of
k lines in the plane, no two of which are parallel, meet in a common point. To
complete the inductive step, we must show that if P (k) is true, then P (k+1)
must also be true. That is, we must show that if every set of k lines in the
plane, no two of which are parallel, meet in a common point, then every set
of k + 1 lines in the plane, no two of which are parallel, meet in a common
point. So, consider a set of k+1 distinct lines in the plane. By the inductive
hypothesis, the first k of these lines meet in a common point p1. Moreover,
by the inductive hypothesis, the last k of these lines meet in a common point
p2. We will show that p1 and p2 must be the same point. If p1 and p2
were different points, all lines containing both of them must be the same line

1.1.8 Mistaken Proofs By Mathematical Induction 35

because two points determine a line. This contradicts our assumption that
all these lines are distinct. Thus, p1 and p2 are the same point. We conclude
that the point p1 = p2 lies on all k + 1 lines. We have shown that P (k + 1)
is true assuming that P (k) is true. That is, we have shown that if we assume
that every k, k ≥ 2, distinct lines meet in a common point, then every k + 1
distinct lines meet in a common point. This completes the inductive step.

We have completed the basis step and the inductive step, and supposedly
we have a correct proof by mathematical induction.�� ��Solution: Examining this supposed proof by mathematical induction it
appears that everything is in order. However, there is an error, as there must
be. The error is rather subtle. Carefully looking at the inductive step shows
that this step requires that k ≥ 3. We cannot show that P (2) implies P (3).
When k = 2, our goal is to show that every three distinct lines meet in a
common point. The first two lines must meet in a common point p1 and the
last two lines must meet in a common point p2. But in this case, p1 and p2
do not have to be the same, because only the second line is common to both
sets of lines. Here is where the inductive step fails.

36 CHAPTER 1. INDUCTION AND RECURSION

1.2 Recursive Definitions and Structural Induc-
tion

1.2.1 Introduction

Sometimes it is difficult to define an object explicitly. However, it
may be easy to define this object in terms of itself. This process is
called recursion. For instance, the picture shown in Figure 1 is pro-
duced recursively. First, an original picture is given. Then a process
of successively superimposing centered smaller pictures on top of the
previous pictures is carried out.

We can use recursion to define sequences, functions, and sets. The
terms of a sequence are specified using an explicit formula. For instance,
the sequence of powers of 2 is given by an = 2n for n = 0, 1, 2,
We can also define a sequence recursively by specifying how terms of
the sequence are found from previous terms. The sequence of powers of
2 can also be defined by giving the first term of the sequence, namely,
a0 = 1, and a rule for finding a term of the sequence from the previous
one, namely, an+1 = 2an for n = 0, 1, 2, When we define a
sequence recursively by specifying how terms of the sequence are found
from previous terms, we can use induction to prove results about the
sequence.

When we define a set recursively, we specify some initial elements
in a basis step and provide a rule for constructing new elements from
those we already have in the recursive step. To prove results about
recursively defined sets we use a method called structural induction.

1.2.2 Recursively Defined Functions

We use two steps to define a function with the set of nonnegative
integers as its domain:

BASIS STEP: Specify the value of the function at zero.
RECURSIVE STEP: Give a rule for finding its value at an integer

from its values at smaller integers.
Such a definition is called a recursive or inductive definition. Note

that a function f(n) from the set of nonnegative integers to the set
of a real numbers is the same as a sequence a0, a1, . . . , where ai is a

1.2.2 Recursively Defined Functions 37
366 5 / Induction and Recursion

FIGURE 1 A recursively defined picture.

We can use recursion to define sequences, functions, and sets. In Section 2.4, and in most

beginning mathematics courses, the terms of a sequence are specified using an explicit formula.

For instance, the sequence of powers of 2 is given by an = 2n for n = 0, 1, 2,… .Recall from Sec-

tion 2.4 that we can also define a sequence recursively by specifying how terms of the sequence

are found from previous terms. The sequence of powers of 2 can also be defined by giving the

first term of the sequence, namely, a0 = 1, and a rule for finding a term of the sequence from the

previous one, namely, an+1 = 2an for n = 0, 1, 2,… . When we define a sequence recursively by

specifying how terms of the sequence are found from previous terms, we can use induction to

prove results about the sequence.

When we define a set recursively, we specify some initial elements in a basis step and

provide a rule for constructing new elements from those we already have in the recur-

sive step. To prove results about recursively defined sets we use a method called structural
induction.

5.3.2 Recursively Defined Functions

We use two steps to define a function with the set of nonnegative integers as its domain:

BASIS STEP: Specify the value of the function at zero.

RECURSIVE STEP: Give a rule for finding its value at an integer from its values at smallerAssessment
integers.

Such a definition is called a recursive or inductive definition. Note that a function f (n) from

the set of nonnegative integers to the set of a real numbers is the same as a sequence a0, a1,… ,
where ai is a real number for every nonnegative integer i. So, defining a real-valued sequence

a0, a1,… using a recurrence relation, as was done in Section 2.4, is the same as defining a

function from the set of nonnegative integers to the set of real numbers.

Figure 1.8: A recursively defined picture.

real number for every nonnegative integer i. So, defining a real-valued
sequence a0, a1, . . . using a recurrence relation.

�
EXAMPLE. 1

Suppose that f is defined recursively by

f(0) = 3,
f(n+ 1) = 2f(n) + 3.

Find f(1), f(2), f(3), and f(4).�� ��Solution: From the recursive definition it follows that

f(1) = 2f(0) + 3 = 2 · 3 + 3 = 9,
f(2) = 2f(1) + 3 = 2 · 9 + 3 = 21,
f(3) = 2f(3) + 3 = 2 · 45 + 3 = 93.

Recursively defined functions are well defined. That is, for every
positive integer, the value of the function at this integer is determined
in an unambiguous way. This means that given any positive integer, we
can use the two parts of the definition to find the value of the function
at that integer, and that we obtain the same value no matter how we
apply the two parts of the definition. This is a consequence of the

38 CHAPTER 1. INDUCTION AND RECURSION

principle of mathematical induction. Additional examples of recursive
definitions are given in Examples 2 and 3.

�
EXAMPLE. 2

Give a recursive definition of an, where a is a nonzero real number and n is a
nonnegative integer.�� ��Solution: The recursive definition contains two parts. First a0 is specified,
namely, a0 = 1. Then the rule for finding an+1 from an, namely, an+1 = a·an,
for n = 0, 1, 2, 3, . . ., is given. These two equations uniquely define an for
all nonnegative integers n.

�
EXAMPLE. 3

Give a recursive definition of
n∑

k=0

ak

�� ��Solution: The first part of the recursive definition is

0∑
k=0

ak = a0

The second part is

n+1∑
k=0

ak =

(
n∑

k=0

ak

)
+ an+1.

In some recursive definitions of functions, the values of the function
at the first k positive integers are specified, and a rule is given for
determining the value of the function at larger integers from its values
at some or all of the preceding k integers. That recursive definitions
defined in this way produce well-defined functions follows from strong
induction.

1.2.2 Recursively Defined Functions 39

Recall from previous Section that the Fibonacci numbers, f0, f1, f2, . . .,
are defined by the equations f0 = 0, f1 = 1, and

fn = fn−1 + fn−2

for n = 2, 3, 4, [We can think of the Fibonacci number fn either as
the nth term of the sequence of Fibonacci numbers f0, f1, . . . or as the
value at the integer n of a function f(n).]

We can use the recursive definition of the Fibonacci numbers to
prove many properties of these numbers. We give one such property in
Example 4.

�
EXAMPLE. 4

Show that whenever n ≥ 3, fn > αn−2, where α = (1 +
√
5)/2.�� ��Solution: We can use strong induction to prove this inequality. Let P (n)

be the statement fn > αn−2. We want to show that P (n) is true whenever n
is an integer greater than or equal to 3.

BASIS STEP: First, note that

α < 2 = f3, α2 = (3 +
√
5)/2 < 3 = f4

so P (3) and P (4) are true.
INDUCTIVE STEP : Assume that P (j) is true, namely, that fj > αj−2,

for all integers j with 3 ≤ j ≤ k, where k ≥ 4. We must show that P (k + 1)
is true, that is, that fk+1 > αk−1. Because α is a solution of x2 − x − 1 = 0
(as the quadratic formula shows), it follows that α2 = α+ 1 Therefore,

αk−1 = α2 · αk−3 = (α+ 1)αk−3 = α · αk−3 + 1 · αk−3 = αk−2 + αk−3.

By the inductive hypothesis, because k ≥ 4, we have

fk−1 > αk−3, fk > αk−2.

Therefore, it follows that

fk+1 = fk + fk−1 > αk−2 + αk−3 = αk−1.

Hence, P (k + 1) is true. This completes the proof.

40 CHAPTER 1. INDUCTION AND RECURSION

Remark! The inductive step of the proof by strong induction in
Example 4 shows that whenever k ≥ 4, P (k + 1) follows from the
assumption that P (j) is true for 3 ≤ j ≤ k. Hence, the inductive
step does not show that P (3) → P (4). Therefore, we had to show
that P (4) is true separately.

We can now show that the Euclidean algorithm uses O(log b) divi-
sions to find the greatest common divisor of the positive integers a and
b, where a ≥ b.

THEOREM 1.2.1: LAME’S THEOREM

Let a and b be positive integers with a ≥ b. Then the number of
divisions used by the Euclidean algorithm to find gcd(a, b) is less
than or equal to five times the number of decimal digits in b.

Proof: Recall that when the Euclidean algorithm is applied to find
gcd(a, b) with a ≥ b, this sequence of equations (where a = r0 and
b = r1) is obtained.

r0 = r1q1 + r2 0 ≤ r2 < r1,
r1 = r2q2 + r2 0 ≤ r3 < r2,

·
·
·

rn−2 = rn−1qn−1 + rn 0 ≤ rn < rn−1,
rn−1 = rnqn .

Here n divisions have been used to find rn = gcd(a, b). Note that the
quotients q1, q2, . . . , qn−1 are all at least 1. Moreover, qn ≥ 2, because
rn < rn−1. This implies that

1.2.3 Recursively Defined Sets and Structures 41

rn ≥ 1 = f2,
rn−1 ≥ 2rn ≥ 2f2 = f3,
rn−2 ≥ 2rn−1 + rn ≥ f3 + f2 = f4,

·
·
·

r2 ≥ r3 + r4 ≥ fn−1 + fn−2 = fn,
b = r1 ≥ r2 + r3 ≥ fn + fn−1 = fn+1.

It follows that if n divisions are used by the Euclidean algorithm to
find gcd(a, b) with a ≥ b, then b ≥ fn+1. By Example 4 we know that
fn+1 > αn−1 for n > 2, where α = (1 +

√
5)/2. Therefore, it follows

that b > αn−1. Furthermore, because log10 α ≈ 0.208 > 1/5, we see
that

log10 b > (n− 1) log10 α > (n− 1)/5.

Hence, n − 1 < 5 · log10 b. Now suppose that b has k decimal digits.
Then b < 10k and log10 b < k. It follows that n− 1 < 5k, and because
k is an integer, it follows that n ≤ 5k. This finishes the proof.

Because the number of decimal digits in b, which equals ⌊log10 b⌋+1,
is less than or equal to log10 b+1, Theorem 1.2.1 tells us that the number
of divisions required to find gcd(a, b) with a > b is less than or equal to
5(log10 b + 1). Because 5(log10 b + 1) is O(log b), we see that O(log b)
divisions are used by the Euclidean algorithm to find gcd(a, b) whenever
a > b.

1.2.3 Recursively Defined Sets and Structures

We have explored how functions can be defined recursively. We now
turn our attention to how sets can be defined recursively. Just as in
the recursive definition of functions, recursive definitions of sets have
two parts, a basis step and a recursive step. In the basis step, an
initial collection of elements is specified. In the recursive step, rules for
forming new elements in the set from those already known to be in the
set are provided. Recursive definitions may also include an exclusion
rule, which specifies that a recursively defined set contains nothing
other than those elements specified in the basis step or generated by

42 CHAPTER 1. INDUCTION AND RECURSION

applications of the recursive step. In our discussions, we will always
tacitly assume that the exclusion rule holds and no element belongs to
a recursively defined set unless it is in the initial collection specified
in the basis step or can be generated using the recursive step one or
more times. Later we will see how we can use a technique known as
structural induction to prove results about recursively defined sets.

Examples 5, 6, 8, and 9 illustrate the recursive definition of sets.
In each example, we show those elements generated by the first few
applications of the recursive step.

�
EXAMPLE. 5

Consider the subset S of the set of integers recursively defined by
BASIS STEP: 3 ∈ S.
RECURSIVE STEP: If x ∈ S and y ∈ S, then x+ y ∈ S.
The new elements found to be in S are 3 by the basis step, 3 + 3 = 6 at

the first application of the recursive step, 3 + 6 = 6 + 3 = 9 and 6 + 6 = 12

at the second application of the recursive step, and so on. We will show in
Example 10 that S is the set of all positive multiples of 3.

Recursive definitions play an important role in the study of strings.
Recall from Section 2 that a string over an alphabet

∑
is a finite

sequence of symbols from
∑

. We can define
∑∗, the set of strings over∑

, recursively, as Definition 1 shows.

DEFINITION 1.2.1 The set
∑∗ of strings over the alphabet

∑
is defined recursively by

BASIS STEP: λ ∈ ∑∗ (where λ is the empty string containing no
symbols).

RECURSIVE STEP: If w ∈∑∗ and x ∈∑, then wx ∈∑∗ .

The basis step of the recursive definition of strings says that the
empty string belongs to

∑∗. The recursive step states that new strings
are produced by adding a symbol from

∑
to the end of strings in∑∗. At each application of the recursive step, strings containing one

additional symbol are generated.

1.2.3 Recursively Defined Sets and Structures 43

�
EXAMPLE. 6

If
∑

= {0, 1} the strings found to be in
∑∗ the set of all bit strings, are

λ, specified to be in
∑∗ in the basis step, 0 and 1 formed during the first

application of the recursive step, 00, 01, 10, and 11 formed during the second
application of the recursive step, and so on.

Recursive definitions can be used to define operations or functions
on the elements of recursively defined sets. This is illustrated in Defi-
nition 2 of the concatenation of two strings and Example 7 concerning
the length of a string.

DEFINITION 1.2.2 Two strings can be combined via the oper-
ation of concatenation. Let

∑
be a set of symbols and

∑∗ the set of
strings formed from symbols in

∑
. We can define the concatenation of

two strings, denoted by ·, recursively as follows.
BASIS STEP: If w ∈ ∑∗, then w · λ = w, where λ is the empty

string.
RECURSIVE STEP: If w1 ∈ ∑∗ and w2 ∈ ∑∗ and x ∈ ∑, then

w1 · (w2x) = (w1 · w2)x

The concatenation of the strings w1 and w2 is often written as w1w2

rather than w1 ·w2. By repeated application of the recursive definition,
it follows that the concatenation of two strings w1 and w2 consists of
the symbols in w1 followed by the symbols in w2. For instance, the
concatenation of w1 = abra and w2 = cadabra is w1w2 = abracadabra.

�
EXAMPLE. 7

Length of a String Give a recursive definition of l(w), the length of the
string w.�� ��Solution: The length of a string can be recursively defined by

l(λ) = 0;
l(wx) = l(w) + 1if w ∈∑∗ and x ∈∑ .

44 CHAPTER 1. INDUCTION AND RECURSION

Another important use of recursive definitions is to define well-
formed formulae of various types. This is illustrated in Examples 8
and 9.

�
EXAMPLE. 8

Well-Formed Formulae in Propositional Logic We can define the set
of well-formed formulae in propositional logic involving T, F, propositional
variables, and operators from the set {¬,∧,∨,→,↔}.

BASIS STEP : T, F, and s, where s is a propositional variable, are well-
formed formulae.

RECURSIVE STEP: If E and F arewell-formed formulae, then (¬E), (E∧
F), (E ∨ F), (E → F), and (E ↔ F) are well-formed formulae.

For example, by the basis step we know that T, F, p, and q are well-
formed formulae, where p and q are propositional variables. From an initial
application of the recursive step, we know that (p ∨ q), (p → F), (F → q),
and (q ∧ F) are well-formed formulae. A second application of the recursive
step shows that ((p ∨ q) → (q ∧ F)), (q ∨ (p ∨ q)), and ((p → F) → T) are
well-formed formulae. We leave it to the reader to show that p¬∧q, pq∧, and
¬ ∧ pq are not well-formed formulae, by showing that none can be obtained
using the basis step and one or more applications of the recursive step.

�
EXAMPLE. 9

Well-Formed Formulae of Operators and Operands We can define the
set of well-formed formulae consisting of variables, numerals, and operators
from the set {+, ?, ∗, /, ↑} (where ∗ denotes multiplication and ↑ denotes ex-
ponentiation) recursively.

BASIS STEP: x is a well-formed formula if x is a numeral or a variable.
RECURSIVE STEP: If F and G are well-formed formulae, then (F +

G), (F −G), (F ∗G), (F/G), and (F ↑ G) are well-formed formulae.
For example, by the basis step we see that x, y, 0, and 3 are well-formed

formulae (as is any variable or numeral). Well-formed formulae generated by
applying the recursive step once include (x + 3), (3 + y), (x − y), (3 − 0),
(x ∗ 3), (3 ∗ y), (3/0), (x/y), (3 ↑ x), and (0 ↑ 3). Applying the recursive step
twice shows that formulae such as ((x + 3) + 3) and (x − (3 ∗ y)) are well-
formed formulae. We leave it to the reader to show that each of the formulae

1.2.3 Recursively Defined Sets and Structures 45

372 5 / Induction and Recursion

EXAMPLE 9 Well-Formed Formulae of Operators and Operands We can define the set of well-formed

formulae consisting of variables, numerals, and operators from the set {+,−, ∗, ∕, ↑} (where ∗
denotes multiplication and ↑ denotes exponentiation) recursively.

BASIS STEP: x is a well-formed formula if x is a numeral or a variable.

RECURSIVE STEP: If F and G are well-formed formulae, then (F + G), (F − G), (F ∗ G),

(F∕G), and (F↑G) are well-formed formulae.

For example, by the basis step we see that x, y, 0, and 3 are well-formed formulae (as

is any variable or numeral). Well-formed formulae generated by applying the recursive step

once include (x + 3), (3 + y), (x − y), (3 − 0), (x ∗ 3), (3 ∗ y), (3∕0), (x∕y), (3↑x), and (0↑3).

Applying the recursive step twice shows that formulae such as ((x + 3) + 3) and (x − (3 ∗ y))

are well-formed formulae. [Note that (3∕0) is a well-formed formula because we are concerned

only with syntax matters here.] We leave it to the reader to show that each of the formulae x3+,

y ∗ + x, and ∗ x∕y is not a well-formed formula by showing that none of them can be obtained

from the basis step and one or more applications of the recursive step. ◂

We will study trees extensively in Chapter 11. A tree is a special type of a graph; a graph

is made up of vertices and edges connecting some pairs of vertices. We will study graphs in

Chapter 10. We will briefly introduce them here to illustrate how they can be defined recursively.

Definition 3 The set of rooted trees, where a rooted tree consists of a set of vertices containing a distin-

guished vertex called the root, and edges connecting these vertices, can be defined recursively

by these steps:

BASIS STEP: A single vertex r is a rooted tree.

RECURSIVE STEP: Suppose that T1, T2,… , Tn are disjoint rooted trees with roots

r1, r2,… , rn, respectively. Then the graph formed by starting with a root r, which is not

in any of the rooted trees T1, T2,… , Tn, and adding an edge from r to each of the vertices

r1, r2,… , rn, is also a rooted tree.

In Figure 2 we illustrate some of the rooted trees formed starting with the basis step and applying

the recursive step one time and two times. Note that infinitely many rooted trees are formed at

each application of the recursive definition.

Basis step

Step 1

Step 2

· · · · · ·

FIGURE 2 Building up rooted trees.
Figure 1.9: Building up rooted trees.

x3+, y ∗+x, and ∗x/y is not a well-formed formula by showing that none of
them can be obtained from the basis step and one or more applications of the
recursive step.

DEFINITION 1.2.3 The set of rooted trees, where a rooted tree
consists of a set of vertices containing a distinguished vertex called the
root, and edges connecting these vertices, can be defined recursively by
these steps:

BASIS STEP: A single vertex r is a rooted tree.
RECURSIVE STEP: Suppose that T1, T2, . . . , Tn are disjoint rooted

trees with roots r1, r2, . . . , rn, respectively. Then the graph formed by
starting with a root r, which is not in any of the rooted trees T1, T2, . . . , Tn,
and adding an edge from r to each of the vertices r1, r2, . . . , rn, is also
a rooted tree.

In Figure 1.9 we illustrate some of the rooted trees formed start-
ing with the basis step and applying the recursive step one time and
two times. Note that infinitely many rooted trees are formed at each
application of the recursive definition.

Binary trees are a special type of rooted trees. We will provide
recursive definitions of two types of binary trees—full binary trees and
extended binary trees. In the recursive step of the definition of each
type of binary tree, two binary trees are combined to form a new tree
with one of these trees designated the left subtree and the other the right

46 CHAPTER 1. INDUCTION AND RECURSION
5.3 Recursive Definitions and Structural Induction 373

Step 1

Step 2

Basis step ∅

Step 3

FIGURE 3 Building up extended binary trees.

Binary trees are a special type of rooted trees. We will provide recursive definitions of two

types of binary trees—full binary trees and extended binary trees. In the recursive step of the

definition of each type of binary tree, two binary trees are combined to form a new tree with

one of these trees designated the left subtree and the other the right subtree. In extended bi-

nary trees, the left subtree or the right subtree can be empty, but in full binary trees this is not

possible. Binary trees are one of the most important types of structures in computer science.

In Chapter 11 we will see how they can be used in searching and sorting algorithms, in algo-

rithms for compressing data, and in many other applications. We first define extended binary

trees.

Definition 4 The set of extended binary trees can be defined recursively by these steps:

BASIS STEP: The empty set is an extended binary tree.

RECURSIVE STEP: If T1 and T2 are disjoint extended binary trees, there is an extended

binary tree, denoted by T1 ⋅ T2, consisting of a root r together with edges connecting the

root to each of the roots of the left subtree T1 and the right subtree T2 when these trees are

nonempty.

Figure 3 shows how extended binary trees are built up by applying the recursive step from one

to three times.

We now show how to define the set of full binary trees. Note that the difference between

this recursive definition and that of extended binary trees lies entirely in the basis step.

Figure 1.10: Building up extended binary trees.

subtree. In extended binary trees, the left subtree or the right subtree
can be empty, but in full binary trees this is not possible. Binary trees
are one of the most important types of structures in computer science.

DEFINITION 1.2.4 The set of extended binary trees can be
defined recursively by these steps:

BASIS STEP: The empty set is an extended binary tree.
RECURSIVE STEP: If T1 and T2 are disjoint extended binary trees,

there is an extended binary tree, denoted by T1 · T2, consisting of a root
r together with edges connecting the root to each of the roots of the left
subtree T1 and the right subtree T2 when these trees are nonempty.

Figure 1.10 shows how extended binary trees are built up by ap-
plying the recursive step from one to three times. We now show how
to define the set of full binary trees. Note that the difference between
this recursive definition and that of extended binary trees lies entirely
in the basis step.

DEFINITION 1.2.5 The set of full binary trees can be defined
recursively by these steps:

1.2.4 Structural Induction 47
374 5 / Induction and Recursion

Basis step

Step 1

Step 2

FIGURE 4 Building up full binary trees.

Definition 5 The set of full binary trees can be defined recursively by these steps:

BASIS STEP: There is a full binary tree consisting only of a single vertex r.

RECURSIVE STEP: If T1 and T2 are disjoint full binary trees, there is a full binary tree,

denoted by T1 ⋅ T2, consisting of a root r together with edges connecting the root to each of

the roots of the left subtree T1 and the right subtree T2.

Figure 4 shows how full binary trees are built up by applying the recursive step one and two

times.

5.3.4 Structural Induction
To prove results about recursively defined sets, we generally use some form of mathematical

induction. Example 10 illustrates the connection between recursively defined sets and mathe-

matical induction.

EXAMPLE 10 Show that the set S defined in Example 5 by specifying that 3 ∈ S and that if x ∈ S and y ∈ S,

then x + y ∈ S, is the set of all positive integers that are multiples of 3.

Solution: Let A be the set of all positive integers divisible by 3. To prove that A = S, we must

show that A is a subset of S and that S is a subset of A. To prove that A is a subset of S, we must

show that every positive integer divisible by 3 is in S. We will use mathematical induction to

prove this.

Let P(n) be the statement that 3n belongs to S. The basis step holds because by the first part

of the recursive definition of S, 3 ⋅ 1 = 3 is in S. To establish the inductive step, assume that

P(k) is true, namely, that 3k is in S. Because 3k is in S and because 3 is in S, it follows from the

second part of the recursive definition of S that 3k + 3 = 3(k + 1) is also in S.

To prove that S is a subset of A, we use the recursive definition of S. First, the basis step

of the definition specifies that 3 is in S. Because 3 = 3 ⋅ 1, all elements specified to be in S in

this step are divisible by 3 and are therefore in A. To finish the proof, we must show that all

integers in S generated using the second part of the recursive definition are in A. This consists

of showing that x + y is in A whenever x and y are elements of S also assumed to be in A. Now

if x and y are both in A, it follows that 3 ∣ x and 3 ∣ y. By part (i) of Theorem 1 of Section 4.1,

it follows that 3 ∣ (x + y) completing the proof. ◂

Figure 1.11: Building up extended binary trees.

BASIS STEP: There is a full binary tree consisting only of a single
vertex r.

