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Abstract. Reverse osmosis is an essential technological separation process that has a large number of practical 

applications. The mathematical simulation is significant for designing and determining the most effective modes of 

membrane equipment operation and for a deep understanding of the processes in membrane units. This paper is an 

attempt at systematization and generalizing the results of the investigations dedicated to reverse osmosis simulation, 

which was published from 2011 to 2020. The main approaches to simulation were analyzed, and the scope of use of 

each of them was delineated. It was defined that computational fluid dynamics was the most used technique for reverse 

osmosis simulation; the intensive increase in using of molecular dynamics methods was pointed out. Since these two 

approaches provide the deepest insight into processes, it is likely that they will further be widely used for reverse 

osmosis simulations. At the same time, for the simulation of the membrane plant, it is reasonable to use the models that 

required the simplest solutions methods. The solution-diffusion model appears to be the most effective and flexible for 

these purposes. Therefore, this model was widely used in considering the period. The practical problems solved using 

each of the considered approaches were reviewed. Moreover, the software used for the solution of the mathematical 

models was regarded. 

Keywords: reverse osmosis, membrane, simulation, optimization, software.

1 Introduction 

The pressure-driven membrane processes are widely 

used in many industries, including chemical, food, 

pharmaceutical, biotechnologies, water treatment, and 

environmental protection. The mathematical simulation of 

the process plays an essential role in designing and 

exploring such equipment since this technique defines the 

most rational design of apparatus and operation modes 

with a lower number of experimental investigations. 

However, there exists quite a significant number of 

approaches to the simulation. Therefore, the systematized 

information about types of mathematical models of 

pressure-driven membrane processes would help choose 

the simulation method for the particular process. In 

previous work [1], the attempt was to systematize the 

theoretical investigation of pressure driven membrane 

processes from 2000 to 2010. This work is an extension of 

the previous one, and the works published between 2011 

and 2020 are considered there.  

First of all, it should be noted that in work [1], in the 

waste majority of cases, it was considered the articles 

published in the leading thematic journal, namely Journal 

of Membrane Science and Desalination by Elsevier. In 

contrast, the attention to the other publication was 

insufficient. Also, during the considered period, new 

thematic journals began to be issued, particularly 

Membranes by MDPI. Therefore, the current work 

analyzed the bigger number of journals and more than 

1000 publications dedicated to pressure driven membrane 

processes simulation. The publication distribution by years 

is shown in Figure 1, and the distribution among the main 

processes is shown in Figure 2. 

It can be seen from Figure 1 that despite the drop in 

2017 and 2018, the number of publications stable 

increased, which is evident that the actuality of such kind 

of investigation is increased. Moreover, the trend of the 

increase is more clearly seen than it was in work [1]. 

Figure 2, in turn, shows that the most significant number 

of research is dedicated to the question of simulation of 

reverse osmosis, which is the most widely applicated 

industrial pressure-driven membrane process. Also, a 

significant number of publications are dedicated to the 

simulation of nanofiltration (NF) and forward osmosis 
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(FO), which in work [1] was not considered. A lesser 

number of works are dedicated simulation of ultrafiltration 

(UF), microfiltration (MF), and also membrane 

bioreactors. The last ones were not considered in work [1] 

as a separate kind of process. 

Taking into account a large number of publications in 

the considered period it was decided to make a review for 

each process separately. Correspondingly, the purpose of 

the current work is the analysis and generalization of the 

investigations dedicated to the simulation of reverse 

osmosis in the period from 2011 to 2020. The objectives 

of the research include: (1) the review and evaluation of 

areas for applications of the different approaches to RO 

simulations; (2) the comparison of the trends in 

developments of methods of RO simulation in the first two 

decades of the XXI century; (3) the analysis perspectives 

of the development of the RO simulation. 

The distribution of the published works dedicated to RO 

simulation is shown in Figure 3. The represented data 

demonstrate that the research interest in this direction was 

steadily increasing. 

 

Figure 1 – The distribution of the publications selected for 

review by the years 

 

Figure 2 – The distribution the publication selected for review 

by the processes 

 

Figure 3 – The distribution of publications dedicated to the 

simulation of reverse osmosis by the years 

As in work [1], the review does not claim 

comprehensiveness, however, it allows to sufficiently 

evaluate the main trends in the mathematical simulation of 

RO and the areas of application of the main approaches to 

the simulation. 

It should be noticed that in 2011-2020 several 

substantial review articles were published in which the 

question of reverse osmosis simulation was considered. 

These works will be discussed below. 