RECURSIVE STEP: If T1 and T2 are disjoint full binary trees, there
is a full binary tree, denoted by T1 · T2, consisting of a root r together
with edges connecting the root to each of the roots of the left subtree T1

and the right subtree T2.

Figure 1.11 shows how full binary trees are built up by applying the
recursive step one and two times.

1.2.4 Structural Induction

To prove results about recursively defined sets, we generally use
some form of mathematical induction. Example 10 illustrates the con-
nection between recursively defined sets and mathematical induction.

�
EXAMPLE. 10

Show that the set S defined in Example 5 by specifying that 3 ∈ S and that
if x ∈ S and y ∈ S, then x+ y ∈ S, is the set of all positive integers that are
multiples of 3.�� ��Solution: Let A be the set of all positive integers divisible by 3. To prove
that A = S, we must show that A is a subset of S and that S is a subset of
A. To prove that A is a subset of S, we must show that every positive integer
divisible by 3 is in S. We will use mathematical induction to prove this.

48 CHAPTER 1. INDUCTION AND RECURSION

Let P (n) be the statement that 3n belongs to S. The basis step holds
because by the first part of the recursive definition of S, 3 · 1 = 3 is in S. To
establish the inductive step, assume that P (k) is true, namely, that 3k is in
S. Because 3k is in S and because 3 is in S, it follows from the second part
of the recursive definition of S that 3k + 3 = 3(k + 1) is also in S.

To prove that S is a subset of A, we use the recursive definition of S.
First, the basis step of the definition specifies that 3 is in S. Because 3 = 3 ·1,
all elements specified to be in S in this step are divisible by 3 and are therefore
in A. To finish the proof, we must show that all integers in S generated using
the second part of the recursive definition are in A. This consists of showing
that x+ y is in A whenever x and y are elements of S also assumed to be in
A. Now if x and y are both in A, it follows that 3|x and 3|y and it follows
that 3|(x+ y) completing the proof.

In Example 10 we used mathematical induction over the set of pos-
itive integers and a recursive definition to prove a result about a recur-
sively defined set. However, instead of using mathematical induction
directly to prove results about recursively defined sets, we can use a
more convenient form of induction known as structural induction.
A proof by structural induction consists of two parts. These parts are

BASIS STEP: Show that the result holds for all elements specified
in the basis step of the recursive definition to be in the set.

RECURSIVE STEP: Show that if the statement is true for each of
the elements used to construct new elements in the recursive step of the
definition, the result holds for these new elements.

The validity of structural induction follows from the principle of
mathematical induction for the nonnegative integers. To see this, let
P (n) state that the claim is true for all elements of the set that are
generated by n or fewer applications of the rules in the recursive step
of a recursive definition. We will have established that the principle
of mathematical induction implies the principle of structural induction
if we can show that P (n) is true whenever n is a positive integer. In
the basis step of a proof by structural induction we show that P (0) is
true. That is, we show that the result is true of all elements specified
to be in the set in the basis step of the definition. A consequence of the
recursive step is that if we assume P (k) is true, it follows that P (k+1)
is true. When we have completed a proof using structural induction,

1.2.4 Structural Induction 49

we have shown that P (0) is true and that P (k) implies P (k + 1). By
mathematical induction it follows that P (n) is true for all nonnegative
integers n. This also shows that the result is true for all elements gen-
erated by the recursive definition, and shows that structural induction
is a valid proof technique.

EXAMPLES OF PROOFS USING STRUCTURAL IN-
DUCTION Structural induction can be used to prove that all mem-
bers of a set constructed recursively have a particular property. We will
illustrate this idea by using structural induction to prove results about
well-formed formulae, strings, and binary trees. For each proof, we have
to carry out the appropriate basis step and the appropriate recursive
step. For example, to use structural induction to prove a result about
the set of well-formed formulae defined in Example 8, where we specify
that T, F, and every propositional variable s are well-formed formulae
and where we specify that if E and F are well-formed formulae, then
(¬E), (E ∧ F), (E ∨ F), (E → F), and (E ↔ F) are well-formed
formulae, we need to complete this basis step and this recursive step.

BASIS STEP: Show that the result is true for T, F, and s whenever
s is a propositional variable.

RECURSIVE STEP: Show that if the result is true for the com-
pound propositions p and q, it is also true for (¬p), (p ∨ q), (p ∧ q),
(p → q), and (p ↔ q).

Example 11 illustrates how we can prove results about well-formed
formulae using structural induction.

�
EXAMPLE. 11

Show that every well-formed formula for compound propositions, as defined
in Example 8, contains an equal number of left and right parentheses.�� ��Solution:

BASIS STEP: Each of the formula T, F, and s contains no parentheses,
so clearly they contain an equal number of left and right parentheses.

RECURSIVE STEP: Assume p and q are well-formed formulae, each con-
taining an equal number of left and right parentheses. That is, if lp and lq are
the number of left parentheses in p and q, respectively, and rp and rq are the
number of right parentheses in p and q, respectively, then lp = rp and lq = rq.

50 CHAPTER 1. INDUCTION AND RECURSION

To complete the inductive step, we need to show that each of (¬p), (p ∨ q),
(p ∧ q), (p → q), and (p ↔ q) also contains an equal number of left and right
parentheses. The number of left parentheses in the first of these compound
propositions equals lp + 1 and in each of the other compound propositions
equals lp + lq + 1. Similarly, the number of right parentheses in the first of
these compound propositions equals rp+1 and in each of the other compound
propositions equals rp + rq + 1. Because lp = rp and lq = rq, it follows that
each of these compound expressions contains the same number of left and
right parentheses. This completes the proof by structural induction.

Suppose that P (w) is a propositional function over the set of strings
w ∈ ∑∗. To use structural induction to prove that P (w) holds for all
strings w ∈∑∗, we need to complete both a basis step and a recursive
step. These steps are:

BASIS STEP: Show that P (λ) is true.
RECURSIVE STEP: Assume that P (w) is true, where w ∈ ∑∗.

Show that if x ∈∑, then P (wx) must also be true.
Example 12 illustrates how structural induction can be used in

proofs about strings.

�
EXAMPLE. 12

Use structural induction to prove that l(xy) = l(x) + l(y), where x and y
belong to

∑∗, the set of strings over the alphabet
∑

.�� ��Solution: We will base our proof on the recursive definition of the set
∑∗

given in Definition 1 and the definition of the length of a string in Example 7,
which specifies that l(λ) = 0 and l(wx) = l(w) + 1 when w ∈∑∗ and x ∈∑.
Let P (y) be the statement that l(xy) = l(x)+ l(y) whenever x belongs to

∑∗.
BASIS STEP: To complete the basis step, we must show that P (λ) is

true. That is, we must show that l(xλ) = l(x) + l(λ) for all x ∈∑∗. Because
l(xλ) = l(x) = l(x) + 0 = l(x) + l(λ) for every string x, it follows that P (λ)
is true.

RECURSIVE STEP: To complete the inductive step, we assume that
P (y) is true and show that this implies that P (ya) is true whenever a ∈ ∑.
What we need to show is that l(xya) = l(x)+ l(ya) for every a ∈∑. To show
this, note that by the recursive definition of l(w) (given in Example 7), we
have l(xya) = l(xy)+1 and l(ya) = l(y)+1. And, by the inductive hypothesis,

1.2.4 Structural Induction 51

l(xy) = l(x)+l(y). We conclude that l(xya) = l(x)+l(y)+1 = l(x)+l(ya).

We can prove results about trees or special classes of trees using
structural induction.

BASIS STEP: Show that the result is true for the tree consisting of
a single vertex.

RECURSIVE STEP: Show that if the result is true for the full
binary trees T1 and T2, then it is true for tree T1 · T2 consisting of a
root r, which has T1 as its left subtree and T2 as its right subtree.

Before we provide an example showing how structural induction
can be used to prove a result about full binary trees, we need some
definitions. We will recursively define the height h(T) and the number
of vertices n(T) of a full binary tree T .bWe begin by defining the height
of a full binary tree.

DEFINITION 1.2.6 We define the height h(T) of a full binary
tree T recursively.

BASIS STEP: The height of the full binary tree T consisting of only
a root r is h(T) = 0.

RECURSIVE STEP: If T1 and T2 are full binary trees, then the full
binary tree T = T1 · T2 has height h(T) = 1 +max(h(T1), h(T2)).

If we let n(T) denote the number of vertices in a full binary tree,
we observe that n(T) satisfies the following recursive formula:

BASIS STEP: The number of vertices n(T) of the full binary tree
T consisting of only a root r is n(T) = 1.

RECURSIVE STEP: If T1 and T2 are full binary trees, then the
number of vertices of the full binary tree T = T1 · T2 is n(T) = 1 +
n(T1) + n(T2).

We now show how structural induction can be used to prove a result
about full binary trees.

THEOREM 1.2.2

If T is a full binary tree T , then n(T) ≤ 2h(T)+1 − 1.

Proof: We prove this inequality using structural induction.

52 CHAPTER 1. INDUCTION AND RECURSION

BASIS STEP: For the full binary tree consisting of just the root r
the result is true because n(T) = 1 and h(T) = 0, so that n(T) = 1 ≤
20+1 − 1 = 1.

RECURSIVE STEP: For the inductive hypothesis we assume that
n(T1) ≤ 2h(T1)+1 − 1 and n(T2) ≤ 2h(T2)+1 − 1 whenever T1 and T2 are
full binary trees. By the recursive formulae for n(T) and h(T) we have
n(T) = 1+ n(T1) + n(T2) and h(T) = 1+max(h(T1), h(T2)). We find
that

n(T) = 1 + n(T1) + n(T2) by the recursive formula
for n(T)

≤ 1 + (2h(T1)+1 − 1) + (2h(T2)+1 − 1) by the inductive hypothesis
≤ 2 ·max(2h(T1)+1, 2h(T2)+1)− 1 because the sum of two terms

is at most 2 times the larger
= 2 · 2max(h(T1),h(T2))+1 − 1 because max(2x, 2y)

= 2max(x,y)

= 2 · 2h(T) − 1 by the recursive definition
of h(T)

= 2h(T)+1 − 1.

This completes the recursive step.

1.2.5 Generalized Induction

We can extend mathematical induction to prove results about other
sets that have the wellordering property besides the set of integers. We
provide an example here to illustrate the usefulness of such an approach.

As an example, note that we can define an ordering on N×N, the
ordered pairs of nonnegative integers, by specifying that (x1, y1) is less
than or equal to (x2, y2) if either x1 < x2, or x1 = x2 and y1 < y2; this is
called the lexicographic ordering. The set N ×N with this ordering
has the property that every subset of N ×N has a least element. This
implies that we can recursively define the terms am,n, with m ∈ N and
n ∈ N , and prove results about them using a variant of mathematical
induction, as illustrated in Example 13.

1.2.5 Generalized Induction 53

�
EXAMPLE. 13

Suppose that am,n is defined recursively for (m,n) ∈ N ×N by a0,0 = 0 and

am,n =

{
am−1,n + 1 if n = 0and m > 0
am,n−1 + n if n > 0.

Show that am, n = m + n(n + 1)/2 for all (m,n) ∈ N × N, that is, for all
pairs of nonnegative integers.�� ��Solution: We can prove that am,n = m + n(n + 1)/2 using a generalized
version of mathematical induction. The basis step requires that we show that
this formula is valid when (m,n) = (0, 0). The induction step requires that
we show that if the formula holds for all pairs smaller than (m,n) in the
lexicographic ordering of N × N, then it also holds for (m,n).

BASIS STEP: Let (m,n) = (0, 0). Then by the basis case of the recursive
definition of am,n we have a0,0 = 0. Furthermore, when m = n = 0, m +
n(n+ 1)/2 = 0 + (0 · 1)/2 = 0. This completes the basis step.

INDUCTIVE STEP : Suppose that am′,n′ = m′ + n′(n′ + 1)/2 whenever
(m′, n′) is less than (m,n) in the lexicographic ordering of N × N. By the
recursive definition, if n = 0, then am,n = am−1,n+1. Because (m − 1, n) is
smaller than (m,n), the inductive hypothesis tells us that am−1,n = m− 1 +

n(n+ 1)/2, so that am,n = m− 1 + n(n+ 1)/2 + 1 = m+ n(n+ 1)/2, giving
us the desired equality. Now suppose that n > 0, so am,n = am,n?1 + n. Be-
cause (m,n− 1) is smaller than (m,n), the inductive hypothesis tells us that
am,n?1 = m+(n−1)n/2, so am,n = m+(n−1)n/2+n = m+(n2−n+2n)/2 =

m+ n(n+ 1)/2. This finishes the inductive step.

54 CHAPTER 1. INDUCTION AND RECURSION

1.3 Recursive Algorithms

1.3.1 Introduction

Sometimes we can reduce the solution to a problem with a particular
set of input values to the solution of the same problem with smaller
input values. For instance, the problem of finding the greatest common
divisor of two positive integers a and b, where b > a, can be reduced
to finding the greatest common divisor of a pair of smaller integers,
namely, bmoda and a, because gcd(bmoda, a) = gcd(a, b).

When such a reduction can be done, the solution to the original
problem can be found with a sequence of reductions, until the prob-
lem has been reduced to some initial case for which the solution is
known. For instance, for finding the greatest common divisor, the re-
duction continues until the smaller of the two numbers is zero, because
gcd(a, 0) = a when a > 0.

We will see that algorithms that successively reduce a problem to
the same problem with smaller input are used to solve a wide variety
of problems.

DEFINITION 1.3.1 An algorithm is called recursive if it solves
a problem by reducing it to an instance of the same problem with smaller
input.

We will describe a variety of different recursive algorithms in this
section.

�
EXAMPLE. 1

Give a recursive algorithm for computing n!, where n is a nonnegative integer.�� ��Solution: We can build a recursive algorithm that finds n!, where n is
a nonnegative integer, based on the recursive definition of n!, which specifies
that n! = n·(n−1)! when n is a positive integer, and that 0! = 1. To find n! for
a particular integer n, we use the recursive step n times, each time replacing
a value of the factorial function with the value of the factorial function at the
next smaller integer. At this last step, we insert the value of 0!. The recursive
algorithm we obtain is displayed as Algorithm 1.

To help understand how this algorithm works, we trace the steps used by
the algorithm to compute 4!. First, we use the recursive step to write 4! = 4·3!.

1.3.1 Introduction 55

We then use the recursive step repeatedly to write 3! = 3 · 2!, 2! = 2 · 1!, and
1! = 1 · 0!. Inserting the value of 0! = 1, and working back through the steps,
we see that 1! = 1 · 1 = 1, 2! = 2 · 1! = 2, 3! = 3 · 2! = 3 · 2 = 6, and
4! = 4 · 3! = 4 · 6 = 24.

ALGORITHM 1
A Recursive Algorithm for Computing n!.

procedure factorial(n: nonnegative integer)
if n = 0 then return 1
else return n· factorial(n− 1)
{output is n!}

Example 2 shows how a recursive algorithm can be constructed to
evaluate a function from its recursive definition.

�
EXAMPLE. 2

Give a recursive algorithm for computing an, where a is a nonzero real number
and n is a nonnegative integer.�� ��Solution: We can base a recursive algorithm on the recursive definition of
an. This definition states that an+1 = a ·an for n > 0 and the initial condition
a0 = 1. To find an, successively use the recursive step to reduce the exponent
until it becomes zero. We give this procedure in Algorithm 2.

ALGORITHM 2
A Recursive Algorithm for Computing an.

procedure power(a: nonzero real number, n: nonnegative inte-
ger)
if n = 0 then return 1
else return a·power(a, n− 1)
{output is an}

56 CHAPTER 1. INDUCTION AND RECURSION

Next we give a recursive algorithm for finding greatest common
divisors.

�
EXAMPLE. 3

Give a recursive algorithm for computing the greatest common divisor of two
nonnegative integers a and b with a < b.�� ��Solution: We can base a recursive algorithm on the reduction gcd(a, b) =
gcd(bmoda, a) and the condition gcd(0, b) = b when b > 0. This produces
the procedure in Algorithm 3, which is a recursive version of the Euclidean
algorithm.

We illustrate the workings of Algorithm 3 with a trace when the input
is a = 5, b = 8. With this input, the algorithm uses the “else” clause to
find that gcd(5, 8) = gcd(8mod5, 5) = gcd(3, 5). It uses this clause again
to find that gcd(3, 5) = gcd(5mod3, 3) = gcd(2, 3), then to get gcd(2, 3) =

gcd(3mod2, 2) = gcd(1, 2), then to get gcd(1, 2) = gcd(2mod1, 1) = gcd(0, 1).
Finally, to find gcd(0, 1) it uses the first step with a = 0 to find that gcd(0, 1) =
1. Consequently, the algorithm finds that gcd(5, 8) = 1.

ALGORITHM 3
A Recursive Algorithm for Computing gcd(a, b).

procedure gcd(a, b: nonnegative integers with a < b)
if a = 0 then return b
else return gcd(b mod a, a)
{output is gcd(a, b)}

�
EXAMPLE. 4

Devise a recursive algorithm for computing bnmodm, where b, n, and m are
integers with m ≥ 2, n ≥ 0, and 1 ≤ b < m.�� ��Solution: We can base a recursive algorithm on the fact that

bn mod m = (b · (bn−1 mod m)) mod m,

and the initial condition b0modm = 1. However, we can devise a much more

1.3.1 Introduction 57

efficient recursive algorithm based on the observation that

bntextbfmod m = (bn/2 mod m)2 mod m

when n is even and

bn mod m = ((b⌊n/2⌋mod m)2mod m · b mod m) mod m

when n is odd, which we describe in pseudocode as Algorithm 4.
We trace the execution of Algorithm 4 with input b = 2, n = 5, and

m = 3 to illustrate how it works. First, because n = 5 is odd we use the
“else” clause to see that mpower(2, 5, 3) = (mpower(2, 2, 3)2 mod 3 ·2 mod
3) mod 3. We next use the “else if” clause to see that mpower(2, 2, 3) =

mpower(2, 1, 3)2 mod 3. Using the “else” clause again, we see that mpower(2, 1, 3) =
(mpower(2, 0, 3)2 mod 3 ·2 mod 3) mod 3. Finally, using the “if” clause, we
see that mpower(2, 0, 3) = 1. Working backwards, it follows that mpower(2, 1, 3) =
(12 mod 3 · 2 mod 3) mod 3 = 2, so mpower(2, 2, 3) = 22 mod 3 = 1, and
finally mpower(2, 5, 3) = (12 mod 3 · 2 mod 3) mod 3 = 2.

ALGORITHM 4
Recursive Modular Exponentiation.

procedure mpower(b, n,m: integers with b > 0 and m ≥ 2, n ≥
0)
if n = 0 then

return 1
else if n is even then

return mpower(b, n/2, m)2 mod m
else

return (mpower(b, ⌊n/2⌋,m)2 mod m · b mod m) mod m
{output is bn mod m}

�
EXAMPLE. 5

Express the linear search algorithm as a recursive procedure.�� ��Solution: To search for the first occurrence of x in the sequence a1, a2, . . . , an,
at the ith step of the algorithm, x and ai are compared. If x equals ai, then

58 CHAPTER 1. INDUCTION AND RECURSION

the algorithm returns i, the location of x in the sequence. Otherwise, the
search for the first occurrence of x is reduced to a search in a sequence with
one fewer element, namely, the sequence ai+1, . . . , an. The algorithm returns
0 when x is never found in the sequence after all terms have been examined.
We can now give a recursive procedure, which is displayed as pseudocode in
Algorithm 5.

Let search (i, j, x) be the procedure that searches for the first occurrence
of x in the sequence ai, ai+1, . . . , aj . The input to the procedure consists of
the triple (1, n, x). The algorithm terminates at a step if the first termof
the remaining sequence is x or if there is only one termof the sequence and
this is not x. If x is not the first term and there are additional terms, the
same procedure is carried out but with a search sequence of one fewer term,
obtained by deleting the first term of the search sequence. If the algorithm
terminates without x having been found, the algorithm returns the value 0.

ALGORITHM 5
A Recursive Linear Search Algorithm.

procedure search(i, j, x : integers, 1 ≤ i ≤ j ≤ n)
if ai = x then

return i
else if i = j then

return 0
else

return search(i+ 1, j, x)
{output is the location of x in a1, a2, . . . , an if it appears; oth-
erwise it is 0}

�
EXAMPLE. 6

Construct a recursive version of a binary search algorithm.�� ��Solution: Suppose we want to locate x in the sequence a1, a2, . . . , an of
integers in increasing order. To perform a binary search, we begin by com-
paring x with the middle term, a⌊(n+1)/2⌋. Our algorithm will terminate if x

1.3.2 Proving Recursive Algorithms Correct 59

equals this term and return the location of this term in the sequence. Other-
wise, we reduce the search to a smaller search sequence, namely, the first half
of the sequence if x is smaller than the middle term of the original sequence,
and the second half otherwise. We have reduced the solution of the search
problem to the solution of the same problem with a sequence at most half as
long. If we have never encountered the search term x, our algorithm returns
the value 0.We express this recursive version of a binary search algorithm as
Algorithm 6.

ALGORITHM 6
A Recursive Binary Search Algorithm.

procedure binary search(i, j, x: integers, 1 ≤ i ≤ j ≤ n)
m := ⌊(i+ j)/2⌋
if x = am then

return m
else if (x < am and i < m) then

return binary search(i,m− 1, x)
else if (x > am and j > m) then

return binary search(m+ 1, j, x)
else return 0
{output is location of x in a1, a2, . . . , an if it appears; otherwise
it is 0}

1.3.2 Proving Recursive Algorithms Correct

Mathematical induction, and its variant strong induction, can be
used to prove that a recursive algorithm is correct, that is, that it
produces the desired output for all possible input values. Examples 7
and 8 illustrate how mathematical induction or strong induction can be
used to prove that recursive algorithms are correct. First, we will show
that Algorithm 2 is correct.

�
EXAMPLE. 7

60 CHAPTER 1. INDUCTION AND RECURSION

Prove that Algorithm 2, which computes powers of real numbers, is correct.�� ��Solution: We use mathematical induction on the exponent n.
BASIS STEP: If n = 0, the first step of the algorithm tells us that power

(a, 0) = 1. This is correct because a0 = 1 for every nonzero real number a.
This completes the basis step.

INDUCTIVE STEP: The inductive hypothesis is the statement that power
(a, k) = ak for all a ̸= 0 for an arbitrary nonnegative integer k. That is, the
inductive hypothesis is the statement that the algorithm correctly computes
ak. To complete the inductive step, we show that if the inductive hypoth-
esis is true, then the algorithm correctly computes ak+1. Because k + 1 is
a positive integer, when the algorithm computes ak+1, the algorithm sets
power (a, k + 1) = a · power(a, k). By the inductive hypothesis, we have
power(a, k) = ak, so power(a, k + 1) = a · power(a, k) = a · ak = ak+1. This
completes the inductive step.

We have completed the basis step and the inductive step, so we can con-
clude that Algorithm 2 always computes an correctly when a ̸= 0 and n is a
nonnegative integer.

Generally, we need to use strong induction to prove that recursive
algorithms are correct, rather than just mathematical induction. Ex-
ample 8 illustrates this; it shows how strong induction can be used to
prove that Algorithm 4 is correct.

�
EXAMPLE. 8

Prove that Algorithm 4, which computes modular powers, is correct.�� ��Solution: We use strong induction on the exponent n.
BASIS STEP: Let b be an integer and m an integer with m ≥ 2. When

n = 0, the algorithm sets mpower(b, n, m) equal to 1. This is correct because
b0 mod m = 1. The basis step is complete.

INDUCTIVE STEP: For the inductive hypothesis we assume that
mpower(b, j,m) = bj mod m for all integers 0 ≤ j < k whenever b

is a positive integer and m is an integer with m ≥ 2. To complete the
inductive step, we show that if the inductive hypothesis is correct, then
mpower(b, k,m) = bk mod m. Because the recursive algorithm handles odd
and even values of k differently, we split the inductive step into two cases.

1.3.3 Recursion and Iteration 61

When k is even, we have

(b, k,m) = (mpower(b, k/2,m))2 mod m
= (bk/2 mod m)2 mod m
= bk mod m,

where we have used the inductive hypothesis to replace mpower(b, k/2,m) by
bk/2 mod m.

When k is odd, we have

mpower(b, k,m) = ((mpower(b, ⌊k/2⌋,m))2 mod m · b mod m)mod m
= ((b⌊k/2⌋ mod m)2 mod m · b mod m) mod m
= b2⌊k/2⌋+1 mod m = bk mod m,

because 2⌊k/2⌋ + 1 = 2(k − 1)/2 + 1 = k when k is odd. Here we have used
the inductive hypothesis to replace mpower(b, ⌊k/2⌋,m) by b⌊k/2⌋ mod m.
This completes the inductive step.

We have completed the basis step and the inductive step, so by strong
induction we know that Algorithm 4 is correct.

1.3.3 Recursion and Iteration

A recursive definition expresses the value of a function at a positive
integer in terms of the values of the function at smaller integers. This
means that we can devise a recursive algorithm to evaluate a recursively
defined function at a positive integer. Instead of successively reducing
the computation to the evaluation of the function at smaller integers,
we can start with the value of the function at one or more integers, the
base cases, and successively apply the recursive definition to find the
values of the function at successive larger integers. Such a procedure
is called iterative. Often an iterative approach for the evaluation of
a recursively defined sequence requires much less computation than a
procedure using recursion (unless special-purpose recursive machines
are used). This is illustrated by the iterative and recursive procedures
for finding the nth Fibonacci number. The recursive procedure is given
first.

62 CHAPTER 1. INDUCTION AND RECURSION

ALGORITHM 7
A Recursive Algorithm for Fibonacci Numbers.

procedure fibonacci(n: nonnegative integer)
if n = 0 then return 0
else if n = 1 then return 1
else return fibonacci(n− 1)+ fibonacci(n− 2)
{output is fibonacci(n)}

When we use a recursive procedure to find fn, we first express fn
as fn−1 + fn−2. Then we replace both of these Fibonacci numbers by
the sum of two previous Fibonacci numbers, and so on. When f1 or f0
arises, it is replaced by its value. 5.4 Recursive Algorithms 387

f4

f3 f2

f0f1f1
f2

f0f1

FIGURE 1 Evaluating f4 recursively.

Note that at each stage of the recursion, until f1 or f0 is obtained, the number of Fibonacci

numbers to be evaluated has doubled. For instance, when we find f4 using this recursive algo-

rithm, we must carry out all the computations illustrated in the tree diagram in Figure 1. This

tree consists of a root labeled with f4, and branches from the root to vertices labeled with the

two Fibonacci numbers f3 and f2 that occur in the reduction of the computation of f4. Each sub-

sequent reduction produces two branches in the tree. This branching ends when f0 and f1 are

reached. The reader can verify that this algorithm requires fn+1 − 1 additions to find fn.

Now consider the amount of computation required to find fn using the iterative approach in

Algorithm 8.

ALGORITHM 8 An Iterative Algorithm for Computing Fibonacci Numbers.

procedure iterative fibonacci(n: nonnegative integer)

if n = 0 then return 0

else
x := 0

y := 1

for i := 1 to n − 1

z := x + y
x := y
y := z

return y
{output is the nth Fibonacci number}

This procedure initializes x as f0 = 0 and y as f1 = 1. When the loop is traversed, the sum of x
and y is assigned to the auxiliary variable z. Then x is assigned the value of y and y is assigned

the value of the auxiliary variable z. Therefore, after going through the loop the first time, it

follows that x equals f1 and y equals f0 + f1 = f2. Furthermore, after going through the loop

n − 1 times, x equals fn−1 and y equals fn (the reader should verify this statement). Only n − 1

additions have been used to find fn with this iterative approach when n > 1. Consequently, this

algorithm requires far less computation than does the recursive algorithm.

We have shown that a recursive algorithm may require far more computation than an iter-

ative one when a recursively defined function is evaluated. It is sometimes preferable to use a

recursive procedure even if it is less efficient than the iterative procedure. In particular, this is

true when the recursive approach is easily implemented and the iterative approach is not. (Also,

machines designed to handle recursion may be available that eliminate the advantage of using

iteration.)

Figure 1.12: Evaluating f4 recursively.

Note that at each stage of the recursion, until f1 or f0 is obtained,
the number of Fibonacci numbers to be evaluated has doubled. For
instance, when we find f4 using this recursive algorithm, we must carry
out all the computations illustrated in the tree diagram in Figure 1.12.

This tree consists of a root labeled with f4, and branches from
the root to vertices labeled with the two Fibonacci numbers f3 and f2
that occur in the reduction of the computation of f4. Each subsequent
reduction produces two branches in the tree. This branching ends when
f0 and f1 are reached. The reader can verify that this algorithm requires
fn+1−1 additions to find fn. Now consider the amount of computation
required to find fn using the iterative approach in Algorithm 8.

1.3.3 Recursion and Iteration 63

ALGORITHM 8
An Iterative Algorithm for Computing Fibonacci Num-
bers.

procedure iterative fibonacci(n : nonnegative integer)
if n = 0 then return 0
else
x := 0
y := 1
for i := 1 to n− 1
z := x+ y
x := y
y := z

return y
{output is the nth Fibonacci number}

This procedure initializes x as f0 = 0 and y as f1 = 1. When
the loop is traversed, the sum of x and y is assigned to the auxiliary
variable z. Then x is assigned the value of y and y is assigned the
value of the auxiliary variable z. Therefore, after going through the
loop the first time, it follows that x equals f1 and y equals f0+f1 = f2.
Furthermore, after going through the loop n − 1 times, x equals fn−1

and y equals fn (the reader should verify this statement). Only n − 1
additions have been used to find fn with this iterative approach when
n > 1. Consequently, this algorithm requires far less computation than
does the recursive algorithm.

We have shown that a recursive algorithm may require far more
computation than an iterative one when a recursively defined function
is evaluated. It is sometimes preferable to use a recursive procedure
even if it is less efficient than the iterative procedure. In particular,
this is true when the recursive approach is easily implemented and the
iterative approach is not.

64 CHAPTER 1. INDUCTION AND RECURSION
388 5 / Induction and Recursion

8 2 4 6 9 7 10 1 5 3

8 2 4 6 9 7 10 1 5 3

8 2 4 6 9

8 2 4

8 2

6

7 10 1 5 3

7 10 1

7 10

5 3

1 2 3 4 5 6 7 8 9 10

2 4 6 8 9 1 3 5 7 10

2 4 8 6 9

4

8 2

6

1 7 10 3 5

7 10 1

7 10

5 32 8 9

9

FIGURE 2 The merge sort of 8, 2, 4, 6, 9, 7, 10, 1, 5, 3.

5.4.4 The Merge Sort
We now describe a recursive sorting algorithm called the merge sort algorithm. We will demon-Links
strate how the merge sort algorithm works with an example before describing it in generality.

EXAMPLE 9 Use the merge sort to put the terms of the list 8, 2, 4, 6, 9, 7, 10, 1, 5, 3 in increasing order.

Solution: A merge sort begins by splitting the list into individual elements by successively split-

ting lists in two. The progression of sublists for this example is represented with the balanced

binary tree of height 4 shown in the upper half of Figure 2.

Sorting is done by successively merging pairs of lists. At the first stage, pairs of individual

elements are merged into lists of length two in increasing order. Then successive merges of

pairs of lists are performed until the entire list is put into increasing order. The succession of

merged lists in increasing order is represented by the balanced binary tree of height 4 shown in

the lower half of Figure 2 (note that this tree is displayed “upside down”). ◂

In general, a merge sort proceeds by iteratively splitting lists into two sublists of equal

length (or where one sublist has one more element than the other) until each sublist contains one

element. This succession of sublists can be represented by a balanced binary tree. The procedure

continues by successively merging pairs of lists, where both lists are in increasing order, into a

larger list with elements in increasing order, until the original list is put into increasing order.

The succession of merged lists can be represented by a balanced binary tree.
Demo

We can also describe the merge sort recursively. To do a merge sort, we split a list into

two sublists of equal, or approximately equal, size, sorting each sublist using the merge sort

Figure 1.13: The merge sort of 8, 2, 4, 6, 9, 7, 10, 1, 5, 3.

1.3.4 The Merge Sort

We nowdescribe a recursive sorting algorithm called the merge sort
algorithm. We will demonstrate how the merge sort algorithm works
with an example before describing it in generality.

�
EXAMPLE. 9

Use the merge sort to put the terms of the list 8, 2, 4, 6, 9, 7, 10, 1, 5, 3 in
increasing order.�� ��Solution: A merge sort begins by splitting the list into individual elements
by successively splitting lists in two. The progression of sublists for this
example is represented with the balanced binary tree of height 4 shown in the
upper half of Figure 1.13.

Sorting is done by successively merging pairs of lists. At the first stage,
pairs of individual elements are merged into lists of length two in increasing
order. Then successive merges of pairs of lists are performed until the entire
list is put into increasing order. The succession of merged lists in increasing

1.3.4 The Merge Sort 65

order is represented by the balanced binary tree of height 4 shown in the lower
half of Figure 1.13 (note that this tree is displayed “upside down”).

In general, a merge sort proceeds by iteratively splitting lists into
two sublists of equal length (or where one sublist has one more element
than the other) until each sublist contains one element. This succession
of sublists can be represented by a balanced binary tree. The procedure
continues by successively merging pairs of lists, where both lists are in
increasing order, into a larger list with elements in increasing order,
until the original list is put into increasing order. The succession of
merged lists can be represented by a balanced binary tree.

We can also describe the merge sort recursively. To do a merge sort,
we split a list into two sublists of equal, or approximately equal, size,
sorting each sublist using the merge sort algorithm, and then merging
the two lists. The recursive version of the merge sort is given in Algo-
rithm 9. This algorithm uses the subroutine merge, which is described
in Algorithm 10.

ALGORITHM 9
A Recursive Merge Sort.

procedure mergesort(L = a1, . . . , an)
if n > 1 then
m := ⌊n/2⌋
L1 := a1, a2, . . . , am
L2 := am+1, am+2, . . . , an

quadL := merge(mergesort(L1),mergesort(L2))
{L is now sorted into elements in nondecreasing order}

An efficient algo rithm for merging two ordered lists into a larger
ordered list is needed to implement the merge sort. We will now describe
such a procedure.

�
EXAMPLE. 10

Merge the two lists 2, 3, 5, 6 and 1, 4.

66 CHAPTER 1. INDUCTION AND RECURSION

Table 1.1: Merging the Two Sorted Lists 2, 3, 5, 6 and 1, 4.
First List Second List Merged List Comparison

2 3 5 6 1 4 1 < 2
2 3 5 6 4 1 2 < 4
3 5 6 4 1 2 3 < 4
5 6 4 1 2 3 4 < 5
5 6 1 2 3 4

1 2 3 4 5 6

�� ��Solution: Table 1.1 illustrates the steps we use. First, compare the small-
est elements in the two lists, 2 and 1, respectively. Because 1 is the smaller,
put it at the beginning of the merged list and remove it from the second list.
At this stage, the first list is 2, 3, 5, 6, the second is 4, and the combined list
is 1.

Next, compare 2 and 4, the smallest elements of the two lists. Because 2
is the smaller, add it to the combined list and remove it from the first list. At
this stage the first list is 3, 5, 6, the second is 4, and the combined list is 1, 2.

Continue by comparing 3 and 4, the smallest elements of their respective
lists. Because 3 is the smaller of these two elements, add it to the combined
list and remove it from the first list. At this stage the first list is 5, 6, and the
second is 4. The combined list is 1, 2, 3.

Then compare 5 and 4, the smallest elements in the two lists. Because 4
is the smaller of these two elements, add it to the combined list and remove
it from the second list. At this stage the first list is 5, 6, the second list is
empty, and the combined list is 1, 2, 3, 4.

Finally, because the second list is empty, all elements of the first list can
be appended to the end of the combined list in the order they occur in the
first list. This produces the ordered list 1, 2, 3, 4, 5, 6.

We will now consider the general problem of merging two ordered
lists L1 and L2 into an ordered list L. We will describe an algorithm
for solving this problem. Start with an empty list L. Compare the
smallest elements of the two lists. Put the smaller of these two elements
at the right end of L, and remove it from the list it was in. Next, if
one of L1 and L2 is empty, append the other (nonempty) list to L,
which completes the merging. If neither L1 nor L2 is empty, repeat this

1.3.4 The Merge Sort 67

process. Algorithm 10 gives a pseudocode description of this procedure.
We will need estimates for the number of comparisons used to merge

two ordered lists in the analysis of the merge sort. We can easily obtain
such an estimate for Algorithm 10. Each time a comparison of an
element from L1 and an element from L2 is made, an additional element
is added to the merged list L. However, when either L1 or L2 is empty,
no more comparisons are needed. Hence, Algorithm 10 is least efficient
when m + n − 2 comparisons are carried out, where m and n are the
number of elements in L1 and L2, respectively, leaving one element in
each of L1 and L2. The next comparison will be the last one needed,
because it will make one of these lists empty. Hence, Algorithm 10
uses no more than m+ n− 1 comparisons. Lemma 1 summarizes this
estimate.

ALGORITHM 10
Merging Two Lists.

procedure merge(L1, L2 : sorted lists)
L := empty list
while L1 and L2 are both nonempty

remove smaller of first elements of L1 and L2 from its list;
put it at the right end of L
if this removal makes one list empty then remove all elements
from the other list and append them to L

return L{L is the merged list with elements in increasing order}

LEMMA 1.3.1

Two sorted lists with m elements and n elements can be merged
into a sorted list using no more than m+ n− 1 comparisons.

Sometimes two sorted lists of length m and n can be merged using
far fewer than m + n − 1 comparisons. For instance, when m = 1, a
binary search procedure can be applied to putv the one element in the
first list into the second list. This requires only ⌈log n⌉ comparisons,
which is much smaller than m + n − 1 = n, for m = 1. On the other
hand, for some values of m and n, Lemma 1 gives the best possible

68 CHAPTER 1. INDUCTION AND RECURSION

bound. That is, there are lists with m and n elements that cannot be
merged using fewer than m+ n− 1 comparisons.

We can now analyze the complexity of the merge sort. Instead of
studying the general problem, we will assume that n, the number of
elements in the list, is a power of 2, say 2m. This will make the analysis
less complicated, but when this is not the case, various modifications
can be applied that will yield the same estimate.

At the first stage of the splitting procedure, the list is split into
two sublists, of 2m−1 elements each, at level 1 of the tree generated
by the splitting. This process continues, splitting the two sublists with
2m−1 elements into four sublists of 2m−2 elements each at level 2, and
so on. In general, there are 2k−1 lists at level k − 1, each with 2m−k+1

elements. These lists at level k− 1 are split into 2k lists at level k, each
with 2m−k elements. At the end of this process, we have 2m lists each
with one element at level m.

We start merging by combining pairs of the 2m lists of one element
into 2m−1 lists, at level m − 1, each with two elements. To do this,
2m−1 pairs of lists with one element each are merged. The merger of
each pair requires exactly one comparison. The procedure continues, so
that at level k(k = m,m−1,m−2, . . . , 3, 2, 1), 2k lists each with 2m−k

elements are merged into 2k−1 lists, each with 2m−k+1 elements, at level
k − 1. To do this a total of 2k−1 mergers of two lists, each with 2m−k

elements, are needed. But, by Lemma 1, each of these mergers can be
carried out using at most 2m−k +2m−k − 1 = 2m−k+1 − 1 comparisons.
Hence, going from level k to k − 1 can be accomplished using at most
2k−1(2m−k+1 − 1) comparisons.

Summing all these estimates shows that the number of comparisons
required for the merge sort is at most

m∑
k=1

2k−1(2m−k+1−1) =

m∑
k=1

2m−
m∑
k=1

2k−1 = m2m−(2m−1) = n log n−n+1,

because m = log n and n = 2m.
Theorem 1.3.1 summarizes what we have discovered about the worst-

case complexity of the merge sort algorithm.

1.3.4 The Merge Sort 69

THEOREM 1.3.1

The number of comparisons needed to merge sort a list with n
elements is O(n log n).

Theorem 1 tells us that the merge sort achieves this best possible
big-O estimate for the complexity of a sorting algorithm.

70 CHAPTER 1. INDUCTION AND RECURSION

1.4 Program Correctness

1.4.1 Introduction

Suppose that we have designed an algorithm to solve a problem and
have written a program to implement it. How can we be sure that the
program always produces the correct answer? After all the bugs have
been removed so that the syntax is correct, we can test the program
with sample input. It is not correct if an incorrect result is produced for
any sample input. But even if the program gives the correct answer for
all sample input, it may not always produce the correct answer (unless
all possible input has been tested). We need a proof to show that the
program always gives the correct output.

Program verification, the proof of correctness of programs, uses the
rules of inference and proof techniques described in this chapter, includ-
ing mathematical induction. Because an incorrect program can lead to
disastrous results, a large amount of methodology has been constructed
for verifying programs. Efforts have been devoted to automating pro-
gram verification so that it can be carried out using a computer. How-
ever, only limited progress has been made toward this goal. Indeed,
some mathematicians and theoretical computer scientists argue that it
will never be realistic to mechanize the proof of correctness of complex
programs.

Some of the concepts and methods used to prove that programs are
correct will be introduced in this section. Many different methods have
been devised for proving that programs are correct.

1.4.2 Program Verification

A program is said to be correct if it produces the correct output
for every possible input. A proof that a program is correct consists of
two parts. The first part shows that the correct answer is obtained if
the program terminates. This part of the proof establishes the partial
correctness of the program. The second part of the proof shows that
the program always terminates.

To specify what it means for a program to produce the correct
output, two propositions are used. The first is the initial assertion,

1.4.2 Program Verification 71

which gives the properties that the input values must have. The second
is the final assertion, which gives the properties that the output of the
program should have, if the program did what was intended. The ap-
propriate initial and final assertions must be provided when a program
is checked.

DEFINITION 1.4.1 A program, or program segment, S is said
to be partially correct with respect to the initial assertion p and the
final assertion q if whenever p is true for the input values of S and
S terminates, then q is true for the output values of S. The notation
p{S}q indicates that the program, or program segment, S is partially
correct with respect to the initial assertion p and the final assertion q.

Note: The notation p{S}q is known as a Hoare triple. Tony Hoare
introduced the concept of partial correctness.

Note that the notion of partial correctness has nothing to do with
whether a program terminates; it focuses only on whether the program
does what it is expected to do if it terminates.

A simple example illustrates the concepts of initial and final asser-
tions.

�
EXAMPLE. 1

Show that the program segment

y := 2
z := x+ y

is correct with respect to the initial assertion p : x = 1 and the final
assertion q : z = 3.�� ��Solution: Suppose that p is true, so that x = 1 as the program begins.
Then y is assigned the value 2, and z is assigned the sum of the values of x
and y, which is 3. Hence, S is correct with respect to the initial assertion p

and the final assertion q. Thus, p{S}q is true.

72 CHAPTER 1. INDUCTION AND RECURSION

1.4.3 Rules of Inference

A useful rule of inference proves that a program is correct by split-
ting the program into a sequence of subprograms and then showing that
each subprogram is correct.

Suppose that the program S is split into subprograms S1 and S2.
Write S = S1;S2 to indicate that S is made up of S1 followed by S2.
Suppose that the correctness of S1 with respect to the initial assertion
p and final assertion q, and the correctness of S2 with respect to the
initial assertion q and the final assertion r, have been established. It
follows that if p is true and S1 is executed and terminates, then q is
true; and if q is true, and S2 executes and terminates, then r is true.
Thus, if p is true and S = S1;S2 is executed and terminates, then r
is true. This rule of inference, called the composition rule, can be
stated as

p{S1}q
q{S2}r

∴ p{S1;S2}r
This rule of inference will be used later in this section.
Next, some rules of inference for program segments involving con-

ditional statements and loops will be given. Because programs can be
split into segments for proofs of correctness, this will let us verify many
different programs.

1.4.4 Conditional Statements

First, rules of inference for conditional statements will be given.
Suppose that a program segment has the form

if condition then
S

where S is a block of statements. Then S is executed if condition
is true, and it is not executed when condition is false. To verify that
this segment is correct with respect to the initial assertion p and final
assertion q, two things must be done. First, it must be shown that when

1.4.4 Conditional Statements 73

p is true and condition is also true, then q is true after S terminates.
Second, it must be shown that when p is true and condition is false,
then q is true (because in this case S does not execute).

This leads to the following rule of inference:

(p ∧ condition {S}q)
(p ∧ ¬condition → q)

∴ p{if condition then S}q
Example 2 illustrates how this rule of inference is used.

�
EXAMPLE. 2

Verify that the program segment

if x > y then
y := x

is correct with respect to the initial assertion T and the final assertion
y ≥ x.�� ��Solution: When the initial assertion is true and x > y, the assignment
y := x is carried out. Hence, the final assertion, which asserts that y ≥ x, is
true in this case. Moreover, when the initial assertion is true and x > y is
false, so that x ≤ y, the final assertion is again true. Hence, using the rule
of inference for program segments of this type, this program is correct with
respect to the given initial and final assertions.

Similarly, suppose that a program has a statement of the form

if condition then
S1

else
S2

If condition is true, then S1 executes; if condition is false, then S2

executes. To verify that this program segment is correct with respect
to the initial assertion p and the final assertion q, two things must be

74 CHAPTER 1. INDUCTION AND RECURSION

done. First, it must be shown that when p is true and condition is true,
then q is true after S1 terminates. Second, it must be shown that when
p is true and condition is false, then q is true after S2 terminates. This
leads to the following rule of inference:

(p ∧ condition {S1}q)
(p ∧ ¬condition {S2}q)

∴ p{if condition then S1 else S2}q
Example 3 illustrates how this rule of inference is used.

�
EXAMPLE. 3

Verify that the program segment

if x < 0 then
abs := −x

else
abs := x

is correct with respect to the initial assertion T and the final assertion
abs = |x|.�� ��Solution: Two things must be demonstrated. First, it must be shown that
if the initial assertion is true and x < 0, then abs = |x|. This is correct, be-
cause when x < 0 the assignment statement abs := −x sets abs = −x, which
is |x| by definition when x < 0. Second, it must be shown that if the initial
assertion is true and x < 0 is false, so that x ≥ 0, then abs = |x|. This is
also correct, because in this case the program uses the assignment statement
abs := x, and x is |x| by definition when x ≥ 0, so abs := x. Hence, using the
rule of inference for program segments of this type, this segment is correct
with respect to the given initial and final assertions.

1.4.5 Loop Invariants

Next, proofs of correctness of while loops will be described. To
develop a rule of inference for program segments of the type

1.4.5 Loop Invariants 75

while condition
S

note that S is repeatedly executed until condition becomes false.
An assertion that remains true each time S is executed must be chosen.
Such an assertion is called a loop invariant. In other words, p is a loop
invariant if (p∧ condition){S}p is true.

Suppose that p is a loop invariant. It follows that if p is true before
the program segment is executed, p and ¬ condition are true after
termination, if it occurs. This rule of inference is

(p ∧ condition {S}p)
∴ p{while conditionS}(¬condition ∧ p)

The use of a loop invariant is illustrated in Example 4.

�
EXAMPLE. 4

A loop invariant is needed to verify that the program segment

i := 1
factorial := 1
while i < n

i := i+ 1
factorial := factorial · i

terminates with factorial = n! when n is a positive integer.
Let p be the assertion “factorial = i! and i ≤ n.” We first prove that p is

a loop invariant.
Suppose that, at the beginning of one execution of the while loop, p is

true and the condition of the while loop holds; in other words, assume that
factorial = i! and that i < n. The new values inew and factorialnew of i and
factorial are inew = i+ 1 and factorialnew = factorial · (i+ 1) = (i+ 1)! =
inew!. Because i < n, we also have inew = i + 1 ≤ n. Thus, p is true at the
end of the execution of the loop. This shows that p is a loop invariant.

Now we consider the program segment. Just before entering the loop,
i = 1 ≤ n and factorial = 1 = 1! = i! both hold, so p is true. Because p is a
loop invariant, the rule of inference just introduced implied that if the while

76 CHAPTER 1. INDUCTION AND RECURSION

loop terminates, it terminates with p true and with i < n false. In this case,
at the end, factorial = i! and i ≤ n are true, but i < n is false; in other
words, i = n and factorial = i! = n!, as desired.

Finally, we need to check that the while loop actually terminates. At the
beginning of the program i is assigned the value 1, so after n− 1 traversals of
the loop, the new value of i will be n, and the loop terminates at that point.

A final example will be given to show how the various rules of in-
ference can be used to verify the correctness of a longer program.

�
EXAMPLE. 5

We will outline how to verify the correctness of the program S for computing
the product of two integers.

procedure multiply(m,n: integers)

S1

{
if n < 0 then a := −n
elsea := n

S2

{
k := 0
x := 0

S3

 whilek < a
x := x+m
k := k + 1

S4

{
if n < 0 then product := −x
else product := x

return product
{product equals mn}

The goal is to prove that after S is executed, product has the value mn.
The proof of correctness can be carried out by splitting S into four segments,
with S = S1; S2; S3; S4, as shown in the listing of S. The rule of composition
can be used to build the correctness proof. Here is how the argument proceeds.
The details will be left as an exercise for the reader.

Let p be the initial assertion “mand n are integers.” Then, it can be shwn
that p{S1}q is true, when q is the proposition p ∧ (a = |n|). Next, let r be
the proposition q ∧ (k = 0) ∧ (x = 0). It is easily verified that q{S2}r is true.

1.4.5 Loop Invariants 77

It can be shown that “x = mk and k ≤ a” is an invariant for the loop in
S3. Furthermore, it is easy to see that the loop terminates after a iterations,
with k = a, so x = ma at this point. Because r implies that x = m · 0
and 0 ≤ a, the loop invariant is true before the loop is entered. Because
the loop terminates with k = a, it follows that r{S3}s is true, where s is
the proposition “x = ma and a = |n|.” Finally, it can be shown that S4 is
correct with respect to the initial assertion s and final assertion t, where t is
the proposition “product = mn.”

Putting all this together, because p{S1}q, q{S2}r, r{S3}s, and s{S4}t are
all true, it follows from the rule of composition that p{S}t is true. Further-
more, because all four segments terminate, S does terminate. This verifies
the correctness of the program.

Chapter 2

Counting

Combinatorics, the study of arrangements of objects, is an impor-
tant part of discrete mathematics. This subject was studied as long ago
as the seventeenth century, when combinatorial questions arose in the
study of gambling games. Enumeration, the counting of objects with
certain properties, is an important part of combinatorics. We must
count objects to solve many different types of problems. For instance,
counting is used to determine the complexity of algorithms. Counting is
also required to determine whether there are enough telephone numbers
or Internet protocol addresses to meet demand. Recently, it has played
a key role in mathematical biology, especially in sequencing DNA. Fur-
thermore, counting techniques are used extensively when probabilities
of events are computed.

We can phrase many counting problems in terms of ordered or un-
ordered arrangements of the objects of a set with or without repetitions.
These arrangements, called permutations and combinations, are used
in many counting problems. For instance, suppose the 100 top finishers
on a competitive exam taken by 2000 students are invited to a banquet.
We can count the possible sets of 100 students that will be invited, as
well as the ways in which the top 10 prizes can be awarded.

Another problem in combinatorics involves generating all the ar-
rangements of a specified kind. This is often important in computer
simulations. We will devise algorithms to generate arrangements of
various types.