2 Research Methodology 

In work [1] it was noticed that the traditional models 

include the following groups: irreversible 

thermodynamics-based models, diffusion-based models, 

and pore-flow-based models. The investigations with the 

application of computational fluid dynamics, artificial 

neuron networks, optimization, and economic analysis 

were identified as individual groups. The others 

approaches to the reverse osmosis simulation including 

semi-empirical models were also considered separately. 

During 2011-2020 several reviews were published 

which prove the acceptability of such classifications with 

some corrections. In particular, in work [1] the models 

based on Kedem–Katchalsky equation (irreversible 

thermodynamics) were considered, and in work [3] 

detailed analysis of the irreversible thermodynamics and 

solution-diffusion models was made. The traditional 

models were also considered in the general review of RO 

desalination [4] and the review of the desalination 

processes simulation [5]. The reviewed works dedicated to 

the simulation with using of the computation fluids 

dynamics (CFD) [6-8] and molecular dynamics [9-11] 

were also published. Moreover, in works [12-13] it was 

considered both the traditional models and the molecular 

dynamics methods, in addition, in work [13] it was noticed 

that in researches until 2000 the application of the 

preferential sorption-capillary flow model was 

predominated while after 2001 the biggest progress was 

achieved with using of the molecular dynamic methods. 

The question of the RO optimization was considered in 

reviewed works [5, 14], and in work [15] the studies of the 

energy analysis of RO were revied.   

In this review works the authors considered mainly 

modern researches, and the fraction of the works published 
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in the 1960s-1980s is relatively low. They significantly 

provide an indication of the state of art in the reverse 

osmosis mathematical simulation according to the 

individual approaches, however, no one of them did not 

consider all main approaches together. For example, in 

generalized works [12-13] the simulation using the CFD 

methods was not considered, and the attention to the 

artificial neuron networks in the reviews is almost absent. 

Therefore, such a review like the current work would be 

useful for the generalized understanding of the RO 

simulation and the trends of the mathematical modeling of 

RO.  

Taking into account the works [9-11] and work [15], it 

was decided that except the class of models distinguished 

in the previous work [1] to consider individually the 

molecular dynamics method and energy analysis. With 

this, the distribution of the approaches in chosen for the 

review publication is shown in Figure 4. 

As in the previous period, the most number of works are 

dedicated to the simulation with an application of CFD and 

optimization methods, while the number of irreversible 

thermodynamics-based models and pore flow-based 

models is still low. It was unexpected to define the 

relatively high number of models based on the solution-

diffusion concept.    

3 Results 

3.1 Irreversible thermodynamics models 

The main models of this class include the Kedem–

Katchalsky and the Spiegler–Kedem model, which was 

used in the limited extend during 2011-2020 (Figure 5). In 

particular. The Kedem–Katchalsky model was considered 

in works [2, 16-19], the works [20-27] were dedicated to 

the Spiegler–Kedem model, and in works [3, 28], both 

models were used. 

The Kedem–Katchalsky model is based on the 

assumption of a linear relationship between flux and 

potential gradient. The membrane performance, in this 

case, can be determined by using phenomenological 

coefficients [9]. 

The transport through the membrane of non-electrolyte 

binary solutions, caused by the pressure difference and 

also by the osmotic pressure difference, according to the 

Kedem–Katchalsky model can be described by the 

following equations [2]:   

 ( )·w pJ L p=  −  (1) 

 ( )· 1 · ·s wJ c J= + −  (2) 

where Δp is the applied pressure difference; Δπ is the 

osmotic pressure difference; c  is the mean concentration 

of salt in the membrane which can be determined as mean 

arithmetic [2] or mean logarithm [9] value. The values Lp, 

σ and ω are the phenomenological constants that are 

concentration depended.    

 

Figure 4 – The distribution of the RO models in chosen 

publication by classes: 1 – irreversible thermodynamics;  

2 – diffusion; 3 – pore flow; 4 – computational fluid dynamics; 

5 – artificial neuron networks; 6 – molecular dynamics;  

7 –optimization; 8 – energy analysis; 9 – economic analysis;  

10 – others models   

 

Figure 5 – The distribution of the irreversible thermodynamic 

based models in chosen publications 

The selectivity of process can be evaluated be using of 

the rejection coefficient [9]: 

 3

1 1

1 1 s

w

c J
R

c J c
= − = −  (3) 

where c1 is the solute concentration in feed solution; c2 

is the solute concentration in permeate. 

The osmotic pressure value can be defined by the van’t 

Hoff equation [2, 9]: 

 ( )2 3RT c RT c c =  = −  (4) 

where R is the universal gas constant; T is the absolute 

temperature; c1 is the solute concentration near the 

membrane surface. 