78

2.1. THE BASICS OF COUNTING 79

2.1 The Basics of Counting

2.1.1 Introduction

Suppose that a password on a computer system consists of six,
seven, or eight characters. Each of these characters must be a digit
or a letter of the alphabet. Each password must contain at least one
digit. How many such passwords are there? The techniques needed to
answer this question and a wide variety of other counting problems will
be introduced in this section.

Counting problems arise throughout mathematics and computer sci-
ence. For example, we must count the successful outcomes of experi-
ments and all the possible outcomes of these experiments to determine
probabilities of discrete events.We need to count the number of opera-
tions used by an algorithm to study its time complexity.

We will introduce the basic techniques of counting in this section.
These methods serve as the foundation for almost all counting tech-
niques.

2.1.2 Basic Counting Principles

We first present two basic counting principles, the product rule
and the sum rule. Then we will show how they can be used to solve
many different counting problems.

The product rule applies when a procedure is made up of separate
tasks.

THE PRODUCT RULE
Suppose that a procedure can be broken down into a sequence of
two tasks. If there are n1 ways to do the first task and for each
of these ways of doing the first task, there are n2 ways to do the
second task, then there are n1n2 ways to do the procedure.

Examples 1–10 show how the product rule is used.

�
EXAMPLE. 1

80 CHAPTER 2. COUNTING

A new company with just two employees, Sanchez and Patel, rents a floor of
a building with 12 offices. How many ways are there to assign different offices
to these two employees?�� ��Solution: The procedure of assigning offices to these two employees con-
sists of assigning an office to Sanchez, which can be done in 12 ways, then
assigning an office to Patel different from the office assigned to Sanchez, which
can be done in 11 ways. By the product rule, there are 12 · 11 = 132 ways to
assign offices to these two employees.

�
EXAMPLE. 2

The chairs of an auditorium are to be labeled with an uppercase English letter
followed by a positive integer not exceeding 100. What is the largest number
of chairs that can be labeled differently?�� ��Solution: The procedure of labeling a chair consists of two tasks, namely,
assigning to the seat one of the 26 uppercase English letters, and then assign-
ing to it one of the 100 possible integers. The product rule shows that there
are 26 · 100 = 2600 different ways that a chair can be labeled. Therefore, the
largest number of chairs that can be labeled differently is 2600.

�
EXAMPLE. 3

There are 32 computers in a data center in the cloud. Each of these computers
has 24 ports. How many different computer ports are there in this data center?�� ��Solution: The procedure of choosing a port consists of two tasks, first
picking a computer and then picking a port on this computer. Because there
are 32 ways to choose the computer and 24 ways to choose the port no mat-
ter which computer has been selected, the product rule shows that there are
32 · 24 = 768 ports.

An extended version of the product rule is often useful. Suppose
that a procedure is carried out by performing the tasks T1, T2, . . . , Tm in
sequence. If each task Ti, i = 1, 2, . . . , n, can be done in ni ways, regard-
less of how the previous tasks were done, then there are n1 ·n2 · . . . ·nm

ways to carry out the procedure. This version of the product rule can be

2.1.2 Basic Counting Principles 81

proved by mathematical induction from the product rule for two tasks.

�
EXAMPLE. 4

How many different bit strings of length seven are there?�� ��Solution: Each of the seven bits can be chosen in two ways, because each
bit is either 0 or 1. Therefore, the product rule shows there are a total of
27 = 128 different bit strings of length seven.

�
EXAMPLE. 5

How many different license plates can be made if each plate contains a se-
quence of three uppercase English letters followed by three digits (and no
sequences of letters are prohibited, even if they are obscene)?�� ��Solution: There are 26 choices for each of the three uppercase English
letters and 10 choices for each of the three digits. Hence, by the product rule
there are a total of 26·26·26·10·10·10 = 17, 576, 000 possible license plates.

�
EXAMPLE. 6

Counting Functions How many functions are there from a set with m ele-
ments to a set with n elements?�� ��Solution: A function corresponds to a choice of one of the n elements in
the codomain for each of the m elements in the domain. Hence, by the prod-
uct rule there are n · n · . . . · n = nm functions from a set with m elements
to one with n elements. For example, there are 53 = 125 different functions
from a set with three elements to a set with five elements.

�
EXAMPLE. 7

Counting One-to-One Functions How many one-to-one functions are there
from a set with m elements to one with n elements?�� ��Solution: First note that when m > n there are no one-to-one functions
from a set with m elements to a set with n elements.

82 CHAPTER 2. COUNTING

Now let m ≤ n. Suppose the elements in the domain are a1, a2, . . . , am.
There are n ways to choose the value of the function at a1. Because the
function is one-to-one, the value of the function at a2 can be picked in n− 1
ways (because the value used for a1 cannot be used again). In general, the
value of the function at ak can be chosen in n− k + 1 ways. By the product
rule, there are n(n− 1)(n− 2) . . . (n−m+1) one-to-one functions from a set
with m elements to one with n elements.

For example, there are 5 · 4 · 3 = 60 one-to-one functions from a set with
three elements to a set with five elements.

�
EXAMPLE. 8

The Telephone Numbering Plan The North American numbering plan
(NANP) specifies the format of telephone numbers in the U.S., Canada, and
many other parts of North America. A telephone number in this plan consists
of 10 digits, which are split into a three-digit area code, a three-digit office
code, and a four-digit station code. Because of signaling considerations, there
are certain restrictions on some of these digits. To specify the allowable for-
mat, let X denote a digit that can take any of the values 0 through 9, let N
denote a digit that can take any of the values 2 through 9, and let Y denote
a digit that must be a 0 or a 1. Two numbering plans, which will be called
the old plan, and the new plan, will be discussed. (The old plan, in use in
the 1960s, has been replaced by the new plan, but the recent rapid growth in
demand for new numbers for mobile phones and devices will eventually make
even this new plan obsolete. In this example, the letters used to represent
digits follow the conventions of the North American Numbering Plan.) As will
be shown, the new plan allows the use of more numbers.

In the old plan, the formats of the area code, office code, and station
code are NYX,NNX, and XXXX, respectively, so that telephone numbers
had the form NYX − NNX − XXXX. In the new plan, the formats of
these codes are NXX, NXX, and XXXX, respectively, so that telephone
numbers have the form NXX−NXX−XXXX. How many different North
American telephone numbers are possible under the old plan and under the
new plan?�� ��Solution: By the product rule, there are 8 · 2 · 10 = 160 area codes with
format NYX and 8 · 10 · 10 = 800 area codes with format NXX. Similarly,
by the product rule, there are 8 · 8 · 10 = 640 office codes with format NNX.
The product rule also shows that there are 10 · 10 · 10 · 10 = 10, 000 station
codes with format XXXX.

2.1.2 Basic Counting Principles 83

Consequently, applying the product rule again, it follows that under the
old plan there are

160 · 640 · 10, 000 = 1, 024, 000, 000

different numbers available in North America. Under the new plan, there
are

800 · 800 · 10, 000 = 6, 400, 000, 000

different numbers available.

�
EXAMPLE. 9

What is the value of k after the following code, where n1, n2, . . . , nm are
positive integers, has been executed?

k := 0
for i1 := 1 to n1

for i2 := 1 to n2

.̇
.̇

for im := 1 to nm

k := k + 1�� ��Solution: The initial value of k is zero. Each time the nested loop is
traversed, 1 is added to k. Let Ti be the task of traversing the ith loop.
Then the number of times the loop is traversed is the number of ways to
do the tasks T1, T2, · · · , Tm. The number of ways to carry out the task
Tj , j = 1, 2, · · · ,m, is nj , because the jth loop is traversed once for each
integer ij with 1 ≤ ij ≤ nj . By the product rule, it follows that the nested
loop is traversed n1n2 · · ·nm times. Hence, the final value of k is n1n2 . . . nm.

�
EXAMPLE. 11

Counting Subsets of a Finite Set Use the product rule to show that the
number of different subsets of a finite set S is 2|S|.

84 CHAPTER 2. COUNTING
�� ��Solution: Let S be a finite set. List the elements of S in arbitrary order.

Recall from Section 2.2 that there is a one-to-one correspondence between
subsets of S and bit strings of length |S|. Namely, a subset of S is associated
with the bit string with a 1 in the ith position if the ith element in the list is
in the subset, and a 0 in this position otherwise. By the product rule, there
are 2|S| bit strings of length |S|. Hence, |P (S)| = 2|S|.

The product rule is often phrased in terms of sets in this way: If
A1, A2, · · · , Am are finite sets, then the number of elements in the
Cartesian product of these sets is the product of the number of ele-
ments in each set. To relate this to the product rule, note that the task
of choosing an element in the Cartesian product A1 × A2 × · · · × Am

is done by choosing an element in A1, an element in A2, · · · , and an
element in Am. By the product rule it follows that

|A1 ×A2 × · · · ×Am| = |A1| · |A2| · · · · ·Am|

�
EXAMPLE. 11

DNA and Genomes The hereditary information of a living organism is
encoded using deoxyribonucleic acid (DNA), or in certain viruses, ribonucleic
acid (RNA). DNA and RNA are extremely complex molecules, with different
molecules interacting in a vast variety of ways to enable living process. For
our purposes, we give only the briefest description of how DNA and RNA
encode genetic information.

DNA molecules consist of two strands consisting of blocks known as nu-
cleotides. Each nucleotide contains subcomponents called bases, each of
which is adenine (A), cytosine (C), guanine (G), or thymine (T). The two
strands of DNA are held together by hydrogen bonds connecting different
bases, with A bonding only with T, and C bonding only with G. Unlike DNA,
RNA is single stranded, with uracil (U) replacing thymine as a base. So, in
DNA the possible base pairs are A-T and C-G, while in RNA they are A-U,
and C-G. The DNA of a living creature consists of multiple pieces of DNA
forming separate chromosomes. A gene is a segment of a DNA molecule
that encodes a particular protein. The entirety of genetic information of an
organism is called its genome.

Sequences of bases in DNA and RNA encode long chains of proteins called
amino acids. There are 22 essential amino acids for human beings. We can

2.1.2 Basic Counting Principles 85

quickly see that a sequence of at least three bases are needed to encode these
22 different amino acid. First note, that because there are four possibili-
ties for each base in DNA, A, C, G, and T, by the product rule there are
42 = 16 < 22 different sequences of two bases. However, there are 43 = 64
different sequences of three bases, which provide enough different sequences
to encode the 22 different amino acids (even after taking into account that
several different sequences of three bases encode the same amino acid).

The DNA of simple living creatures such as algae and bacteria have be-
tween 105 and 107 links, where each link is one of the four possible bases. More
complex organisms, such as insects, birds, and mammals, have between 108

and 1010 links in their DNA. So, by the product rule, there are at least 410
5

different sequences of bases in the DNA of simple organisms and at least 410
8

different sequences of bases in the DNA of more complex organisms. These
are both Soon it won’t be that costly to have your own genetic code found.
incredibly huge numbers, which helps explain why there is such tremendous
variability among living organisms. In the past several decades techniques
have been developed for determining the genome of different organisms. The
first step is to locate each gene in the DNA of an organism. The next task,
called gene sequencing, is the determination of the sequence of links on
each gene. (The specific sequence of links on these genes depends on the par-
ticular individual representative of a species whose DNA is analyzed.) For
example, the human genome includes approximately 23,000 genes, each with
1000 or more links. Gene sequencing techniques take advantage of many
recently developed algorithms and are based on numerous new ideas in com-
binatorics. Many mathematicians and computer scientistswork on problems
involving genomes, taking part in the fast moving fields of bioinformatics and
computational biology.

We now introduce the sum rule.

THE SUM RULE If a task can be done either in one of n1

ways or in one of n2 ways, where none of the set of n1 ways is the
same as any of the set of n2 ways, then there are n1 + n2 ways to
do the task.

Example 12 illustrates how the sum rule is used.

86 CHAPTER 2. COUNTING

�
EXAMPLE. 12

Suppose that either a member of the mathematics faculty or a student who is
a mathematics major is chosen as a representative to a university committee.
How many different choices are there for this representative if there are 37
members of the mathematics faculty and 83 mathematics majors and no one
is both a faculty member and a student?�� ��Solution: There are 37 ways to choose a member of the mathematics fac-
ulty and there are 83 ways to choose a student who is a mathematics major.
Choosing a member of the mathematics faculty is never the same as choosing
a student who is a mathematics major because no one is both a faculty mem-
ber and a student. By the sum rule it follows that there are 37 + 83 = 120

possible ways to pick this representative.

We can extend the sum rule to more than two tasks. Suppose that
a task can be done in one of n1 ways, in one of n2 ways, · · · , or in one of
nm ways, where none of the set of ni ways of doing the task is the same
as any of the set of nj ways, for all pairs i and j with 1 ≤ i < j ≤ m.
Then the number of ways to do the task is n1 + n2 + · · · + nm. This
extended version of the sum rule is often useful in counting problems.

�
EXAMPLE. 13

A student can choose a computer project from one of three lists. The three
lists contain 23, 15, and 19 possible projects, respectively. No project is on
more than one list. How many possible projects are there to choose from?�� ��Solution: The student can choose a project by selecting a project from the first
list, the second list, or the third list. Because no project is on more than one
list, by the sum rule there are 23+15+19 = 57 ways to choose a project.

�
EXAMPLE. 14

What is the value of k after the following code, where n1, n2, · · · , nm are
positive integers, has been executed?

2.1.2 Basic Counting Principles 87

k := 0
for i1 := 1 to n1

k := k + 1
for i2 := 1 to n2

k := k + 1
.̇
.̇

for im := 1 to nm

k := k + 1

�� ��Solution: The initial value of k is zero. This block of code is made up of m
different loops. Each time a loop is traversed, 1 is added to k. To determine
the value of k after this code has been executed, we need to determine how
many times we traverse a loop. Note that there are ni ways to traverse the
ith loop. Because we only traverse one loop at a time, the sum rule shows
that the final value of k, which is the number of ways to traverse one of the
m loops is n1 + n2 + · · ·+ nm.

The sum rule can be phrased in terms of sets as: If A1, A2, · · · , Am

are pairwise disjoint finite sets, then the number of elements in the
union of these sets is the sum of the numbers of elements in the sets.
To relate this to our statement of the sum rule, note there are |Ai| ways
to choose an element from Ai for i = 1, 2, · · · ,m. Because the sets are
pairwise disjoint, when we select an element from one of the sets Ai,
we do not also select an element from a different set Aj . Consequently,
by the sum rule, because we cannot select an element from two of these
sets at the same time, the number of ways to choose an element from
one of the sets, which is the number of elements in the union, is

|A1∪A2∪· · ·∪Am| = |A1|+|A2|+· · ·+Am|,when Ai∩Aj = for all i, j

This equality applies only when the sets in question are pairwise dis-
joint. The situation is much more complicated when these sets have
elements in common. That situation will be briefly discussed later in
this section.

88 CHAPTER 2. COUNTING

2.1.3 More Complex Counting Problems

Many counting problems cannot be solved using just the sum rule or
just the product rule. However, many complicated counting problems
can be solved using both of these rules in combination.

�
EXAMPLE. 15

In a version of the computer language BASIC, the name of a variable is a
string of one or two alphanumeric characters, where uppercase and lowercase
letters are not distinguished. Moreover, a variable name must begin with a
letter and must be different from the five strings of two characters that are
reserved for programming use. How many different variable names are there
in this version of BASIC?�� ��Solution: Let V equal the number of different variable names in this ver-
sion of BASIC. Let V1 be the number of these that are one character long and
V2 be the number of these that are two characters long. Then by the sum
rule, V = V1 + V2. Note that V1 = 26, because a one-character variable name
must be a letter. Furthermore, by the product rule there are 26 · 36 strings of
length two that begin with a letter and end with an alphanumeric character.
However, five of these are excluded, so V2 = 26 · 36?5 = 931. Hence, there are
V = V1 + V2 = 26 + 931 = 957 different names for variables in this version of
BASIC.

�
EXAMPLE. 16

Each user on a computer system has a password, which is six to eight char-
acters long, where each character is an uppercase letter or a digit. Each
password must contain at least one digit. How many possible passwords are
there?�� ��Solution: : Let P be the total number of possible passwords, and let
P6, P7, and P8 denote the number of possible passwords of length 6, 7, and 8,
respectively. By the sum rule, P = P6 + P7 + P8. We will now find P6, P7,
and P8. Finding P6 directly is difficult. To find P6 it is easier to find the
number of strings of uppercase letters and digits that are six characters long,
including those with no digits, and subtract from this the number of strings
with no digits. By the product rule, the number of strings of six characters is

2.1.3 More Complex Counting Problems 89412 6 / Counting

Bit Number

Class A

Class B

Class C

Class D

Class E

0 netid hostid

1

1

1

1

0 netid hostid

1

1

1

0 netid hostid

1

1

0 Multicast Address

1 0 Address

0 3124161 2 3 4 8

FIGURE 1 Internet addresses (IPv4).

EXAMPLE 17 Counting Internet Addresses In the Internet, which is made up of interconnected physical

Links
networks of computers, each computer (or more precisely, each network connection of a com-

puter) is assigned an Internet address. In Version 4 of the Internet Protocol (IPv4), still in use

today, an address is a string of 32 bits. It begins with a network number (netid). The netid is

followed by a host number (hostid), which identifies a computer as a member of a particular

network.

Three forms of addresses are used, with different numbers of bits used for netids and hostids.

Class A addresses, used for the largest networks, consist of 0, followed by a 7-bit netid and a

24-bit hostid. Class B addresses, used for medium-sized networks, consist of 10, followed by

a 14-bit netid and a 16-bit hostid. Class C addresses, used for the smallest networks, consist

of 110, followed by a 21-bit netid and an 8-bit hostid. There are several restrictions on ad-

dresses because of special uses: 1111111 is not available as the netid of a Class A network,

and the hostids consisting of all 0s and all 1s are not available for use in any network. A com-

puter on the Internet has either a Class A, a Class B, or a Class C address. (Besides Class A,

B, and C addresses, there are also Class D addresses, reserved for use in multicasting when

multiple computers are addressed at a single time, consisting of 1110 followed by 28 bits, and

Class E addresses, reserved for future use, consisting of 11110 followed by 27 bits. Neither

Class D nor Class E addresses are assigned as the IPv4 address of a computer on the Internet.)
The lack of available

IPv4 address has

become a crisis!

Figure 1 illustrates IPv4 addressing. (Limitations on the number of Class A and Class B netids

have made IPv4 addressing inadequate; IPv6, a new version of IP, uses 128-bit addresses to

solve this problem.)

How many different IPv4 addresses are available for computers on the Internet?

Solution: Let x be the number of available addresses for computers on the Internet, and let xA,

xB, and xC denote the number of Class A, Class B, and Class C addresses available, respectively.

By the sum rule, x = xA + xB + xC.

To find xA, note that there are 27 − 1 = 127 Class A netids, recalling that the netid

1111111 is unavailable. For each netid, there are 224 − 2 = 16,777,214 hostids, recalling that the

hostids consisting of all 0s and all 1s are unavailable. Consequently, xA = 127 ⋅ 16,777,214 =
2,130,706,178.

To find xB and xC, note that there are 214 = 16,384 Class B netids and 221 = 2,097,152

Class C netids. For each Class B netid, there are 216 − 2 = 65,534 hostids, and for each

Class C netid, there are 28 − 2 = 254 hostids, recalling that in each network the hostids

consisting of all 0s and all 1s are unavailable. Consequently, xB = 1,073,709,056 and xC =
532,676,608.

We conclude that the total number of IPv4 addresses available is x = xA + xB + xC =
2,130,706,178 + 1,073,709,056 + 532,676,608 = 3,737,091,842. ◂

6.1.4 The Subtraction Rule (Inclusion–Exclusion for Two Sets)
Suppose that a task can be done in one of two ways, but some of the ways to do it are common

to both ways. In this situation, we cannot use the sum rule to count the number of ways to do

Figure 2.1: Internet addresses (IPv4).

366, and the number of strings with no digits is 266. Hence,

P6 = 366 − 266 = 2, 176, 782, 336− 308, 915, 776 = 1, 867, 866, 560.

Similarly, we have

P7 = 367 − 267 = 78, 364, 164, 096− 8, 031, 810, 176 = 70, 332, 353, 920

and

P8 = 368−268 = 2, 821, 109, 907, 456−208, 827, 064, 576 = 2, 612, 282, 842, 880.

Consequently,

P = P6 + P7 + P8 = 2, 684, 483, 063, 360.

�
EXAMPLE. 17

Counting Internet Addresses. In the Internet, which is made up of inter-
connected physical networks of computers, each computer (or more precisely,
each network connection of a computer) is assigned an Internet address. In
Version 4 of the Internet Protocol (IPv4), still in use today, an address is
a string of 32 bits. It begins with a network number (netid). The netid is
followed by a host number (hostid), which identifies a computer as a member
of a particular network.

Three forms of addresses are used, with different numbers of bits used for
netids and hostids. Class A addresses, used for the largest networks, consist
of 0, followed by a 7-bit netid and a 24-bit hostid. Class B addresses, used

90 CHAPTER 2. COUNTING

for medium-sized networks, consist of 10, followed by a 14-bit netid and a
16-bit hostid. Class C addresses, used for the smallest networks, consist
of 110, followed by a 21-bit netid and an 8-bit hostid. There are several
restrictions on addresses because of special uses: 1111111 is not available as
the netid of a Class A network, and the hostids consisting of all 0s and all
1s are not available for use in any network. A computer on the Internet has
either a Class A, a Class B, or a Class C address. (Besides Class A, B, and C
addresses, there are also Class D addresses, reserved for use in multicasting
when multiple computers are addressed at a single time, consisting of 1110
followed by 28 bits, and Class E addresses, reserved for future use, consisting of
11110 followed by 27 bits. Neither Class D nor Class E addresses are assigned
as the IPv4 address of a computer on the Internet.) The lack of available IPv4
address has become a crisis! Figure 1 illustrates IPv4 addressing. (Limitations
on the number of Class A and Class B netids have made IPv4 addressing
inadequate; IPv6, a new version of IP, uses 128-bit addresses to solve this
problem.) How many different IPv4 addresses are available for computers on
the Internet?�� ��Solution: Let x be the number of available addresses for computers on the
Internet, and let xA, xB , and xC denote the number of Class A, Class B, and
Class C addresses available, respectively. By the sum rule, x = xA+xB +xC .

To find xA, note that there are 27 − 1 = 127 Class A netids, recalling
that the netid 1111111 is unavailable. For each netid, there are 224 − 2 =
16, 777, 214 hostids, recalling that the hostids consisting of all 0s and all 1s
are unavailable. Consequently, xA = 127 · 16, 777, 214 = 2, 130, 706, 178.

To find xB and xC , note that there are 214 = 16, 384 Class B netids
and 221 = 2, 097, 152 Class C netids. For each Class B netid, there are
216 − 2 = 65, 534 hostids, and for each Class C netid, there are 28 − 2 = 254

hostids, recalling that in each network the hostids consisting of all 0s and all 1s
are unavailable. Consequently, xB = 1, 073, 709, 056 and xC = 532, 676, 608.
We conclude that the total number of IPv4 addresses available is x = xA +

xB + xC = 2, 130, 706, 178 + 1, 073, 709, 056 + 532, 676, 608 = 3, 737, 091, 842.

2.1.4 The Subtraction Rule (Inclusion–Exclusion for Two
Sets)

Suppose that a task can be done in one of two ways, but some of the
ways to do it are common to both ways. In this situation, we cannot

2.1.4 The Subtraction Rule (Inclusion–Exclusion for Two Sets) 91

use the sum rule to count the number of ways to do the task. If we
add the number of ways to do the tasks in these two ways, we get an
overcount of the total number of ways to do it, because the ways to do
the task that are common to the two ways are counted twice.

To correctly count the number of ways to do the two tasks, we must
subtract the number of ways that are counted twice. This leads us to
an important counting rule.

THE SUBTRACTION RULE If a task can be done in either
n1 ways or n2 ways, then the number of ways to do the task is n1+n2

minus the number of ways to do the task that are common to the
two different ways.

The subtraction rule is also known as the principle of inclusion–exclusion,
especially when it is used to count the number of elements in the union
of two sets. Suppose that A1 and A2 are sets. Then, there are |A1|
ways to select an element from A1 and |A2| ways to select an element
from A2. The number of ways to select an element from A1 or from
A2, that is, the number of ways to select an element from their union,
is the sum of the number of ways to select an element from A1 and
the number of ways to select an element from A2, minus the number of
ways to select an element that is in both A1 and A2. Because there are
|A1∪A2| ways to select an element in either A1 or in A2, and |A1∩A2|
ways to select an element common to both sets, we have

|A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|
This is the formula given for the number of elements in the union of
two sets. Example 18 illustrates how we can solve counting problems
using the subtraction principle.

�
EXAMPLE. 18

How many bit strings of length eight either start with a 1 bit or end with the
two bits 00?�� ��Solution: Figure 2.2 illustrates the three counting problems we need to
solve before we can apply the principle of inclusion–exclusion. We can con-

92 CHAPTER 2. COUNTING

struct a bit string of length eight that either starts with a 1 bit or ends with
the two bits 00, by constructing a bit string of length eight beginning with a
1 bit or by constructing a bit string of length eight that ends with the two
bits 00. We can construct a bit string of length eight that begins with a 1 in
27 = 128 ways. This follows by the product rule, because the first bit can be
chosen in only one way and each of the other seven bits can be chosen in two
ways. Similarly, we can construct a bit string of length eight ending with the
two bits 00, in 26 = 64 ways. This follows by the product rule, because each of
the first six bits can be chosen in two ways and the last two bits can be chosen
in only one way. Some of the ways to construct a bit string of length eight
starting with a 1 are the same as the ways to construct a bit string of length
eight that ends with the two bits 00. There are 25 = 32 ways to construct such
a string. This follows by the product rule, because the first bit can be chosen
in only one way, each of the second through the sixth bits can be chosen in
two ways, and the last two bits can be chosen in one way. Consequently, the
number of bit strings of length eight that begin with a 1 or end with a 00,
which equals the number of ways to construct a bit string of length eight that
begins with a 1 or that ends with 00, equals 128 + 64− 32 = 160.
We present an example that illustrates how the formulation of the prin-
ciple of inclusion– exclusion can be used to solve counting problems.

6.1 The Basics of Counting 413

the task. If we add the number of ways to do the tasks in these two ways, we get an overcount

of the total number of ways to do it, because the ways to do the task that are common to the two

ways are counted twice.Overcounting is perhaps

the most common

enumeration error.
To correctly count the number of ways to do the two tasks, we must subtract the number of

ways that are counted twice. This leads us to an important counting rule.

THE SUBTRACTION RULE If a task can be done in either n1 ways or n2 ways, then the

number of ways to do the task is n1 + n2 minus the number of ways to do the task that are

common to the two different ways.

The subtraction rule is also known as the principle of inclusion–exclusion, especially when

it is used to count the number of elements in the union of two sets. Suppose that A1 and A2 are

sets. Then, there are |A1| ways to select an element from A1 and |A2| ways to select an element

from A2. The number of ways to select an element from A1 or from A2, that is, the number of

ways to select an element from their union, is the sum of the number of ways to select an element

from A1 and the number of ways to select an element from A2, minus the number of ways to

select an element that is in both A1 and A2. Because there are |A1 ∪ A2|ways to select an element

in either A1 or in A2, and |A1 ∩ A2| ways to select an element common to both sets, we have

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2|.

This is the formula given in Section 2.2 for the number of elements in the union of two sets.

Example 18 illustrates how we can solve counting problems using the subtraction principle.

EXAMPLE 18 How many bit strings of length eight either start with a 1 bit or end with the two bits 00?

Solution: Figure 2 illustrates the three counting problems we need to solve before we

can apply the principle of inclusion–exclusion. We can construct a bit string of length

Extra
Examples

eight that either starts with a 1 bit or ends with the two bits 00, by constructing a bit

string of length eight beginning with a 1 bit or by constructing a bit string of length

eight that ends with the two bits 00. We can construct a bit string of length eight that

begins with a 1 in 27 = 128 ways. This follows by the product rule, because the first

bit can be chosen in only one way and each of the other seven bits can be chosen in

two ways. Similarly, we can construct a bit string of length eight ending with the two

bits 00, in 26 = 64 ways. This follows by the product rule, because each of the first six bits

can be chosen in two ways and the last two bits can be chosen in only one way.

Some of the ways to construct a bit string of length eight starting with a 1 are the same

as the ways to construct a bit string of length eight that ends with the two bits 00. There are

25 = 32 ways to construct such a string. This follows by the product rule, because the first

bit can be chosen in only one way, each of the second through the sixth bits can be chosen

in two ways, and the last two bits can be chosen in one way. Consequently, the number of

bit strings of length eight that begin with a 1 or end with a 00, which equals the number

of ways to construct a bit string of length eight that begins with a 1 or that ends with 00,

equals 128 + 64 − 32 = 160. ◂

27 = 128 ways

1

26 = 64 ways

25 = 32 ways

1 0 0

0 0

FIGURE 2 8-Bit
strings starting
with 1 or ending
with 00.

We present an example that illustrates how the formulation of the principle of inclusion–

exclusion can be used to solve counting problems.

EXAMPLE 19 A computer company receives 350 applications from college graduates for a job planning a line

of new web servers. Suppose that 220 of these applicants majored in computer science, 147

Figure 2.2: 8-Bit strings starting with 1 or ending with 00.

�
EXAMPLE. 19

A computer company receives 350 applications from college graduates for a
job planning a line of new web servers. Suppose that 220 of these applicants

2.1.4 The Subtraction Rule (Inclusion–Exclusion for Two Sets) 93

majored in computer science, 147 majored in business, and 51 majored both
in computer science and in business. How many of these applicants majored
neither in computer science nor in business?�� ��Solution: To find the number of these applicants who majored neither in
computer science nor in business, we can subtract the number of students
who majored either in computer science or in business (or both) from the
total number of applicants. Let A1 be the set of students who majored in
computer science and A2 the set of students who majored in business. Then
A1 ∪ A2 is the set of students who majored in computer science or business
(or both), and A1 ∩ A2 is the set of students who majored both in computer
science and in business. By the subtraction rule the number of students who
majored either in computer science or in business (or both) equals

|A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2| = 220 + 147− 51 = 316.

We conclude that 350 − 316 = 34 of the applicants majored neither in com-
puter science nor in business. A Venn diagram for this example is shown in
Figure 2.3.

414 6 / Counting

U

A1

∣A1∣ = 220

A1 ∩ A2

∣A1 ∩ A2∣ = 51 ∣A2∣ = 147

A2

 = ∣U∣ – ∣A1 ∪ A2∣

= ∣U∣ – (∣A1∣ + ∣A2∣ – ∣A1 ∩ A2∣)

= 350 – (220 + 147 – 51)

= 350 – 316

= 34

∣A1 ∪ A2∣

FIGURE 3 Applicants who majored in neither computer science nor business.

majored in business, and 51 majored both in computer science and in business. How many of

these applicants majored neither in computer science nor in business?

Solution: To find the number of these applicants who majored neither in computer science nor

in business, we can subtract the number of students who majored either in computer science

or in business (or both) from the total number of applicants. Let A1 be the set of students who

majored in computer science and A2 the set of students who majored in business. Then A1 ∪ A2

is the set of students who majored in computer science or business (or both), and A1 ∩ A2 is the

set of students who majored both in computer science and in business. By the subtraction rule

the number of students who majored either in computer science or in business (or both) equals

|A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2| = 220 + 147 − 51 = 316.

We conclude that 350 − 316 = 34 of the applicants majored neither in computer science nor in

business. A Venn diagram for this example is shown in Figure 3. ◂

The subtraction rule, or the principle of inclusion–exclusion, can be generalized to find the

number of ways to do one of n different tasks or, equivalently, to find the number of elements

in the union of n sets, whenever n is a positive integer. We will study the inclusion–exclusion

principle and some of its many applications in Chapter 8.

6.1.5 The Division Rule
We have introduced the product, sum, and subtraction rules for counting. You may wonder

whether there is also a division rule for counting. In fact, there is such a rule, which can be

useful when solving certain types of enumeration problems.

THE DIVISION RULE There are n∕d ways to do a task if it can be done using a procedure

that can be carried out in n ways, and for every way w, exactly d of the n ways correspond to

way w.

We can restate the division rule in terms of sets: “If the finite set A is the union of n pairwise

disjoint subsets each with d elements, then n = |A|∕d.”

We can also formulate the division rule in terms of functions: “If f is a function from A
to B where A and B are finite sets, and that for every value y ∈ B there are exactly d values

x ∈ A such that f (x) = y (in which case, we say that f is d-to-one), then |B| = |A|∕d.”

Remark: The division rule comes in handy when it appears that a task can be done in n different

ways, but it turns out that for each way of doing the task, there are d equivalent ways of doing

Figure 2.3: Applicants who majored in neither computer science nor
business.

The subtraction rule, or the principle of inclusion–exclusion, can be
generalized to find the number of ways to do one of n different tasks
or, equivalently, to find the number of elements in the union of n sets,
whenever n is a positive integer. We will study the inclusion–exclusion
principle and some of its many applications in next Chapter.

94 CHAPTER 2. COUNTING

2.1.5 The Division Rule

We have introduced the product, sum, and subtraction rules for
counting. You may wonder whether there is also a division rule for
counting. In fact, there is such a rule, which can be useful when solving
certain types of enumeration problems.

THE DIVISION RULE There are n/d ways to do a task if
it can be done using a procedure that can be carried out in n ways,
and for every way w, exactly d of the n ways correspond to way w.

We can restate the division rule in terms of sets: ”If the finite set A
is the union of n pairwise disjoint subsets each with d elements, then
n = |A|/d.”

We can also formulate the division rule in terms of functions: ”If f
is a function from A to B where A and B are finite sets, and that for
every value y ∈ B there are exactly d values x ∈ A such that f(x) = y
(in which case, we say that f is d-to-one), then |B| = |A|/d.”

Remark! The division rule comes in handy when it appears that
a task can be done in n different ways, but it turns out that for
each way of doing the task, there are d equivalent ways of doing
it. Under these circumstances, we can conclude that there are n/d
inequivalent ways of doing the task.

We illustrate the use of the division rule for counting with two ex-
amples.

�
EXAMPLE. 20

Suppose that an automated system has been developed that counts the legs of
cows in a pasture. Suppose that this system has determined that in a farmer’s
pasture there are exactly 572 legs. How many cows are there is this pasture,
assuming that each cow has four legs and that there are no other animals
present?�� ��Solution: Let n be the number of cow legs counted in a pasture. Because
each cow has four legs, by the division rule we know that the pasture contains

2.1.6 Tree Diagrams 95

n/4 cows. Consequently, the pasture with 572 cow legs has 572/4 = 143 cows
in it.

�
EXAMPLE. 21

How many different ways are there to seat four people around a circular table,
where two seatings are considered the same when each person has the same
left neighbor and the same right neighbor?�� ��Solution: We arbitrarily select a seat at the table and label it seat 1. We
number the rest of the seats in numerical order, proceeding clockwise around
the table.Note that are fourways to select the person for seat 1, three ways
to select the person for seat 2, two ways to select the person for seat 3, and
one way to select the person for seat 4. Thus, there are 4! = 24 ways to order
the given four people for these seats. However, each of the four choices for
seat 1 leads to the same arrangement, as we distinguish two arrangements
only when one of the people has a different immediate left or immediate right
neighbor. Because there are four ways to choose the person for seat 1, by the
division rule there are 24/4 = 6 different seating arrangements of four people
around the circular table.

2.1.6 Tree Diagrams

Counting problems can be solved using tree diagrams. A tree con-
sists of a root, a number of branches leaving the root, and possible
additional branches leaving the endpoints of other branches. To use
trees in counting, we use a branch to represent each possible choice.
We represent the possible outcomes by the leaves, which are the end-
points of branches not having other branches starting at them. Note
that when a tree diagram is used to solve a counting problem, the num-
ber of choices of which branch to follow to reach a leaf can vary as in
Example 22.

�
EXAMPLE. 22

How many bit strings of length four do not have two consecutive 1s?

96 CHAPTER 2. COUNTING

6.1 The Basics of Counting 415

it. Under these circumstances, we can conclude that there are n∕d inequivalent ways of doing

the task.

We illustrate the use of the division rule for counting with two examples.

EXAMPLE 20 Suppose that an automated system has been developed that counts the legs of cows in a pasture.

Suppose that this system has determined that in a farmer’s pasture there are exactly 572 legs.

How many cows are there is this pasture, assuming that each cow has four legs and that there

are no other animals present?

Solution: Let n be the number of cow legs counted in a pasture. Because each cow has four legs,

by the division rule we know that the pasture contains n∕4 cows. Consequently, the pasture with

572 cow legs has 572∕4 = 143 cows in it. ◂

EXAMPLE 21 How many different ways are there to seat four people around a circular table, where two seat-

ings are considered the same when each person has the same left neighbor and the same right

neighbor?

Solution: We arbitrarily select a seat at the table and label it seat 1. We number the rest of the

seats in numerical order, proceeding clockwise around the table. Note that are four ways to select

the person for seat 1, three ways to select the person for seat 2, two ways to select the person

for seat 3, and one way to select the person for seat 4. Thus, there are 4! = 24 ways to order the

given four people for these seats. However, each of the four choices for seat 1 leads to the same

arrangement, as we distinguish two arrangements only when one of the people has a different

immediate left or immediate right neighbor. Because there are four ways to choose the person

for seat 1, by the division rule there are 24∕4 = 6 different seating arrangements of four people

around the circular table. ◂

6.1.6 Tree Diagrams
Counting problems can be solved using tree diagrams. A tree consists of a root, a number

of branches leaving the root, and possible additional branches leaving the endpoints of other

branches. (We will study trees in detail in Chapter 11.) To use trees in counting, we use a branch

to represent each possible choice. We represent the possible outcomes by the leaves, which are

the endpoints of branches not having other branches starting at them.
0

0
1

2nd bit

4th bit

1st bit

3rd bit

0 1 001

1 0

00 1

1 1 000

100

0
0

0
0

0
0

0
1

0
0

1
0

0
1

0
0

0
1

0
1

111

0
0

0

0
1

0
FIGURE 4 Bit
strings of length
four without
consecutive 1s.

Note that when a tree diagram is used to solve a counting problem, the number of choices

of which branch to follow to reach a leaf can vary as in Example 22.

EXAMPLE 22 How many bit strings of length four do not have two consecutive 1s?

Solution: The tree diagram in Figure 4 displays all bit strings of length four without two con-

secutive 1s. We see that there are eight bit strings of length four without two consecutive 1s.◂

EXAMPLE 23 A playoff between two teams consists of at most five games. The first team that wins three games

wins the playoff. In how many different ways can the playoff occur?

Solution: The tree diagram in Figure 5 displays all the ways the playoff can proceed, with the

winner of each game shown. We see that there are 20 different ways for the playoff to occur. ◂

Figure 2.4: Bit strings of length four without consecutive 1s.

�� ��Solution: The tree diagram in Figure 2.4 displays all bit strings of length
four without two consecutive 1s. We see that there are eight bit strings of
length four without two consecutive 1s.

�
EXAMPLE. 23

A playoff between two teams consists of at most five games. The first team
that wins three games wins the playoff. In how many different ways can the
playoff occur? Solution: The tree diagram in Figure 2.5 displays all the ways
the playoff can proceed, with the winner of each game shown. We see that
there are 20 different ways for the playoff to occur.

416 6 / Counting

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 2
T

e
a
m

 2

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 2
T

e
a
m

 2

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 1

Winning team
shown in color

Game 1

Game 2

Game 3

Game 4

Game 5

FIGURE 5 Best three games out of five playoffs.

EXAMPLE 24 Suppose that “I Love New Jersey” T-shirts come in five different sizes: S, M, L, XL, and XXL.

Further suppose that each size comes in four colors, white, red, green, and black, except for XL,

which comes only in red, green, and black, and XXL, which comes only in green and black. How

many different shirts does a souvenir shop have to stock to have at least one of each available

size and color of the T-shirt?

Solution: The tree diagram in Figure 6 displays all possible size and color pairs. It follows that

the souvenir shop owner needs to stock 17 different T-shirts. ◂

S

W R G B

M

W R G B

L

W R G B R G B

XL

W = white, R = red, G = green, B = black

G B

XXL

FIGURE 6 Counting varieties of T-shirts.

Exercises

1. There are 18 mathematics majors and 325 computer sci-

ence majors at a college.

a) In how many ways can two representatives be picked

so that one is a mathematics major and the other is a

computer science major?

b) In how many ways can one representative be picked

who is either a mathematics major or a computer sci-

ence major?

2. An office building contains 27 floors and has 37 offices

on each floor. How many offices are in the building?

3. A multiple-choice test contains 10 questions. There are

four possible answers for each question.

a) In how many ways can a student answer the questions

on the test if the student answers every question?

b) In how many ways can a student answer the questions

on the test if the student can leave answers blank?

Figure 2.5: Best three games out of five playoffs.

2.1.6 Tree Diagrams 97

416 6 / Counting

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 2
T

e
a
m

 2

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 2
T

e
a
m

 2

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 2

T
e
a
m

 1

T
e
a
m

 1

Winning team
shown in color

Game 1

Game 2

Game 3

Game 4

Game 5

FIGURE 5 Best three games out of five playoffs.

EXAMPLE 24 Suppose that “I Love New Jersey” T-shirts come in five different sizes: S, M, L, XL, and XXL.

Further suppose that each size comes in four colors, white, red, green, and black, except for XL,

which comes only in red, green, and black, and XXL, which comes only in green and black. How

many different shirts does a souvenir shop have to stock to have at least one of each available

size and color of the T-shirt?

Solution: The tree diagram in Figure 6 displays all possible size and color pairs. It follows that

the souvenir shop owner needs to stock 17 different T-shirts. ◂

S

W R G B

M

W R G B

L

W R G B R G B

XL

W = white, R = red, G = green, B = black

G B

XXL

FIGURE 6 Counting varieties of T-shirts.

Exercises

1. There are 18 mathematics majors and 325 computer sci-

ence majors at a college.

a) In how many ways can two representatives be picked

so that one is a mathematics major and the other is a

computer science major?

b) In how many ways can one representative be picked

who is either a mathematics major or a computer sci-

ence major?

2. An office building contains 27 floors and has 37 offices

on each floor. How many offices are in the building?

3. A multiple-choice test contains 10 questions. There are

four possible answers for each question.

a) In how many ways can a student answer the questions

on the test if the student answers every question?

b) In how many ways can a student answer the questions

on the test if the student can leave answers blank?

Figure 2.6: Counting varieties of T-shirts.

�
EXAMPLE. 24

Suppose that ”I Love New Jersey” T-shirts come in five different sizes: S,M,L,
XL, and XXL. Further suppose that each size comes in four colors, white,
red, green, and black, except for XL, which comes only in red, green, and
black, and XXL, which comes only in green and black. How many different
shirts does a souvenir shop have to stock to have at least one of each available
size and color of the T-shirt?�� ��Solution: The tree diagram in Figure 2.6 displays all possible size and
color pairs. It follows that the souvenir shop owner needs to stock 17 different
T-shirts.

98 CHAPTER 2. COUNTING

2.2 The Pigeonhole Principle

2.2.1 Introduction

Suppose that a flock of 20 pigeons flies into a set of 19 pigeonholes
to roost. Because there are 20 pigeons but only 19 pigeonholes, a least
one of these 19 pigeonholes must have at least two pigeons in it. To see
why this is true, note that if each pigeonhole had at most one pigeon
in it, at most 19 pigeons, one per hole, could be accommodated. This
illustrates a general principle called the pigeonhole principle, which
states that if there are more pigeons than pigeonholes, then there must
be at least one pigeonhole with at least two pigeons in it (see Figure
2.7). This principle is extremely useful; it applies to much more than
pigeons

THEOREM 2.2.1: THE PIGEONHOLE PRINCIPLE

If k is a positive integer and k+1 or more objects are placed into
k boxes, then there is at least one box containing two or more of
the objects.

Proof: We prove the pigeonhole principle using a proof by contraposi-
tion. Suppose that none of the k boxes contains more than one object.
Then the total number of objects would be at most k. This is a con-
tradiction, because there are at least k + 1 objects.

420 6 / Counting

77. How many diagonals does a convex polygon with n sides

have? (Recall that a polygon is convex if every line seg-

ment connecting two points in the interior or boundary of

the polygon lies entirely within this set and that a diago-

nal of a polygon is a line segment connecting two vertices

that are not adjacent.)

78. Data are transmitted over the Internet in datagrams,

which are structured blocks of bits. Each datagram con-

tains header information organized into a maximum of 14

different fields (specifying many things, including the

source and destination addresses) and a data area that

contains the actual data that are transmitted. One of the

14 header fields is the header length field (denoted by

HLEN), which is specified by the protocol to be 4 bits

long and that specifies the header length in terms of 32-

bit blocks of bits. For example, if HLEN = 0110, the

header is made up of six 32-bit blocks. Another of the 14

header fields is the 16-bit-long total length field (denoted

by TOTAL LENGTH), which specifies the length in bits

of the entire datagram, including both the header fields

and the data area. The length of the data area is the total

length of the datagram minus the length of the header.

a) The largest possible value of TOTAL LENGTH

(which is 16 bits long) determines the maximum

total length in octets (blocks of 8 bits) of an Internet

datagram. What is this value?

b) The largest possible value of HLEN (which is 4 bits

long) determines the maximum total header length in

32-bit blocks. What is this value? What is the maxi-

mum total header length in octets?

c) The minimum (and most common) header length is

20 octets. What is the maximum total length in octets

of the data area of an Internet datagram?

d) How many different strings of octets in the data area

can be transmitted if the header length is 20 octets

and the total length is as long as possible?

6.2 The Pigeonhole Principle

6.2.1 Introduction

Suppose that a flock of 20 pigeons flies into a set of 19 pigeonholes to roost. Because there are

20 pigeons but only 19 pigeonholes, a least one of these 19 pigeonholes must have at least two
Links

pigeons in it. To see why this is true, note that if each pigeonhole had at most one pigeon in it,

at most 19 pigeons, one per hole, could be accommodated. This illustrates a general principle

called the pigeonhole principle, which states that if there are more pigeons than pigeonholes,

then there must be at least one pigeonhole with at least two pigeons in it (see Figure 1). This

principle is extremely useful; it applies to much more than pigeons and pigeonholes.

THEOREM 1 THE PIGEONHOLE PRINCIPLE If k is a positive integer and k + 1 or more objects

are placed into k boxes, then there is at least one box containing two or more of the objects.

(a) (b) (c)

FIGURE 1 There are more pigeons than pigeonholes.
Figure 2.7: There are more pigeons than pigeonholes.

2.2.1 Introduction 99

The pigeonhole principle is also called the Dirichlet drawer prin-
ciple, after the nineteenthcentury German mathematician G. Lejeune
Dirichlet, who often used this principle in his work. It is an important
additional proof technique supplementing those we have developed in
earlier chapters. We introduce it in this chapter because of its many
important applications to combinatorics.

We will illustrate the usefulness of the pigeonhole principle. We first
show that it can be used to prove a useful corollary about functions.

COROLLARY A function f from a set with k + 1 or more elements
to a set with k elements is not one-to-one.

Proof: Suppose that for each element y in the codomain of f we
have a box that contains all elements x of the domain of f such that
f(x) = y. Because the domain contains k + 1 or more elements and
the codomain contains only k elements, the pigeonhole principle tells us
that one of these boxes contains two or more elements x of the domain.
This means that f cannot be one-to-one.

Examples 1–3 show how the pigeonhole principle is used.

�
EXAMPLE. 1

Among any group of 367 people, there must be at least two with the same
birthday, because there are only 366 possible birthdays.

�
EXAMPLE. 2

In any group of 27 English words, there must be at least two that begin with
the same letter, because there are 26 letters in the English alphabet.

�
EXAMPLE. 3

How many students must be in a class to guarantee that at least two students
receive the same score on the final exam, if the exam is graded on a scale from
0 to 100 points?

100 CHAPTER 2. COUNTING
�� ��Solution: There are 101 possible scores on the final. The pigeonhole prin-

ciple shows that among any 102 students there must be at least 2 students
with the same score.

The pigeonhole principle is a useful tool in many proofs, including
proofs of surprising results, such as that given in Example 4.

�
EXAMPLE. 4

Show that for every integer n there is a multiple of n that has only 0s and 1s
in its decimal expansion.�� ��Solution: Let n be a positive integer. Consider the n + 1 integers 1, 11,
111,· · · , 11 cdots1 (where the last integer in this list is the integer with n+ 1

1s in its decimal expansion). Note that there are n possible remainders when
an integer is divided by n. Because there are n + 1 integers in this list, by
the pigeonhole principle there must be two with the same remainder when
divided by n. The larger of these integers less the smaller one is a multiple of
n, which has a decimal expansion consisting entirely of 0s and 1s.

2.2.2 The Generalized Pigeonhole Principle

The pigeonhole principle states that there must be at least two ob-
jects in the same box when there are more objects than boxes. However,
even more can be said when the number of objects exceeds a multiple
of the number of boxes. For instance, among any set of 21 decimal
digits there must be 3 that are the same. This follows because when 21
objects are distributed into 10 boxes, one box must have more than 2
objects.

THEOREM 2.2.2

If N objects are placed into k boxes, then there is at least one box
containing at least ⌈N/k⌉ objects.

Proof: We will use a proof by contraposition. Suppose that none
of the boxes contains more than ⌈N/k⌉ − 1 objects. Then, the total

2.2.2 The Generalized Pigeonhole Principle 101

number of objects is at most

k

(⌈
N

k

⌉
− 1

)
< k

((
N

k
+ 1

)
− 1

)
= N

where the inequality ⌈N/k⌉ < (N/k) + 1 has been used. Thus, the
total number of objects is less than N . This completes the proof by
contraposition.

A common type of problem asks for the minimum number of objects
such that at least r of these objects must be in one of k boxes when these
objects are distributed among the boxes. When we have N objects, the
generalized pigeonhole principle tells us there must be at least r objects
in one of the boxes as long as ⌈N/k⌉ ≥ r. The smallest integer N with
N/k > r−1, namely, N = k(r−1)+1, is the smallest integer satisfying
the inequality ⌈N/k⌉ ≥ r. Could a smaller value of N suffice? The
answer is no, because if we had k(r − 1) objects, we could put r − 1 of
them in each of the k boxes and no box would have at least r objects.

When thinking about problems of this type, it is useful to consider
howyou can avoid having at least r objects in one of the boxes as you
add successive objects. To avoid adding a rth object to any box, you
eventually end up with r − 1 objects in each box. There is no way to
add the next object without putting an rth object in that box.

Examples 5–8 illustrate how the generalized pigeonhole principle is
applied.

�
EXAMPLE. 5

Among 100 people there are at least ⌈100/12⌉ = 9 who were born in the same
month.

�
EXAMPLE. 6

What is the minimum number of students required in a discrete mathematics
class to be sure that at least six will receive the same grade, if there are five
possible grades, A, B, C, D, and F?

102 CHAPTER 2. COUNTING
�� ��Solution: The minimum number of students needed to ensure that at

least six students receive the same grade is the smallest integer N such that
⌈N/5⌉ = 6. The smallest such integer is N = 5 · 5 + 1 = 26. If you have only
25 students, it is possible for there to be five who have received each grade so
that no six students have received the same grade. Thus, 26 is the minimum
number of students needed to ensure that at least six students will receive the
same grade.