 ( ) ( ) ( )
1

1.19 273
i

i T m i = +   (5) 

where T is the solution temperature; m(i) – is molar 

concentration of ions. 
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On the other hand, in work [19] the osmotic pressure of 

glucose solution was determinated as the function of 

concentration: 

 ( )
( ) ( )

( ) ( )

100 / 2 /
ln

100 / /

w g

w g

c M c M
c RT

c M c M

  − −  
 = −  

 − −   

 (6) 

where R is the gas constant; T is the solutions 

temperatures; Mg is the glucose molar weight; Mw is the 

water molar weight. 

Also, the set of the temperature and concentration 

dependences of osmotic pressure is represented in the 

work [27]. 

The dependences of phenomenological constants in 

equations (1) and (2) from the operation condition are 

discussed in detail in the review work [2].  

The use of the Kedem–Katchalsky model in the 

considered period was limited and related to the simulation 

of the hydrogen peroxide [16, 17], the rejection of N-

nitrosamines [18] and boron [28], and also for the glucose 

solution concentration.    

The more recent Spiegler–Kedem model describe the 

process of the substance transport through the membrane 

using the differential equations in a form [24]: 

 w

dp d
J A

dx dx

 
= − − 

 
 (7) 

 ( )1s w

dc
J B J c

dx
= − + −  (8) 

The rejection coefficient can be represented in a 

form [24]: 

 
( ) ( )( )

( ) ( ) ( )( )

2

2

/ 8 /
1

1 exp Pe 1 / 8 /

ic ip is p

ic ip is p

K D RT V r
R

K D RT V r

−  
= −

− − −  −   
 (9) 

where Kic is the factor of the resistance to diffusion; Di 

is the diffusivity of the component i in the pores; R is the 

universal gas constant; Т is the absolute temperature; Vis is 

the solute partial molar volume; η is the solution dynamic 

viscosity; rp is pore radius; ϕ is the volumetric factor; Pe' 

is modified Peclet number. 

In work [3] the other relationship was proposed for the 

rejection coefficient calculation: 

 
( )

1
1

1
1 exp

s

w

R
J

x
−

−
= −

 − 
−  

 

 (10) 

where σ is reflection coefficient; ω– is the local 

permeation coefficient. 

The osmotic pressure value is determinated in the same 

as in the previous case. The phenomenological coefficients 

(7) and (8) in contrast with the Kedem–Katchalsky model 

do not depend on the solvent concentration [3].  

The application of the Spiegler–Kedem model also was 

not wide. But this model was used for the analysis of 

phenol rejection [22], brackish [20] and seawater [25] 

desalination, N-nitrosamines rejection [21, 27], boron 

rejection [24, 28], water purification from organic 

contaminant [23], and glucose concentration [24]. In 

works [22-23], it also noticed that the description of 

processes is carried out for spiral wound modules. 

It also should be noticed, that the thermodynamical 

approach and the phenomenological equation were used in 

work [29]. However, the thermodynamic method were 

also applied for energy analysis, which will be discussed 

below.    

However, in general, the application of the irreversible 

thermodynamics models, despite their relative simplicity, 

in considered period were limited, and the relative number 

substantially decreased compared with previous period, 

considered in work [1]. 

3.2 Diffusion based models 

From Figure 4 it can be seen that in the period 2011-

2020 diffusion based models were used in a quite wide 

range, which was unexpected, taking into account the 

relatively low number of publications with using this 

approach in the previous decade [1].    

In the vast majority of cases, the solution-diffusion 

model was used. Its main assumption is that the skin layer 

is non-porous. In this case the transport of solvent and 

solute can be recognized as diffusion and it can be 

described by the equations in a form [3, 28, 30-55]: 

 ( )w wJ A p=  −   (11) 

 ( )s f pJ B C C= −  (12) 

where Aw is the solvent penetration constant; B is the 

solute penetration constant; Δp is the applied pressure 

difference; Δπ is the osmotic pressure difference; Cf is the 

solute concentration in the feed solution; Cp is the solvent 

concentration in the permeate. 

 ( )0

m m

s m m ml

dC D
J D D D

dx l
= − = − =   

 ( ) ( )m m

f p f p

D K
C C B C C

l
= − = −  (13) 

where Dm is the solute diffusivity in membrane; l is the 

active layer thickness; Cm0 is the solute concentration in 

membrane on the feed side; Cml is the solute concentration 

in the membrane on the permeate side; Km is the partition 

coefficient. 

In general, in several works the relationships for 

determination of the constants in equation (11) and (12) 

are represented.  