�
EXAMPLE. 7

a) How many cards must be selected from a standard deck of 52 cards to
guarantee that at least three cards of the same suit are selected?

b) How many must be selected from a standard deck of 52 cards to guar-
antee that at least three hearts are selected?�� ��Solution: a) Suppose there are four boxes, one for each suit, and as
cards are selected they are placed in the box reserved for cards of that suit.
Using the generalized pigeonhole principle, we see that if N cards are selected,
there is at least one box containing at least ⌈N/4⌉ cards. Consequently, we
know that at least three cards of one suit are selected if ⌈N/4⌉ ≥ 3 The
smallest integer N such that ⌈N/4⌉ ≥ 3 is N = 2 · 4 + 1 = 9, so nine cards
suffice. Note that if eight cards are selected, it is possible to have two cards of
each suit, so more than eight cards are needed. Consequently, nine cards must
be selected to guarantee that at least three cards of one suit are chosen. One
good way to think about this is to note that after the eighth card is chosen,
there is no way to avoid having a third card of some suit.

b) We do not use the generalized pigeonhole principle to answer this ques-
tion, because we want to make sure that there are three hearts, not just three
cards of one suit. Note that in the worst case, we can select all the clubs,
diamonds, and spades, 39 cards in all, before we select a single heart. The
next three cards will be all hearts, so we may need to select 42 cards to get
three hearts.

�
EXAMPLE. 8

What is the least number of area codes needed to guarantee that the 25
million phones in a state can be assigned distinct 10-digit telephone numbers?

2.2.2 The Generalized Pigeonhole Principle 103

(Assume that telephone numbers are of the form NXX −NXX −XXXX,
where the first three digits form the area code, N represents a digit from 2 to
9 inclusive, and X represents any digit.)�� ��Solution: There are eight million different phone numbers of the form
NXX −XXXX. Hence, by the generalized pigeonhole principle, among 25
million telephones, at least ⌈25, 000, 000/8, 000, 000⌉ = 4 of them must have
identical phone numbers. Hence, at least four area codes are required to en-
sure that all 10-digit numbers are different.

Example 9, although not an application of the generalized pigeon-
hole principle, makes use of similar principles.

�
EXAMPLE. 9

Suppose that a computer science laboratory has 15 workstations and 10
servers. A cable can be used to directly connect a workstation to a server.
For each server, only one direct connection to that server can be active at any
time.We want to guarantee that at any time any set of 10 or fewer workstations
can simultaneously access different servers via direct connections. Although
we could do this by connecting every workstation directly to every server
(using 150 connections), what is the minimum number of direct connections
needed to achieve this goal?�� ��Solution: Suppose thatwe label theworkstations W1,W2, · · · ,W15 and the
servers S1, S2, · · · , S10. First, we would like to find a way for there to be
far fewer than 150 direct connections between workstations and servers to
achieve our goal. One promising approach is to directly connect Wk to Sk for
k = 1, 2, · · · , 10 and then to connect each of W11,W12,W13,W14, and W15 to
all 10 servers. This gives us a total of 10 + 5 · 10 = 60 direct connections.
We need to determine whether with this configuration any set of 10 or fewer
workstations can simultaneously access different servers. We note that if
workstation Wj is included with 1 ≤ j ≤ 10, it can access server Sj , and for
each workstation Wk with k ≥ 11 included, there must be a corresponding
workstation Wj with 1 ≤ j ≤ 10 not included, so Wk can access server Sj .
(This follows because there are at least as many available servers Sj as there
are workstations Wj with 1 ≤ j ≤ 10 not included.) So, any set of 10 or fewer
workstations are able to simultaneously access different servers.

But can we use fewer than 60 direct connections? Suppose there are
fewer than 60 direct connections between workstations and servers. Then
some server would be connected to at most ⌊59/10⌋ = 5 workstations. (If all

104 CHAPTER 2. COUNTING

servers were connected to at least six workstations, there would be at least
6 · 10 = 60 direct connections.) This means that the remaining nine servers
are not enough for the other 10 or more workstations to simultaneously access
different servers. Consequently, at least 60 direct connections are needed. It
follows that 60 is the answer.

2.2.3 Some Elegant Applications of the Pigeonhole Prin-
ciple

In many interesting applications of the pigeonhole principle, the
objects to be placed in boxes must be chosen in a clever way. A few
such applications will be described here.

�
EXAMPLE. 10

During a month with 30 days, a baseball team plays at least one game a day,
but no more than 45 games. Show that there must be a period of some number
of consecutive days during which the team must play exactly 14 games.�� ��Solution: Let aj be the number of games played on or before the jth day of
the month. Then a1, a2, · · · , a30 is an increasing sequence of distinct positive
integers, with 1 ≤ aj ≤ 45. Moreover, a1 +14, a2 +14, · · · , a30 +14 is also an
increasing sequence of distinct positive integers, with 15 ≤ aj + 14 ≤ 59.

The 60 positive integers a1, a2, · · · , a30, a1 + 14, a2 + 14, · · · , a30 + 14 are
all less than or equal to 59. Hence, by the pigeonhole principle two of these
integers are equal. Because the integers aj , j = 1, 2, · · · , 30 are all distinct
and the integers aj +14, j = 1, 2, · · · , 30 are all distinct, there must be indices
i and j with ai = aj + 14. This means that exactly 14 games were played
from day j + 1 to day i.

�
EXAMPLE. 11

Show that among any n+ 1 positive integers not exceeding 2n there must be
an integer that divides one of the other integers.�� ��Solution: Write each of the n + 1 integers a1, a2, · · · , an+1 as a power of
2 times an odd integer. In other words, let aj = 2kjqj for j = 1, 2, · · · , n+ 1,

2.2.3 Some Elegant Applications of the Pigeonhole Principle 105

where kj is a nonnegative integer and qj is odd. The integers q1, q2, · · · , qn+1

are all odd positive integers less than 2n. Because there are only n odd pos-
itive integers less than 2n, it follows from the pigeonhole principle that two
of the integers q1, q2, · · · , qn+1 must be equal. Therefore, there are distinct
integers i and j such that qi = qj . Let q be the common value of qi and qj .
Then, ai = 2kiq and aj = 2kjq. It follows that if ki < kj , then ai divides aj ;
while if ki > kj , then aj divides ai.

A clever application of the pigeonhole principle shows the existence
of an increasing or a decreasing subsequence of a certain length in a
sequence of distinct integers. We review some definitions before this
application is presented. Suppose that a1, a2, · · · , aN is a sequence of
real numbers. A subsequence of this sequence is a sequence of the
form ai1 , ai2 , · · · , aim , where 1 ≤ i1 < i2 < · · · < im ≤ N . Hence,
a subsequence is a sequence obtained from the original sequence by
including some of the terms of the original sequence in their original
order, and perhaps not including other terms. A sequence is called
strictly increasing if each term is larger than the one that precedes
it, and it is called strictly decreasing if each term is smaller than the
one that precedes it.

THEOREM 2.2.3

Every sequence of n2 + 1 distinct real numbers contains a subse-
quence of length n+ 1 that is either strictly increasing or strictly
decreasing.

We give an example before presenting the proof of Theorem 2.2.3.

�
EXAMPLE. 12

The sequence 8, 11, 9, 1, 4, 6, 12, 10, 5, 7 contains 10 terms. Note that
10 = 32 + 1. There are four strictly increasing subsequences of length four,
namely, 1, 4, 6, 12; 1, 4, 6, 7; 1, 4, 6, 10; and 1, 4, 5, 7. There is also a strictly
decreasing subsequence of length four, namely, 11, 9, 6, 5.

106 CHAPTER 2. COUNTING

The proof of the theorem will now be given.
Proof: Let a1, a2, . . . , an2+1 be a sequence of n2 + 1 distinct real

numbers. Associate an ordered pair with each term of the sequence,
namely, associate (ik, dk) to the term ak, where ik is the length of the
longest increasing subsequence starting at ak, and dk is the length of
the longest decreasing subsequence starting at ak.

Suppose that there are no increasing or decreasing subsequences of
length n + 1. Then ik and dk are both positive integers less than or
equal to n, for k = 1, 2, cdots, n2+1. Hence, by the product rule there
are n2 possible ordered pairs for (ik, dk). By the pigeonhole principle,
two of these n2 + 1 ordered pairs are equal. In other words, there exist
terms as and at, with s < t such that is = it and ds = dt. We will
show that this is impossible. Because the terms of the sequence are
distinct, either as < at or as > at. If as < at, then, because is = it, an
increasing subsequence of length it + 1 can be built starting at as, by
taking as followed by an increasing subsequence of length it beginning
at at. This is a contradiction. Similarly, if as > at, the same reasoning
shows that ds must be greater than dt, which is a contradiction.

The final example shows how the generalized pigeonhole principle
can be applied to an important part of combinatorics called Ramsey
theory, after the English mathematician F. P. Ramsey. In general,
Ramsey theory deals with the distribution of subsets of elements of
sets.

�
EXAMPLE. 13

Assume that in a group of six people, each pair of individuals consists of two
friends or two enemies. Show that there are either three mutual friends or
three mutual enemies in the group.�� ��Solution: Let A be one of the six people. Of the five other people in the
group, there are either three or more who are friends of A, or three or more
who are enemies of A. This follows from the generalized pigeonhole principle,
because when five objects are divided into two sets, one of the sets has at
least ⌈5/2⌉ = 3 elements. In the former case, suppose that B,C, and D are
friends of A. If any two of these three individuals are friends, then these two
and A form a group of three mutual friends. Otherwise, B,C, and D form

2.2.3 Some Elegant Applications of the Pigeonhole Principle 107

a set of three mutual enemies. The proof in the latter case, when there are
three or more enemies of A, proceeds in a similar manner.

The Ramsey number R(m,n), where m and n are positive inte-
gers greater than or equal to 2, denotes the minimum number of people
at a party such that there are either m mutual friends or n mutual
enemies, assuming that every pair of people at the party are friends
or enemies. Example 13 shows that R(3, 3) ≤ 6. We conclude that
R(3, 3) = 6 because in a group of five people where every two people
are friends or enemies, there may not be three mutual friends or three
mutual enemies.

It is possible to prove some useful properties about Ramsey num-
bers, but for the most part it is difficult to find their exact values. Note
that by symmetry it can be shown that R(m,n) = R(n,m). We also
have R(2, n) = n for every positive integer n ≥ 2. The exact values of
only nine Ramsey numbers R(m,n) with 3 ≤ m ≤ n are known, in-
cluding R(4, 4) = 18. Only bounds are known for many other Ramsey
numbers, including R(5, 5), which is known to satisfy 43 ≤ R(5, 5) ≤ 49.
The reader interested in learning more about Ramsey numbers should
consult [2] or [3].

108 CHAPTER 2. COUNTING

2.3 Permutations and Combinations

2.3.1 Introduction

number of distinct elements of a set of a particular size, where the
order of these elements matters. Many other counting problems can be
solved by finding the number of ways to select a particular number of
elements from a set of a particular size, where the order of the elements
selected does not matter. For example, in how many ways can we
select three students from a group of five students to stand in line for
a picture? How many different committees of three students can be
formed from a group of four students? In this section we will develop
methods to answer questions such as these.

2.3.2 Permutations

We begin by solving the first question posed in the introduction to
this section, as well as related questions.

�
EXAMPLE. 1

In how many ways can we select three students from a group of five students
to stand in line for a picture? In how many ways can we arrange all five of
these students in a line for a picture?�� ��Solution: First, note that the order in which we select the students mat-
ters. There are five ways to select the first student to stand at the start of
the line. Once this student has been selected, there are four ways to select
the second student in the line. After the first and second students have been
selected, there are three ways to select the third student in the line. By the
product rule, there are 5 ·4 ·3 = 60 ways to select three students from a group
of five students to stand in line for a picture.

To arrange all five students in a line for a picture, we select the first stu-
dent in five ways, the second in four ways, the third in three ways, the fourth
in two ways, and the fifth in one way. Consequently, there are 5·4·3·2·1 = 120

ways to arrange all five students in a line for a picture.

Example 1 illustrates how ordered arrangements of distinct objects
can be counted. This leads to some terminology.

2.3.2 Permutations 109

A permutation of a set of distinct objects is an ordered arrange-
ment of these objects. We Links also are interested in ordered arrange-
ments of some of the elements of a set. An ordered arrangement of r
elements of a set is called an r-permutation.

�
EXAMPLE. 2

Let S = {1, 2, 3}. The ordered arrangement 3, 1, 2 is a permutation of S.
The ordered arrangement 3, 2 is a 2-permutation of S.

The number of r-permutations of a set with n elements is denoted
by P (n, r). We can find P (n, r) using the product rule.

�
EXAMPLE. 3

Let S = {a, b, c}. The 2-permutations of S are the ordered arrangements
a, b;a, c; b, a; b, c; c, a; and c, b. Consequently, there are six 2-permutations
of this set with three elements. There are always six 2-permutations of a
set with three elements. There are three ways to choose the first element of
the arrangement. There are two ways to choose the second element of the
arrangement, because it must be different from the first element. Hence, by
the product rule, we see that P (3, 2) = 3 · 2 = 6. the first element. By the
product rule, it follows that P (3, 2) = 3 · 2 = 6.

We now use the product rule to find a formula for P (n, r) whenever
n and r are positive integers with 1 ≤ r ≤ n.

THEOREM 2.3.1

If n is a positive integer and r is an integer with 1 ≤ r ≤ n, then
there are P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1) r-permutations
of a set with n distinct elements.

Proof: : We will use the product rule to prove that this formula
is correct. The first element of the permutation can be chosen in n
ways because there are n elements in the set. There are n − 1 ways

110 CHAPTER 2. COUNTING

to choose the second element of the permutation, because there are
n− 1 elements left in the set after using the element picked for the first
position. Similarly, there are n − 2 ways to choose the third element,
and so on, until there are exactly n − (r − 1) = n − r + 1 ways to
choose the rth element. Consequently, by the product rule, there are
n(n− 1)(n− 2) · · · (n− r + 1) r-permutations of the set.

Note that P (n, 0) = 1 whenever n is a nonnegative integer because
there is exactly one way to order zero elements. That is, there is exactly
one list with no elements in it, namely the empty list. We now state a
useful corollary of Theorem 2.3.1.

COROLLARY If n and r are integers with 0 ≤ r ≤ n, then

P (n, r) =
n!

(n− r)!
.

Proof: When n and r are integers with 1 ≤ r ≤ n, by Theorem 2.3.1
we have

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1) =
n!

(n− r)!

Because n!
(n−0)! whenever n is a nonnegative integer, we see that the

formula P (n, r) = n!
(n−r)! also holds when r = 0.

By Theorem 2.3.1 we know that if n is a positive integer, then
P (n, n) = n. We will illustrate this result with some examples.

�
EXAMPLE. 4

How many ways are there to select a first-prize winner, a second-prize winner,
and a third-prize winner from 100 different people who have entered a contest?�� ��Solution: Because it matters which person wins which prize, the num-
ber of ways to pick the three prize winners is the number of ordered selec-
tions of three elements from a set of 100 elements, that is, the number of
3-permutations of a set of 100 elements. Consequently, the answer is

P (100, 3) = 100 · 99 · 98 = 970, 200.

2.3.2 Permutations 111

�
EXAMPLE. 5

Suppose that there are eight runners in a race. The winner receives a gold
medal, the secondplace finisher receives a silver medal, and the third-place
finisher receives a bronze medal. How many different ways are there to award
these medals, if all possible outcomes of the race can occur and there are no
ties?�� ��Solution: The number of different ways to award the medals is the num-
ber of 3-permutations of a set with eight elements. Hence, there are P (8, 3) =

8 · 7 · 6 = 336 possible ways to award the medals.

�
EXAMPLE. 6

Suppose that a saleswoman has to visit eight different cities. She must begin
her trip in a specified city, but she can visit the other seven cities in any order
she wishes. How many possible orders can the saleswoman use when visiting
these cities?�� ��Solution: The number of possible paths between the cities is the num-
ber of permutations of seven elements, because the first city is determined,
but the remaining seven can be ordered arbitrarily. Consequently, there are
7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5040 ways for the saleswoman to choose her tour.
If, for instance, the saleswoman wishes to find the path between the cities
with minimum distance, and she computes the total distance for each possi-
ble path, she must consider a total of 5040 paths!

�
EXAMPLE. 7

How many permutations of the letters ABCDEFGH contain the string ABC
? �� ��Solution: Because the letters ABC must occur as a block, we can find
the answer by finding the number of permutations of six objects, namely, the
block ABC and the individual letters D,E, F,G, and H. Because these six
objects can occur in any order, there are 6! = 720 permutations of the letters
ABCDEFGH in which ABC occurs as a block.

112 CHAPTER 2. COUNTING

2.3.3 Combinations

We now turn our attention to counting unordered selections of ob-
jects. We begin by solving a question posed in the introduction to this
section of the chapter.

�
EXAMPLE. 8

How many different committees of three students can be formed from a group
of four students?�� ��Solution: To answer this question, we need only find the number of sub-
sets with three elements from the set containing the four students. We see
that there are four such subsets, one for each of the four students, because
choosing three students is the same as choosing one of the four students to
leave out of the group. This means that there are four ways to choose the
three students for the committee, where the order in which these students are
chosen does not matter.
Example 8 illustrates that many counting problems can be solved by
finding the number of subsets of a particular size of a set with n ele-
ments, where n is a positive integer.

An r-combination of elements of a set is an unordered selection of
r elements from the set. Thus, an r-combination is simply a subset of
the set with r elements.

�
EXAMPLE. 9

Let S be the set {1, 2, 3, 4}. Then {1, 3, 4} is a 3-combination from S. (Note
that {4, 1, 3} is the same 3-combination as {1, 3, 4}, because the order in which
the elements of a set are listed does not matter.)
The number of r-combinations of a set with n distinct elements is de-
noted by C(n, r). Note that C(n, r) is called a binomial coefficient.
We will learn where this terminology comes from in next Section.

�
EXAMPLE. 10

2.3.3 Combinations 113

We see that C(4, 2) = 6, because the 2-combinations of {a, b, c, d} are the six
subsets {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}.
We can determine the number of r-combinations of a set with n elements
using the formula for the number of r-permutations of a set. To do this,
note that the r-permutations of a set can be obtained by first forming
r-combinations and then ordering the elements in these combinations.
The proof of Theorem 2.3.2, which gives the value of C(n, r), is based
on this observation.

THEOREM 2.3.2

The number of r-combinations of a set with n elements, where n
is a nonnegative integer and r is an integer with 0 ≤ r ≤ n, equals

C(n, r) =
n!

r!(n− r)!
.

Proof: The P (n, r) r-permutations of the set can be obtained by form-
ing the C(n, r) r-combinations of the set, and then ordering the ele-
ments in each r-combination, which can be done in P (r, r) ways. Con-
sequently, by the product rule,

P (n, r) = C(n, r) · P (r, r).

This implies that

C(n, r) =
P (n, r)

P (r, r)
=

n!/(n− r)!

r!/(r − r)!
=

n!

r!(n− r)!
.

We can also use the division rule for counting to construct a proof of
this theorem. Because the order of elements in a combination does
not matter and there are P (r, r) ways to order r elements in an r-
combination of n elements, each of the C(n, r) r-combinations of a set
with n elements corresponds to exactly P (r, r) r-permutations. Hence,
by the division rule, C(n, r) = P (n,r)

P (r,r) , which implies as before that
C(n, r) = n!

r!(n−r)! .
The formula in Theorem 2.3.2, although explicit, is not helpful when

C(n, r) is computed for large values of n and r. The reasons are that it

114 CHAPTER 2. COUNTING

is practical to compute exact values of factorials exactly only for small
integer values, and when floating point arithmetic is used, the formula
in Theorem 2.3.2 may produce a value that is not an integer. When
computing C(n, r), first note that when we cancel out (n− r)! from the
numerator and denominator of the expression for C(n, r) in Theorem
2.3.2, we obtain

C(n, r) =
n!

r!(n− r)!
=

(n(n− 1) · (n− r + 1)

r!
.

Consequently, to compute C(n, r) you can cancel out all the terms in the
larger factorial in the denominator from the numerator and denomina-
tor, then multiply all the terms that do not cancel in the numerator and
finally divide by the smaller factorial in the denominator. [When doing
this calculation by hand, instead of by machine, it is also worthwhile to
factor out common factors in the numerator n(n−1) · · · (n− r+1) and
in the denominator r!.] Note that many computational programs can
be used to find C(n, r). [Such functions may be called choose (n, k) or
binom (n, k).]

Example 11 illustrates how C(n, k) is computed when k is relatively
small compared to n and when k is close to n. It also illustrates a key
identity enjoyed by the numbers C(n, k).

�
EXAMPLE. 11

How many poker hands of five cards can be dealt from a standard deck of
52 cards? Also, how many ways are there to select 47 cards from a standard
deck of 52 cards?�� ��Solution: Because the order in which the five cards are dealt from a deck
of 52 cards does not matter, there are

C(52, 5) =
52!

5!47!

different hands of five cards that can be dealt. To compute the value of
C(52, 5), first divide the numerator and denominator by 47! to obtain

C(52, 5) =
52 · 51 · 50 · 49 · 48

5 · 4 · 3 · 2 · 1 .

This expression can be simplified by first dividing the factor 5 in the de-
nominator into the factor 50 in the numerator to obtain a factor 10 in the

2.3.3 Combinations 115

numerator, then dividing the factor 4 in the denominator into the factor 48
in the numerator to obtain a factor of 12 in the numerator then dividing the
factor 3 in the denominator into the factor 51 in the numerator to obtain a
factor of 17 in the numerator, and finally, dividing the factor 2 in the de-
nominator into the factor 52 in the numerator to obtain a factor of 26 in the
numerator. We find that

C(52, 5) = 26 · 17 · 10 · 49 · 12 = 2, 598, 960.

Consequently, there are 2,598,960 different poker hands of five cards that can
be dealt from a standard deck of 52 cards.

Note that there are
C(52, 47) =

52!

47!5!

different ways to select 47 cards from a standard deck of 52 cards. We do not
need to compute this value because C(52, 47) = C(52, 5). (Only the order of
the factors 5! and 47! is different in the denominators in the formulae for these
quantities.) It follows that there are also 2,598,960 different ways to select 47
cards from a standard deck of 52 cards.

In Example 11 we observed that C(52, 5) = C(52, 47). This is not
surprising because selecting five cards out of 52 is the same as selecting
the 47 that we leave out. The identity C(52, 5) = C(52, 47) is a special
case of the useful identity for the number of r−combinations of a set
given in next Corollary.

COROLLARY Let n and r be nonnegative integers with r ≤ n. Then
C(n, r) = C(n, n− r).

Proof: From Theorem 2.3.2 it follows that

C(n, r) =
n!

r!(n− r)!

and
C(n, n− r) =

n!

(n− r)![n− (n− r)]!
=

n!

(n− r)!r!
.

Hence, C(n, r) = C(n, n− r).

We can also prove Corollary without relying on algebraic manipu-
lation. Instead, we can use a combinatorial proof. We describe this
important type of proof in Definition.

116 CHAPTER 2. COUNTING

DEFINITION 2.3.1 A combinatorial proof of an identity is
a proof that uses counting arguments to prove that both sides of the
identity count the same objects but in different ways or a proof that is
based on showing that there is a bijection between the sets of objects
counted by the two sides of the identity. These two types of proofs are
called double counting proofs and bijective proofs, respectively.

Proof: We will use a bijective proof to show that C(n, r) = C(n, n−
r) for all integers n and r with 0 ≤ r ≤ n. Suppose that S is a set with
n elements. The function that maps a subset A of S to A is a bijection
between subsets of S with r elements and subsets with n− r elements
(as the reader should verify). The identity C(n, r) = C(n, n−r) follows
because when there is a bijection between two finite sets, the two sets
must have the same number of elements.

Alternatively, we can reformulate this argument as a double count-
ing proof. By definition, the number of subsets of S with r elements
equals C(n, r). But each subset A of S is also determined by specify-
ing which elements are not in A, and so are in A. Because the com-
plement of a subset of S with r elements has n − r elements, there
are also C(n, n − r) subsets of S with r elements. It follows that
C(n, r) = C(n, n− r).

�
EXAMPLE. 12

How many ways are there to select five players from a 10-member tennis team
to make a trip to a match at another school?�� ��Solution: The answer is given by the number of 5-combinations of a set
with 10 elements. By Theorem 2, the number of such combinations is

C(10, 5) =
10!

5!5!
= 252.

�
EXAMPLE. 13

A group of 30 people have been trained as astronauts to go on the first mission
to Mars. How many ways are there to select a crew of six people to go on this
mission (assuming that all crew members have the same job)?

2.3.3 Combinations 117
�� ��Solution: The number of ways to select a crew of six from the pool of 30

people is the number of 6-combinations of a set with 30 elements, because the
order in which these people are chosen does not matter. By Theorem 2.3.2,
the number of such combinations is

C(30, 6) =
30!

6!24!
=

30 · 29 · 28 · 27 · 26 · 25
6 · 5 · 4 · 3 · 2 · 1 = 593, 775.

�
EXAMPLE. 14

How many bit strings of length n contain exactly r 1s?�� ��Solution: The positions of r 1s in a bit string of length n form an r-
combination of the set {1, 2, 3, · · · , n}. Hence, there are C(n, r) bit strings of
length n that contain exactly r 1s.

�
EXAMPLE. 15

Suppose that there are 9 faculty members in the mathematics department
and 11 in the computer science department. How many ways are there to
select a committee to develop a discrete mathematics course at a school if
the committee is to consist of three faculty members from the mathematics
department and four from the computer science department?�� ��Solution: By the product rule, the answer is the product of the number of
3-combinations of a set with nine elements and the number of 4-combinations
of a set with 11 elements. By Theorem 2.3.2, the number of ways to select
the committee is

C(9, 3) · C(11, 4) =
9!

3!6!
· 11!

4!7!
= 84 · 330 = 27, 720.

118 CHAPTER 2. COUNTING

2.4 Binomial Coefficients and Identities

As we remarked in previous Section, the number of r-combinations
from a set with n elements is often denoted by

(
n
r

)
. This number is

also called a binomial coefficient because these numbers occur as
coefficients in the expansion of powers of binomial expressions such as
(a+ b)n. We will discuss the binomial theorem, which gives a power of
a binomial expression as a sum of terms involving binomial coeffi-
cients. We will prove this theorem using a combinatorial proof. We will
also show how combinatorial proofs can be used to establish some of
the many different identities that express relationships among binomial
coefficients.

2.4.1 The Binomial Theorem

The binomial theorem gives the coefficients of the expansion of pow-
ers of binomial expressions. A binomial expression is simply the sum
of two terms, such as x + y. (The terms can be products of constants
and variables, but that does not concern us here.)

Example 1 illustrates how the coefficients in a typical expansion can
be found and prepares us for the statement of the binomial theorem.

�
EXAMPLE. 1

The expansion of (x+y)3 can be found using combinatorial reasoning instead
of multiplying the three terms out. When (x+ y)3 = (x+ y)(x+ y)(x+ y) is
expanded, all products of a term in the first sum, a term in the second sum,
and a term in the third sum are added. Terms of the form x3, x2y, xy2, and
y3 arise. To obtain a term of the form x3, an x must be chosen in each of the
sums, and this can be done in only one way. Thus, the x3 term in the product
has a coefficient of 1. To obtain a term of the form x2y, an x must be chosen
in two of the three sums (and consequently a y in the other sum). Hence,
the number of such terms is the number of 2-combinations of three objects,
namely,

(
3
2

)
. Similarly, the number of terms of the form xy2 is the number of

ways to pick one of the three sums to obtain an x (and consequently take a
y from each of the other two sums). This can be done in

(
3
1

)
ways. Finally,

the only way to obtain a y3 term is to choose the y for each of the three sums
in the product, and this can be done in exactly one way. Consequently, it

2.4.1 The Binomial Theorem 119

follows that

(x+ y)3 = (x+ y)(x+ y)(x+ y) = (xx+ xy + yx+ yy)(x+ y)
= xxx+ xxy + xyx+ xyy + yxx+ yxy + yyx+ yyy
= x3 + 3x2y + 3xy2 + y3

We now state the binomial theorem.

THEOREM 2.4.1: THEBINOMIAL THEOREM

Let x and y be variables, and let n be a nonnegative integer. Then

(x+ y)n =
∑n

j=0

(
n
j

)
xn−jyj =

=
(
n
0

)
xn +

(
n
1

)
xn−1y + · · ·+

(
n

n−1

)
xyn−1 +

(
n
n

)
yn

Proof: : We use a combinatorial proof. The terms in the product when
it is expanded are of the form xn−jyj for j = 0, 1, 2, · · · , n. To count
the number of terms of the form xn−jyj , note that to obtain such a
term it is necessary to choose n− j xs from the n binomial factors (so
that the other j terms in the product are ys). Therefore, the coefficient
of xn−jyj is

(
n

n−j

)
, which is equal to

(
n
j

)
. This proves the theorem.

Some computational uses of the binomial theorem are illustrated in
Examples 2–4.

�
EXAMPLE. 2

What is the expansion of (x+ y)4?�� ��Solution: From the binomial theorem it follows that

(x+ y)4 =
∑4

j=0

(
4
j

)
x4−jyj =

=
(
4
0

)
x4 +

(
4
1

)
x3y +

(
4
2

)
x2y2 +

(
4
3

)
xy3 +

(
4
4

)
y4

= x4 + 4x3y + 6x2y2 + 4xy3 + y4

�
EXAMPLE. 3

120 CHAPTER 2. COUNTING

What is the coefficient of x12y13 in the expansion of (x+ y)25?�� ��Solution: From the binomial theorem it follows that this coefficient is(
25

13

)
=

25!

13!12!
= 5.200.300

�
EXAMPLE. 4

What is the coefficient of x12y13 in the expansion of (2x− 3y)25?�� ��Solution: First, note that this expression equals (2x + (−3y))25. By the
binomial theorem, we have

(2x+ (−3y))25 =

25∑
j=0

(
25

j

)
(2x)25−j(−3y)j

Consequently, the coefficient of x12y13 in the expansion is obtained when
j = 13, namely, (

25

13

)
212(−3)13 = − 25!

13!12!
212313.

Note that another way to find the solution is to first use the binomial theorem
to see that

(u+ v)25 =

25∑
j=0

(
25

j

)
u25−jvj

Setting u = 2x and v = −3y in this equation yields the same result.

We can prove some useful identities using the binomial theorem, as
Corollaries 1, 2, and 3 demonstrate.

COROLLARY 1. Let n be a nonnegative integer. Then
n∑

k=0

(
n

k

)
= 2n

Proof: : Using the binomial theorem with x = 1 and y = 1, we see
that

2n = (1 + 1)n =
n∑

k=0

(
n

k

)
1k1n−k =

n∑
k=0

(
n

k

)
.

2.4.1 The Binomial Theorem 121

This is the desired result.
Proof: : A set with n elements has a total of 2n different subsets.

Each subset has zero elements, one element, two elements,· · · , or n
elements in it. There are

(
n
0

)
subsets with zero elements,

(
n
1

)
subsets

with one element,
(
n
2

)
subsets with two elements,· · · , and

(
n
n

)
subsets

with n elements. Therefore,

n∑
k=0

(
n

k

)

counts the total number of subsets of a set with n elements. By equating
the two formulas we have for the number of subsets of a set with n
elements, we see that

n∑
k=0

(
n

k

)
= 2n

COROLLARY 2. Let n be a positive integer. Then

n∑
k=0

(−1)k
(
n

k

)
= 0

Proof: : When we use the binomial theorem with x = −1 and y = 1,
we see that

0 = 0n = ((−1) + 1)n =

n∑
k=0

(
n

k

)
(−1)k1n−k =

n∑
k=0

(
n

k

)
(−1)k

This proves the corollary.

Remark! Corollary 2 implies that(
n
0

)
+
(
n
2

)
+
(
n
4

)
+ · · · =

(
n
1

)
+
(
n
3

)
+
(
n
5

)
+ · · · .

COROLLARY 3. Let n be a nonnegative integer. Then

n∑
k=0

2k
(
n

k

)
= 3n

122 CHAPTER 2. COUNTING

Proof: We recognize that the left-hand side of this formula is the
expansion of (1+ 2)n provided by the binomial theorem. Therefore, by
the binomial theorem, we see that

(1 + 2)n =
n∑

k=0

(
n

k

)
1n−k2k =

n∑
k=0

(
n

k

)
2k

Hence
n∑

k=0

(
n

k

)
2k = 3n

2.4.2 Pascal’s Identity and Triangle

The binomial coefficients satisfy many different identities. We in-
troduce one of the most important of these now.

THEOREM 2.4.2: PASCAL’S IDENTITY

Let n and k be positive integers with n ≥ k. Then(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
Proof: We will use a combinatorial proof. Suppose that T is a set

containing n+1 elements. Let a be an element in T , and let S = T−{a}.
Note that there are

(
n+1
k

)
subsets of T containing k elements. However,

a subset of T with k elements either contains a together with k − 1
elements of S, or contains k elements of S and does not contain a.
Because there are

(
n

k−1

)
subsets of k− 1 elements of S, there are

(
n

k−1

)
subsets of k elements of T that contain a. And there are

(
n
k

)
subsets of

k elements of T that do not contain a, because there are
(
n
k

)
subsets of

k elements of S. Consequently,(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
.

2.4.2 Pascal’s Identity and Triangle 123
6.4 Binomial Coefficients and Identities 441

()0
0

()1
0 ()1

1

()2
0 ()2

1 ()2
2

()3
0 ()3

1 ()3
2 ()3

3

()4
0 ()4

1 ()4
2 ()4

3 ()4
4

()5
0 ()5

1 ()5
2 ()5

3 ()5
4 ()5

5

()6
0 ()6

1 ()6
2 ()6

3 ()6
4 ()6

5 ()6
6

()7
0 ()7

1 ()7
2 ()7

3 ()7
4 ()7

5 ()7
6 ()7

7

()8
0 ()8

1 ()8
2 ()8

3 ()8
4 ()8

5 ()8
6 ()8

7 ()8
8

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

By Pascal's identity:

()6
4 ()6

5 ()7
5

+ =

(a) (b)

.

FIGURE 1 Pascal’s triangle.

computation of binomial coefficients because only addition, and not multiplication, of integers

is needed to use this recursive definition.

Pascal’s identity is the basis for a geometric arrangement of the binomial coefficients in a

triangle, as shown in Figure 1.

The nth row in the triangle consists of the binomial coefficients

(
n
k

)

, k = 0, 1,… , n.

This triangle is known as Pascal’s triangle, named after the French mathematician Blaise

Pascal. Pascal’s identity shows that when two adjacent binomial coefficients in this triangle

are added, the binomial coefficient in the next row between these two coefficients is produced.

Pascal’s triangle has a long and ancient history, predating Pascal by many centuries. In the

East, binomial coefficients and Pascal’s identity were known in the second century B.C.E. by the

Indian mathematician Pingala. Later, Indian mathematicians included commentaries relating

to Pascal’s triangle in their books written in the first half of the last millennium. The Persian

Source: National Library of
Medicine

BLAISE PASCAL (1623–1662) Blaise Pascal was taught by his father, a tax collector in Rouen, France. He

Links

exhibited his talents at an early age, although his father, who had made discoveries in analytic geometry, kept
mathematics books away from him to encourage other interests. At 16 Pascal discovered an important result
concerning conic sections. At 18 he designed a calculating machine, which he built and sold. Pascal, along
with Fermat, laid the foundations for the modern theory of probability. In this work, he made new discoveries
concerning what is now called Pascal’s triangle. In 1654, Pascal abandoned his mathematical pursuits to de-
vote himself to theology. After this, he returned to mathematics only once. One night, distracted by a severe
toothache, he sought comfort by studying the mathematical properties of the cycloid. Miraculously, his pain
subsided, which he took as a sign of divine approval of the study of mathematics.

Figure 2.8: Pascal’s triangle.

Remark! It is also possible to prove this identity by algebraic
manipulation from the formula for

(
n
r

)
.

Remark! Pascal’s identity, together with the initial conditions(
n
0

)
=
(
n
n

)
= 1 for all integers n, can be used to recursively de-

fine binomial coefficients. This recursive definition is useful in the
computation of binomial coefficients because only addition, and not
multiplication, of integers is needed to use this recursive definition.

Pascal’s identity is the basis for a geometric arrangement of the
binomial coefficients in a triangle, as shown in Figure 2.8.

The nth row in the triangle consists of the binomial coefficients(
n

k

)
, k = 0, 1, · · · , n.

This triangle is known as Pascal’s triangle, named after the French
mathematician Blaise Pascal. Pascal’s identity shows that when two
adjacent binomial coefficients in this triangle are added, the binomial
coefficient in the next row between these two coefficients is produced.

124 CHAPTER 2. COUNTING

Pascal’s triangle has a long and ancient history, predating Pascal by
many centuries. In the East, binomial coefficients and Pascal’s identity
were known in the second century B.C.E. by the Indian mathematician
Pingala. Later, Indian mathematicians included commentaries relat-
ing to Pascal’s triangle in their books written in the first half of the
last millennium. The Persian mathematician Al-Karaji and the multi-
talented Omar Khayy’am wrote about Pasca”s triangle in the eleventh
and twelfth centuries, respectively; in Iran, Pascal’s triangle is known
as Khayy’am’s triangle. The triangle was known by the Chinese mathe-
matician Jia Xian in the eleventh century and was written about in the
13th century by Yang Hui; in Chinese Pascal’s triangle is often known
as Yang Hui’s triangle.

In the West, Pascal’s triangle appears on the frontispiece of a 1527
book on business calculation written by the German scholar Petrus Api-
anus. In Italy, Pascal’s triangle is called Tartaglia’s triangle, after the
Italian mathematician Niccol’o Fontana Tartaglia who published the
first few rows of the triangle in 1556. In his book Trait’e du triangle
arithm?etique, published posthumously 1665, Pascal presented results
about Pascal’s triangle and used them to solve probability theory prob-
lems. Later French mathematicians named this triangle after Pascal;
in 1730 Abraham de Moivre coined the name ”Pascal’s Arithmetic Tri-
angle,” which later became ”Pascal’s Triangle.”

2.4.3 Other Identities Involving Binomial Coefficients

We conclude this section with combinatorial proofs of two of the
many identities enjoyed by the binomial coefficients.

THEOREM 2.4.3: VANDERMONDE’S IDENTITY

Let m,n, and r be nonnegative integers with r not exceeding either
m or n. Then (

m+ n

r

)
=

r∑
k=0

(
m

r − k

)(
n

k

)

2.4.3 Other Identities Involving Binomial Coefficients 125

Proof: Suppose that there are m items in one set and n items in a
second set. Then the total number of ways to pick r elements from the
union of these sets is

(
m+n
r

)
.

Another way to pick r elements from the union is to pick k elements
from the second set and then r − k elements from the first set, where
k is an integer with 0 ≤ k ≤ r. Because there are

(
n
k

)
ways to choose k

elements from the second set and
(

m
r−k

)
ways to choose r − k elements

from the first set, the product rule tells us that this can be done in(
m
r−k

)(
n
k

)
ways. Hence, the total number of ways to pick r elements

from the union also equals
∑r

k=0

(
m
r−k

)(
n
k

)
.

We have found two expressions for the number of ways to pick r
elements from the union of a set with m items and a set with n items.
Equating them gives us Vandermonde’s identity.

Corollary 4 follows from Vandermonde’s identity.
COROLLARY 4. If n is a nonnegative integer, then(

2n

n

)
=

n∑
k=0

(
n

k

)2

Proof: We use Vandermonde’s identity with m = r = n to obtain(
2n

n

)
=

n∑
k=0

(
n

n− k

)(
n

k

)
=

n∑
k=0

(
n

k

)2

The last equality was obtained using the identity
(
n
k

)
=
(

n
n−k

)
.

We can prove combinatorial identities by counting bit strings with
different properties, as the proof of Theorem 2.4.4 will demonstrate.

THEOREM 2.4.4

Let n and r be nonnegative integers with r ≤ n. Then(
n+ 1

r + 1

)
=

n∑
j=r

(
j

r

)

Proof: We use a combinatorial proof. By Example 14 in previous
Section, the left-hand side,

(
n+1
r+1

)
, counts the bit strings of length n+1

containing r + 1 ones.

126 CHAPTER 2. COUNTING

We show that the right-hand side counts the same objects by con-
sidering the cases corresponding to the possible locations of the final
1 in a string with r + 1 ones. This final one must occur at position
r + 1, r + 2, · · · , or n + 1. Furthermore, if the last one is the kth bit
there must be r ones among the first k−1 positions. Consequently, there
are

(
k−1
r

)
such bit strings. Summing over k with r+ 1 ≤ k ≤ n+ 1, we

find that there are

n+1∑
k=r+1

(
k − 1

r

)
=

n∑
j=r

(
j

r

)

bit strings of length n containing exactly r + 1 ones. (Note that the
last step follows from the change of variables j = k − 1.) Because the
left-hand side and the right-hand side count the same objects, they are
equal. This completes the proof.

2.5. GENERALIZED PERMUTATIONS AND COMBINATIONS 127

2.5 Generalized Permutations and Combinations

2.5.1 Introduction

In many counting problems, elements may be used repeatedly. For
instance, a letter or digit may Links be used more than once on a license
plate. When a dozen donuts are selected, each variety can be chosen
repeatedly. This contrasts with the counting problems discussed earlier
in the chapter where we considered only permutations and combinations
in which each item could be used at most once. In this section we will
show how to solve counting problems where elements may be used more
than once.

Also, some counting problems involve indistinguishable elements.
For instance, to count the number of ways the letters of the word
SUCCESS can be rearranged, the placement of identical letters must
be considered. This contrasts with the counting problems discussed
earlier where all elements were considered distinguishable. In this sec-
tion we will describe how to solve counting problems in which some
elements are indistinguishable.

Moreover, in this section we will explain how to solve another im-
portant class of counting problems, problems involving counting the
ways distinguishable elements can be placed in boxes. An example of
this type of problem is the number of different ways poker hands can
be dealt to four players.

2.5.2 Permutations with Repetition

Counting permutations when repetition of elements is allowed can
easily be done using the product rule, as Example 1 shows.

�
EXAMPLE. 1

How many strings of length r can be formed from the uppercase letters of the
English alphabet?�� ��Solution: By the product rule, because there are 26 uppercase English
letters, and because each letter can be used repeatedly, we see that there are

128 CHAPTER 2. COUNTING

4 apples 4 oranges 4 pears
3 apples, 1 orange 3 apples, 1 pear 3 oranges, 1 apple
3 oranges, 1 pear 3 pears, 1 apple 3 pears, 1 orange
2 apples, 2 oranges 2 apples, 2 pears 2 oranges, 2 pears
2 apples, 1 orange, 1 pear 2 oranges, 1 apple, 1 pear 2 pears, 1 apple, 1 orange

26r strings of uppercase English letters of length r.

The number of r-permutations of a set with n elements when repe-
tition is allowed is given in Theorem 2.5.1.

THEOREM 2.5.1

The number of r-permutations of a set of n objects with repetition
allowed is nr.

Proof: There are n ways to select an element of the set for each of
the r positions in the r-permutation when repetition is allowed, because
for each choice all n objects are available. Hence, by the product rule
there are nr r-permutations when repetition is allowed.

2.5.3 Combinations with Repetition

Consider these examples of combinations with repetition of elements
allowed.

�
EXAMPLE. 2

How many ways are there to select four pieces of fruit from a bowl containing
apples, oranges, and pears if the order in which the pieces are selected does
not matter, only the type of fruit and not the individual piece matters, and
there are at least four pieces of each type of fruit in the bowl?�� ��Solution: To solve this problem we list all the ways possible to select the
fruit. There are 15 ways:

The solution is the number of 4-combinations with repetition allowed from
a three-element set, {apple, orange, pear}.

2.5.3 Combinations with Repetition 1296.5 Generalized Permutations and Combinations 447

$100 $50 $20 $10 $5 $2 $1

FIGURE 1 Cash box with seven types of bills.

EXAMPLE 3 How many ways are there to select five bills from a cash box containing $1 bills, $2 bills,

$5 bills, $10 bills, $20 bills, $50 bills, and $100 bills? Assume that the order in which the bills

are chosen does not matter, that the bills of each denomination are indistinguishable, and that

there are at least five bills of each type.

Solution: Because the order in which the bills are selected does not matter and seven differ-

ent types of bills can be selected as many as five times, this problem involves counting 5-

combinations with repetition allowed from a set with seven elements. Listing all possibilities

would be tedious, because there are a large number of solutions. Instead, we will illustrate the

use of a technique for counting combinations with repetition allowed.

Suppose that a cash box has seven compartments, one to hold each type of bill, as illustrated

in Figure 1. These compartments are separated by six dividers, as shown in the picture. The

choice of five bills corresponds to placing five markers in the compartments holding different

types of bills. Figure 2 illustrates this correspondence for three different ways to select five bills,

where the six dividers are represented by bars and the five bills by stars.

The number of ways to select five bills corresponds to the number of ways to arrange six

bars and five stars in a row with a total of 11 positions. Consequently, the number of ways to

select the five bills is the number of ways to select the positions of the five stars from the 11

1
0
0

$
1
0

$
$

1
0
0

$
1
0
0

$
1

$
$

1
0
0

$
2
0

$
$

1
0
0

$
$

5
0

$
$

5
$

$

1
0
0

$
1
0

$
$

1
0
0

$
$

2
$

$

1
$

$

* * * * *

* *

* * *

* * *

* *

FIGURE 2 Examples of ways to select five bills.

Figure 2.9: Cash box with seven types of bills.

To solve more complex counting problems of this type, we need a
general method for counting the r-combinations of an n-element set. In
Example 3 we will illustrate such a method.

�
EXAMPLE. 3

How many ways are there to select five bills from a cash box containing $1
bills, $2 bills, $5 bills, $10 bills, $20 bills, $50 bills, and $100 bills? Assume
that the order in which the bills are chosen does not matter, that the bills of
each denomination are indistinguishable, and that there are at least five bills
of each type.�� ��Solution: Because the order in which the bills are selected does not matter
and seven different types of bills can be selected as many as five times, this
problem involves counting 5- combinations with repetition allowed from a
set with seven elements. Listing all possibilities would be tedious, because
there are a large number of solutions. Instead, we will illustrate the use of a
technique for counting combinations with repetition allowed.

Suppose that a cash box has seven compartments, one to hold each type
of bill, as illustrated in Figure2.9. These compartments are separated by
six dividers, as shown in the picture. The choice of five bills corresponds
to placing five markers in the compartments holding different types of bills.
Figure 2.10 illustrates this correspondence for three different ways to select
five bills, where the six dividers are represented by bars and the five bills by
stars.

The number of ways to select five bills corresponds to the number of
ways to arrange six bars and five stars in a row with a total of 11 positions.
Consequently, the number of ways to select the five bills is the number of ways
to select the positions of the five stars from the 11 positions. This corresponds
to the number of unordered selections of 5 objects from a set of 11 objects,

130 CHAPTER 2. COUNTING

6.5 Generalized Permutations and Combinations 447

$100 $50 $20 $10 $5 $2 $1

FIGURE 1 Cash box with seven types of bills.

EXAMPLE 3 How many ways are there to select five bills from a cash box containing $1 bills, $2 bills,

$5 bills, $10 bills, $20 bills, $50 bills, and $100 bills? Assume that the order in which the bills

are chosen does not matter, that the bills of each denomination are indistinguishable, and that

there are at least five bills of each type.

Solution: Because the order in which the bills are selected does not matter and seven differ-

ent types of bills can be selected as many as five times, this problem involves counting 5-

combinations with repetition allowed from a set with seven elements. Listing all possibilities

would be tedious, because there are a large number of solutions. Instead, we will illustrate the

use of a technique for counting combinations with repetition allowed.

Suppose that a cash box has seven compartments, one to hold each type of bill, as illustrated

in Figure 1. These compartments are separated by six dividers, as shown in the picture. The

choice of five bills corresponds to placing five markers in the compartments holding different

types of bills. Figure 2 illustrates this correspondence for three different ways to select five bills,

where the six dividers are represented by bars and the five bills by stars.

The number of ways to select five bills corresponds to the number of ways to arrange six

bars and five stars in a row with a total of 11 positions. Consequently, the number of ways to

select the five bills is the number of ways to select the positions of the five stars from the 11

1
0
0

$
1
0

$
$

1
0
0

$
1
0
0

$
1

$
$

1
0
0

$
2
0

$
$

1
0
0

$
$

5
0

$
$

5
$

$

1
0
0

$
1
0

$
$

1
0
0

$
$

2
$

$

1
$

$

* * * * *

* *

* * *

* * *

* *

FIGURE 2 Examples of ways to select five bills.
Figure 2.10: Examples of ways to select five bills.

which can be done in C(11, 5) ways. Consequently, there are

C(11, 5) =
11!

5!6!
= 462

ways to choose five bills from the cash box with seven types of bills.

Theorem 2.5.2 generalizes this discussion.

THEOREM 2.5.2

There are C(n + r − 1, r) = C(n + r − 1, n − 1) r-combinations
from a set with n elements when repetition of elements is allowed.

Proof: Each r-combination of a set with n elements when repetition
is allowed can be represented by a list of n−1 bars and r stars. The n−1
bars are used to mark off n different cells, with the ith cell containing a
star for each time the ith element of the set occurs in the combination.
For instance, a 6-combination of a set with four elements is represented
with three bars and six stars. Here

⋆ ⋆ | ⋆ | | ⋆ ⋆⋆

2.5.3 Combinations with Repetition 131

represents the combination containing exactly two of the first element,
one of the second element, none of the third element, and three of
the fourth element of the set. As we have seen, each different list
containing n − 1 bars and r stars corresponds to an rcombination of
the set with n elements, when repetition is allowed. The number of
such lists is C(n − 1 + r, r), because each list corresponds to a choice
of the r positions to place the r stars from the n− 1 + r positions that
contain r stars and n − 1 bars. The number of such lists is also equal
to C(n− 1 + r, n− 1), because each list corresponds to a choice of the
n− 1 positions to place the n− 1 bars.

Examples 4–6 show how Theorem 2.5.2 is applied.

�
EXAMPLE. 4

Suppose that a cookie shop has four different kinds of cookies. How many
different ways can six cookies be chosen? Assume that only the type of cookie,
and not the individual cookies or the order in which they are chosen, matters.�� ��Solution: The number of ways to choose six cookies is the number of 6-
combinations of a set with four elements. From Theorem 2.5.2 this equals
C(4 + 6− 1, 6) = C(9, 6). Because

C(9, 6) = C(9, 3) =
9 · 8 · 7
1 · 2 · 3 = 84,

there are 84 different ways to choose the six cookies.

Theorem 2.5.2 can also be used to find the number of solutions
of certain linear equations where the variables are integers subject to
constraints. This is illustrated by Example 5.

�
EXAMPLE. 5

How many solutions does the equation

x1 + x2 + x3 = 11

have, where x1, x2, and x3 are nonnegative integers?�� ��Solution: To count the number of solutions, we note that a solution cor-
responds to a way of selecting 11 items from a set with three elements so that

132 CHAPTER 2. COUNTING

x1 items of type one, x2 items of type two, and x3 items of type three are cho-
sen. Hence, the number of solutions is equal to the number of 11-combinations
with repetition allowed from a set with three elements. From Theorem 2.5.2
it follows that there are

C(3 + 11− 1, 11) = C(13, 11) = C(13, 2) =
13 · 12
1 · 2 = 78

solutions.
The number of solutions of this equation can also be found when the

variables are subject to constraints. For instance, we can find the number of
solutions where the variables are integers with x1 ≥ 1, x2 ≥ 2, and x3 ≥ 3. A
solution to the equation subject to these constraints corresponds to a selection
of 11 items with x1 items of type one, x2 items of type two, and x3 items of
type three, where, in addition, there is at least one item of type one, two
items of type two, and three items of type three. So, a solution corresponds
to a choice of one item of type one, two of type two, and three of type three,
together with a choice of five additional items of any type. By Theorem 2.5.2
this can be done in

C(3 + 5− 1, 5) = C(7, 5) = C(7, 2) =
7 · 6
1 · 2 = 21

ways. Thus, there are 21 solutions of the equation subject to the given con-
straints.

Example 6 shows how counting the number of combinations with
repetition allowed arises in determining the value of a variable that is
incremented each time a certain type of nested loop is traversed.

�
EXAMPLE. 6

What is the value of k after the following pseudocode has been executed?

k := 0
for i1 := 1 to n

for i2 := 1 to i1
.̇
.̇

for im := 1 to im−1

k := k + 1

2.5.4 Permutations with Indistinguishable Objects 133

Table 2.1: Combinations and PermutationsWith andWithout Repeti-
tion.

Type Repetition Allowed? Formula

r-permutations No n!
(n−r)!

r-combinations No n!
r!(n−r)!

r-permutations Yes nr

r-combinations Yes (n+r−1)!
r!(n−1)!

�� ��Solution: Note that the initial value of k is 0 and that 1 is added to k
each time the nested loop is traversed with a sequence of integers i1, i2, ·, im
such that

1 ≤ im ≤ im−1 ≤ · · · ≤ i1 ≤ n

The number of such sequences of integers is the number of ways to choose m in-
tegers from {1, 2, · · · , n}, with repetition allowed. (To see this, note that once
such a sequence has been selected, if we order the integers in the sequence in
nondecreasing order, this uniquely defines an assignment of im, im−1, · · · , i1.
Conversely, every such assignment corresponds to a unique unordered set.)
Hence, from Theorem 2.5.2 , it follows that k = C(n + m − 1,m) after this
code has been executed.

The formulae for the numbers of ordered and unordered selections
of r elements, chosen with and without repetition allowed from a set
with n elements, are shown in Table 2.1.

2.5.4 Permutations with Indistinguishable Objects

Some elements may be indistinguishable in counting problems. When
this is the case, care must be taken to avoid counting things more than
once. Consider Example 7.

�
EXAMPLE. 7

How many different strings can be made by reordering the letters of the word
SUCCESS?

134 CHAPTER 2. COUNTING
�� ��Solution: Because some of the letters of SUCCESS are the same, the

answer is not given by the number of permutations of seven letters. This
word contains three Ss, two Cs, one U , and one E. To determine the number
of different strings that can be made by reordering the letters, first note that
the three Ss can be placed among the seven positions in C(7, 3) different ways,
leaving four positions free. Then the two Cs can be placed in C(4, 2) ways,
leaving two free positions. The U can be placed in C(2, 1) ways, leaving just
one position free. Hence E can be placed in C(1, 1) way. Consequently, from
the product rule, the number of different strings that can be made is

C(7, 3)C(4, 2)C(2, 1)C(1, 1) =
7!

3!4!
· 4!

2!2!
· 2!

1!1!
· 1!

1!0!
= 420.

We can prove Theorem2.5.3 using the same sort of reasoning as in
Example 7.

THEOREM 2.5.3

The number of different permutations of n objects, where there are
n1 indistinguishable objects of type 1, n2 indistinguishable objects
of type 2,· · · , and nk indistinguishable objects of type k, is

n!

n1!n2! · · ·nk!

.

Proof: : To determine the number of permutations, first note that
the n1 objects of type one can be placed among the n positions in
C(n, n1) ways, leaving n− n1 positions free. Then the objects of type
two can be placed in C(n− n1, n2) ways, leaving n− n1 − n2 positions
free. Continue placing the objects of type three,· · · , type k − 1, until
at the last stage, nk objects of type k can be placed in C(n−n1−n2−
· · · − nk−1, nk) ways. Hence, by the product rule, the total number of
different permutations is

C(n, n1) C(n− n1, n2) · · ·C(n− n1 − · · · − nk−1, nk) =

= n!
n1!(n−n1)!

(n−n1)!
n2!(n−n1−n2)!

· · · (n?n1−···?nk−1)!
nk!0!

= n!
n1!n2!···nk!

2.5.5 Distributing Objects into Boxes 135

2.5.5 Distributing Objects into Boxes

Many counting problems can be solved by enumerating the ways
objects can be placed into boxes (where the order these objects are
placed into the boxes does not matter). The objects can be either dis-
tinguishable, that is, different from each other, or indistinguishable, that
is, considered identical. Distinguishable objects are sometimes said to
be labeled, whereas indistinguishable objects are said to be unlabeled.
Similarly, boxes can be distinguishable, that is, different, or indistin-
guishable, that is, identical. Distinguishable boxes are often said to be
labeled, while indistinguishable boxes are said to be unlabeled. When
you solve a counting problem using the model of distributing objects
into boxes, you need to determine whether the objects are distinguish-
able and whether the boxes are distinguishable. Although the context
of the counting problem makes these two decisions clear, counting prob-
lems are sometimes ambiguous and it may be unclear which model ap-
plies. In such a case it is best to state whatever assumptions you are
making and explain why the particular model you choose conforms to
your assumptions.

Remark! A closed formula is an expression that can be evalu-
ated using a finite number of operations and that includes numbers,
variables, and values of functions, where the operations and func-
tions belong to a generally accepted set that can depend on the
context.

DISTINGUISHABLE OBJECTS AND DISTINGUISHABLE
BOXES

We first consider the case when distinguishable objects are placed
into distinguishable boxes. Consider Example 8 in which the objects
are cards and the boxes are hands of players.

�
EXAMPLE. 8

How many ways are there to distribute hands of 5 cards to each of four players
from the standard deck of 52 cards?

136 CHAPTER 2. COUNTING
�� ��Solution: We will use the product rule to solve this problem. To begin,

note that the first player can be dealt 5 cards in C(52, 5) ways. The second
player can be dealt 5 cards in C(47, 5) ways, because only 47 cards are left.
The third player can be dealt 5 cards in C(42, 5) ways. Finally, the fourth
player can be dealt 5 cards in C(37, 5) ways. Hence, the total number of ways
to deal four players 5 cards each is

C(52, 5)C(47, 5) C(42, 5)C(37, 5) = 52!
47!5! · 47!

42!5! · 42!
37!5! · 37!

32!5! =
= 52!

5!5!5!5!32!

Remark! The solution to Example 8 equals the number of per-
mutations of 52 objects, with 5 indistinguishable objects of each
of four different types, and 32 objects of a fifth type. This equal-
ity can be seen by defining a one-to-one correspondence between
permutations of this type and distributions of cards to the players.
To define this correspondence, first order the cards from 1 to 52.
Then cards dealt to the first player correspond to the cards in the
positions assigned to objects of the first type in the permutation.

Example 8 is a typical problem that involves distributing distin-
guishable objects into distinguishable boxes. The distinguishable ob-
jects are the 52 cards, and the five distinguishable boxes are the hands
of the four players and the rest of the deck. Counting problems that
involve distributing distinguishable objects into boxes can be solved
using Theorem 2.5.4.

THEOREM 2.5.4

The number of ways to distribute n distinguishable objects into
k distinguishable boxes so that ni objects are placed into box i,
i = 1, 2, · · · , k, equals

n!

n1!n2! · · ·nk!

Theorem 2.5.4 can be proved using the product rule.

2.5.5 Distributing Objects into Boxes 137

INDISTINGUISHABLE OBJECTS AND DISTINGUISH-
ABLE BOXES

Counting the number of ways of placing n indistinguishable objects
into k distinguishable boxes turns out to be the same as counting the
number of n-combinations for a set with k elements when repetitions
are allowed. The reason behind this is that there is a one-to-one cor-
respondence between n-combinations from a set with k elements when
repetition is allowed and the ways to place n indistinguishable balls into
k distinguishable boxes. To set up this correspondence, we put a ball
in the ith bin each time the ith element of the set is included in the
n-combination.

�
EXAMPLE. 9

How many ways are there to place 10 indistinguishable balls into eight distin-
guishable bins?�� ��Solution: The number of ways to place 10 indistinguishable balls into eight
bins equals the number of 10-combinations from a set with eight elements
when repetition is allowed. Consequently, there are

C(8 + 10− 1, 10) = C(17, 10) =
17!

10!7!
= 19, 448.

This means that there are C(n + r − 1, n − 1) ways to place r
indistinguishable objects into n distinguishable boxes.

DISTINGUISHABLE OBJECTS AND INDISTINGUISH-
ABLE BOXES Counting the ways to place n distinguishable objects
into k indistinguishable boxes is more difficult than counting the ways
to place objects, distinguishable or indistinguishable objects, into dis-
tinguishable boxes. We illustrate this with an example.

�
EXAMPLE. 10

How many ways are there to put four different employees into three indistin-
guishable offices, when each office can contain any number of employees?

138 CHAPTER 2. COUNTING
�� ��Solution: We will solve this problem by enumerating all the ways these

employees can be placed into the offices. We represent the four employees by
A,B,C, and D. First, we note that we can distribute employees so that all
four are put into one office, three are put into one office and a fourth is put
into a second office, two employees are put into one office and two put into a
second office, and finally, two are put into one office, and one each put into
the other two offices. Each way to distribute these employees to these offices
can be represented by a way to partition the elements A,B,C, and D into
disjoint subsets.

We can put all four employees into one office in exactly one way, repre-
sented by {{A,B,C,D}}. We can put three employees into one office and
the fourth employee into a different office in exactly four ways, represented by
{{A,B,C}, {D}}, {{A,B,D}, {C}}, {{A,C,D}, {B}}, and {{B,C,D}, {A}}.
We can put two employees into one office and two into a second office in
exactly three ways, represented by {{A,B}, {C,D}}, {{A,C}, {B,D}}, and
{{A,D}, {B,C}}. Finally, we can put two employees into one office, and
one each into each of the remaining two offices in six ways, represented by
{{A,B}, {C}, {D}}, {{A,C}, {B}, {D}}, {{A,D}, {B}, {C}},
{{B,C}, {A}, {D}}, {{B,D}}, {A}, {C}}, and {{C,D}, {A}, {B}}.

Counting all the possibilities, we find that there are 14 ways to put four
different employees into three indistinguishable offices. Another way to look
at this problem is to look at the number of offices into which we put employ-
ees. Note that there are six ways to put four different employees into three
indistinguishable offices so that no office is empty, seven ways to put four dif-
ferent employees into two indistinguishable offices so that no office is empty,
and one way to put four employees into one office so that it is not empty.

There is no simple closed formula for the number of ways to dis-
tribute n distinguishable objects into j indistinguishable boxes. How-
ever, there is a formula involving a summation, which we will now
describe. Let S(n, j) denote the number of ways to distribute n distin-
guishable objects into j indistinguishable boxes so that no box is empty.
The numbers S(n, j) are called Stirling numbers of the second kind.
For instance, Example 10 shows that S(4, 3) = 6, S(4, 2) = 7, and
S(4, 1) = 1. We see that the number of ways to distribute n distinguish-
able objects into k indistinguishable boxes (where the number of boxes
that are nonempty equals k, k−1, · · · , 2, or 1) equals

∑k
j=1 S(n, j). For

instance, following the reasoning in Example 10, the number of ways

2.5.5 Distributing Objects into Boxes 139

to distribute four distinguishable objects into three indistinguishable
boxes equals S(4, 1) + S(4, 2) + S(4, 3) = 1 + 7 + 6 = 14. Using the
inclusion–exclusion principle it can be shown that

S(n, j) =
1

j!

k∑
i=0

(−1)i
(
j

i

)
(j − i)n

Consequently, the number ofways to distribute n distinguishable objects
into k indistinguishable boxes equals

k∑
j=1

S(n, j) =
k∑

j=1

1

j!

j−1∑
i=0

(−1)i
(
j

i

)
(j − i)n

Remark! The reader may be curious about the Stirling numbers
of the first kind. For the definition of Stirling numbers of the first
kind, for more information about Stirling numbers of the second
kind, and to learn more about Stirling numbers of the first kind and
the relationship between Stirling numbers of the first and second
kind, see combinatorics textbooks such as [4], [5], and Chapter 6
in [2].

INDISTINGUISHABLE OBJECTS AND INDISTINGUISH-
ABLE BOXES

Some counting problems can be solved by determining the number
of ways to distribute indistinguishable objects into indistinguishable
boxes. We illustrate this principle with an example.

�
EXAMPLE. 11

How many ways are there to pack six copies of the same book into four
identical boxes, where a box can contain as many as six books?�� ��Solution: We will enumerate all ways to pack the books. For each way to
pack the books, we will list the number of books in the box with the largest
number of books, followed by the numbers of books in each box containing at
least one book, in order of decreasing number of books in a box. The ways
we can pack the books are

140 CHAPTER 2. COUNTING

6 3,2,1
5,1 3,1,1,1
4,2 2,2,2
4,1,1 2,2,1,1
3,3

For example, 4, 1, 1 indicates that one box contains four books, a second
box contains a single book, and a third box contains a single book (and the
fourth box is empty). We conclude that there are nine allowable ways to pack
the books, because we have listed them all.

Observe that distributing n indistinguishable objects into k indis-
tinguishable boxes is the same as writing n as the sum of at most k
positive integers in nonincreasing order. If a1 + a2 + · · · + aj = n,
where a1, a2, · · · , aj are positive integers with a1 ≥ a2 ≥ · · · ≥ aj , we
say that a1, a2, · · · , aj is a partition of the positive integer n into j
positive integers. We see that if pk(n) is the number of partitions of n
into at most k positive integers, then there are pk(n) ways to distribute
n indistinguishable objects into k indistinguishable boxes. No simple
closed formula exists for this number.

2.6. GENERATING PERMUTATIONS AND COMBINATIONS 141

2.6 Generating Permutations and Combinations

2.6.1 Introduction

previous sections of this chapter, but sometimes permutations or
combinations need to be generated, not just counted. Consider the
following three problems. First, suppose that a salesperson must visit
six different cities. In which order should these cities be visited to
minimize total travel time? One way to determine the best order is to
determine the travel time for each of the 6! = 720 different orders in
which the cities can be visited and choose the one with the smallest
travel time. Second, suppose we are given a set of six positive integers
and wish to find a subset of them that has 100 as their sum, if such a
subset exists. One way to find these numbers is to generate all 26 =
64 subsets and check the sum of their elements. Third, suppose a
laboratory has 95 employees. A group of 12 of these employees with a
particular set of 25 skills is needed for a project. (Each employee can
have one or more of these skills.) One way to find such a set of employees
is to generate all sets of 12 of these employees and check whether they
have the desired skills. These examples show that it is often necessary
to generate permutations and combinations to solve problems.

2.6.2 Generating Permutations

Any set with n elements can be placed in one-to-one correspondence
with the set {1, 2, 3, · · · , n}. We can list the permutations of any set
of n elements by generating the permutations of the n smallest posi-
tive integers and then replacing these integers with the corresponding
elements. Many different algorithms have been developed to generate
the n! permutations of this set. We will describe one of these that is
based on the lexicographic (or dictionary) ordering of the set of permu-
tations of {1, 2, 3, · · · , n}. In this ordering, the permutation a1a2 · · · an
precedes the permutation of b1b2 · · · bn, if for some k, with 1 ≤ k ≤ n,
a1 = b1, a2 = b2, · · · , ak−1 = bk−1, and ak < bk. In other words, a
permutation of the set of the n smallest positive integers precedes (in
lexicographic order) a second permutation if the number in this per-

142 CHAPTER 2. COUNTING

mutation in the first position where the two permutations disagree is
smaller than the number in that position in the second permutation.

�
EXAMPLE. 1

The permutation 23415 of the set {1, 2, 3, 4, 5} precedes the permutation
23514, because these permutations agree in the first two positions, but the
number in the third position in the first permutation, 4, is smaller than the
number in the third position in the second permutation, 5. Similarly, the
permutation 41532 precedes 52143.

An algorithm for generating the permutations of {1, 2, · · · , n} can
be based on a procedure that constructs the next permutation in lexico-
graphic order following a given permutation a1a2 · · · an. We will show
how this can be done. First, suppose that an−1 < an. Interchange an−1

and an to obtain a larger permutation. No other permutation is both
larger than the original permutation and smaller than the permutation
obtained by interchanging an−1 and an. For instance, the next larger
permutation after 234156 is 234165. On the other hand, if an−1 > an,
then a larger permutation cannot be obtained by interchanging these
last two terms in the permutation. Look at the last three integers in
the permutation. If an−2 < an−1, then the last three integers in the
permutation can be rearranged to obtain the next largest permutation.
Put the smaller of the two integers an−1 and an that is greater than
an−2 in position n−2. Then, place the remaining integer and an−2 into
the last two positions in increasing order. For instance, the next larger
permutation after 234165 is 234516.

On the other hand, if an−2 > an−1 (and an−1 > an), then a larger
permutation cannot be obtained by permuting the last three terms in
the permutation. Based on these observations, a general method can
be described for producing the next larger permutation in increasing
order following a given permutation a1a2 · · · an. First, find the integers
aj and aj+1 with aj < aj+1 and

aj+1 > aj+2 > · · · > an,

that is, the last pair of adjacent integers in the permutation where the

2.6.2 Generating Permutations 143

first integer in the pair is smaller than the second. Then, the next larger
permutation in lexicographic order is obtained by putting in the jth po-
sition the least integer among aj+1, aj+2, · · · , and an that is greater than
aj and listing in increasing order the rest of the integers aj , aj+1, · · · ,
an in positions j + 1 to n. It is easy to see that there is no other per-
mutation larger than the permutation a1a2 · · · an but smaller than the
new permutation produced. (The verification of this fact is left as an
exercise for the reader.)

�
EXAMPLE. 2

What is the next permutation in lexicographic order after 362541?�� ��Solution: The last pair of integers aj and aj+1 where aj < aj+1 is a3 = 2

and a4 = 5. The least integer to the right of 2 that is greater than 2 in the
permutation is a5 = 4. Hence, 4 is placed in the third position. Then the
integers 2, 5, and 1 are placed in order in the last three positions, giving 125
as the last three positions of the permutation. Hence, the next permutation
is 364125.

To produce the n! permutations of the integers 1, 2, 3, · · · , n, begin
with the smallest permutation in lexicographic order, namely, 123 · · ·n,
and successively apply the procedure described for producing the next
larger permutation of n!− 1 times. This yields all the permutations of
the n smallest integers in lexicographic order.

�
EXAMPLE. 3

Generate the permutations of the integers 1, 2, 3 in lexicographic order.�� ��Solution: Begin with 123. The next permutation is obtained by inter-
changing 3 and 2 to obtain 132. Next, because 3 > 2 and 1 < 3, permute
the three integers in 132. Put the smaller of 3 and 2 in the first position,
and then put 1 and 3 in increasing order in positions 2 and 3 to obtain 213.
This is followed by 231, obtained by interchanging 1 and 3, because 1 < 3.
The next larger permutation has 3 in the first position, followed by 1 and
2 in increasing order, namely, 312. Finally, interchange 1 and 2 to obtain
the last permutation, 321. We have generated the permutations of 1, 2, 3 in

144 CHAPTER 2. COUNTING

lexicographic order. They are 123, 132, 213, 231, 312, and 321

Algorithm 1 displays the procedure for finding the next permutation
in lexicographic order after a permutation that is not nn−1n−2 · · · 21,
which is the largest permutation.

ALGORITHM 1 Generating the Next Permutation
in Lexicographic Order.

procedure next permutation(a1a2 · · · an: permutation of
{1, 2, · · · , n} not equal to nn− 1 · · · 21)

j := n− 1
while aj > aj+1

j := j − 1
{j is the largest subscript with aj < aj+1}
k := n
while aj > ak
k := k − 1

{ak is the smallest integer greater than aj to the right of aj}
interchange aj and ak
r := n
s := j + 1
while r > s

interchange ar and as
r := r − 1
s := s+ 1

{this puts the tail end of the permutation after the jth position
in increasing order}
{a1a2 · · · an is now the next permutation}

2.6.3 Generating Combinations

How can we generate all the combinations of the elements of a finite
set? Because a combination is just a subset, we can use the corre-
spondence between subsets of {a1, a2, · · · , an} and bit strings of length
n.

2.6.3 Generating Combinations 145

Recall that the bit string corresponding to a subset has a 1 in posi-
tion k if ak is in the subset, and has a 0 in this position if ak is not in
the subset. If all the bit strings of length n can be listed, then by the
correspondence between subsets and bit strings, a list of all the subsets
is obtained.

Recall that a bit string of length n is also the binary expansion of an
integer between 0 and 2n−1. The 2n bit strings can be listed in order of
their increasing size as integers in their binary expansions. To produce
all binary expansions of length n, start with the bit string 000 · · · 00,
with n zeros. Then, successively find the next expansion until the bit
string 111 · · · 11 is obtained. At each stage the next binary expansion is
found by locating the first position from the right that is not a 1, then
changing all the 1s to the right of this position to 0s and making this
first 0 (from the right) a 1.

�
EXAMPLE. 4

Find the next bit string after 10 0010 0111.�� ��Solution: The first bit from the right that is not a 1 is the fourth bit from
the right. Change this bit to a 1 and change all the following bits to 0s. This
produces the next larger bit string, 10 0010 1000.

The procedure for producing the next larger bit string after
bn−1bn−2 · · · b1b0 is given as Algorithm 2.

ALGORITHM 2 Generating the Next Larger Bit String

procedure next bit string(bn−1bn−2 · · · b1b0 : bit string not equal
to 11 · · · 11)
i := 0
while bi = 1
bi := 0
i := i+ 1

bi := 1
{bn−1bn−2 · · · b1b0 is now the next bit string}

146 CHAPTER 2. COUNTING

Next, an algorithm for generating the r-combinations of the set
{1, 2, 3, · · · , n} will be given. An r-combination can be represented
by a sequence containing the elements in the subset in increasing or-
der. The r-combinations can be listed using lexicographic order on
these sequences. In this lexicographic ordering, the first r-combination
is {1, 2, · · · , r − 1, r} and the last r-combination is {n− r + 1, n− r +
2, · · · , n − 1, n}. The next r-combination after a1a2 · · · ar can be ob-
tained in the following way: First, locate the last element ai in the
sequence such that ai ̸= n− r + i. Then, replace ai with ai + 1 and aj
with ai + j − i+1, for j = i+1, i+2, · · · , r. It is left for the reader to
show that this produces the next larger r-combination in lexicographic
order. This procedure is illustrated with Example 5.

�
EXAMPLE. 5

Find the next larger 4-combination of the set {1, 2, 3, 4, 5, 6} after {1, 2, 5, 6}.�� ��Solution: The last term among the terms ai with a1 = 1, a2 = 2, a3 = 5,
and a4 = 6 such that ai ̸= 6 − 4 + i is a2 = 2. To obtain the next larger
4-combination, increment a2 by 1 to obtain a2 = 3. Then set a3 = 3 + 1 = 4

and a4 = 3 + 2 = 5. Hence the next larger 4-combination is {1, 3, 4, 5}.
Algorithm 3 displays pseudocode for this procedure.

ALGORITHM 3 Generating the Next r-Combination
in Lexicographic Order.

procedure next r-combination({a1, a2, · · · , ar} : proper subset
of {1, 2, · · · , n} not equal to {n − r + 1, · · · , n} with a1 < a2 <
· · · < ar)
i := r
while ai = n− r + i
i := i− 1

ai := ai + 1
for j := i+ 1 to r
aj := ai + j − i

{{a1, a2, · · · , ar} is now the next combination}

References

1. Rosen K. H. Discrete mathematics and its applications /
K. H. Rosen. — McGraw-Hill Education, 2018. — 942 p.

2. J. G. Michaels and K. H. Rosen, Applications of Discrete Mathe-
matics, McGraw-Hill, New York, 1991.

3. Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer,
Ramsey Theory, 2d ed., Wiley, New York, 1990.

4. M. Bona, Enumerative Combinatorics, McGraw-Hill, New York,
2007.

5. R. A. Brualdi, Introductory Combinatorics, 5th ed., Prentice-Hall,
Englewood Cliffs, NJ, 2009.

147

Електронне навчальне видання

Дворниченко Алiна Василiвна,
Лисенко Олександр Володимирович

ДИСКРЕТНА МАТЕМАТИКА ТА ТЕОРIЯ АЛГОРИТМIВ
Конспект лекцiй

для студентiв спецiальностi 113 ”Прикладна математика”
денної форми навчання

У чотирьох частинах
Частина II

(Англiйською мовою)

Вiдповiдальний за випуск I. В. Коплик
Редактор А. В. Дворниченко

Комп’ютерне верстання А. В. Дворниченко

Формат 60x84/16. Ум. друк. арк. 8,60. Обл.-вид. арк. 8,42.

Видавець i виготовлювач
Сумський державний унiверситет,

вул. Римського-Корсакова, 2, м. Суми, 40007
Свiдоцтво суб’єкта видавничої справи ДК № 3062 вiд 17.12.2007.