For example, in work [46] the solvent penetration 

constant was represented in a form: 

 0· · ·

· ·

i i i iD K c V
A

l RT
=  (14) 

where Di is the solvent diffusivity; Ki is the solvent 

sorption coefficient; ci0 is the solvent concentration in the 

feed solution; Vi is the solvent molar volume; l is the 
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membrane thickness; T is the solvent temperature; R is gas 

constant. The similar relationship was used in work [54]. 

The penetration constant also can be expressed by using 

the membrane resistance concept [30]: 

 
1

·m

A
R

=


 (15) 

where Rm is the membrane resistance; μ is the solvent 

dynamic viscosity coefficient. 

Although, equation (14) directly includes the 

temperature, in several works for taking into account this 

parameter influence in the RO process the others 

relationships were applied. For example, in work [31] for 

this purpose, the change in the viscosity with temperature 

was used. In this case, the equations for the penetration 

coefficients became: 

 ( )
( )

( )
0 0·A T

A T
T


=


 (16) 

 ( )
( ) ( )

( )
0 0

0

273,15 ·

·

B T T
В T

T T

+ 
=


 (17) 

where A0, В0 are the coefficient values under base 

temperature. 

In others works, the more complex relationships were 

used. Thus, in work [28] following equations were 

proposed: 

 

1 1 3
298,15

0

10

24·60·60

AE

R T

wA A e

   −− −  
  

 
=  

 
 (18) 

 

1 1 3
298,15

0

10

24·60·60

BstE

R T

sВ B e

   −− −  
  

 
=  

 
 (19) 

where EA, EBst are the activation energies of the solvent 

and solute molecules transport through the membrane; R is 

gas constant. 

At the same time, in work [35] for water solution it was 

used equations in a form: 

 

0.1447
0,62 5

7

,

36.0·10
9.059·10

25 400

f

w T

QT
A

−

−
  

=        

 (20) 

 ( )( ), s. .Ref Refexp 0.098s i iB B T T= −  (21) 

The equation (20) was also used in work [37]. 

In work [57] the influence of the temperature was taken 

into account with following relationships: 

 ( ) ( ) ( ) 25 C
exp 0.0343 25 at 25 C

w T w
A A T T


= −    (22) 

 ( ) ( ) ( ) 25 C
exp 0.0307 25 at 25 C

w T w
A A T T


= −    (23) 

 ( ) ( ) ( )( )25 C
1 0.08 25 at 25 C

s T s
B B T T


= + −    (24) 

 ( ) ( ) ( )( )25 C
1 0.05 25 at 25 C

s T s
B B T T


= + −    (25) 

The influence of the temperature was taken into account 

with using of the temperature correction factor. Thus, in 

work [58] the following equation was used: 

 
( ) ( )25 C

· · fw T w
A A TFC F


=  (26) 

where Aw(T) is the penetration coefficient under base 

temperature (25°С); TFC is the temperature correction 

factor; Ff is the fouling factor. 

The analogical relationships were used in works [59-

60], and in work [43] the more detailed form was applied: 

 ( )· · · · 6
2

f

w F P w p

P
J ATFC FF P P E


= − − −  −  +

  
  
  

 (27) 

Also, in work [43] the relationships for the temperature 

correction factor were proposed: 

 ( )exp 0.0343 25 25 CPTFC T= −      (28) 

 ( )exp 0.0307 25 25 CPTFC T= −      (29) 

In work [20] the long-term performance of RO plant 

and for the changes of the penetration coefficient in time 

the following relationship was proposed: 

 1 2

· ·

1 2· ·
fp fp

t t
k k

nA e e
− −
 

=  +   (30) 

Also, in work [49] except the temperature impact the 

influence of pressure were taken into account with 

following equations:   

 ( )
0

1

1 2

273
exp

273
w w f d

T
A A P P

− 
=  − − 

 
 (31) 

 
0 1

273
exp

273
S S

T
B S

− 
=  

 
 (32) 

Obviously, all represented relationships have a limited 

range of applicability, and the condition of the validity of 

the equations should be checked in the corresponding 

publications. 

The osmotic pressure values can be calculated in the 

same way as in the case of irreversible thermodynamics 

(equations (4) through (6)), and also in some works, the 

other methods of this parameter calculation were 

considered. 

For example, in work [61] the van’t Hoff equation were 

written in a form: 

 
5

·
· ·

·10

i
T C

M


 =  (33) 

At the same time, in work [48] the following 

relationship was proposed: 

 s

s

J
RT

B

 
 =  

 
 (34) 
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Also, the empirical temperature and concentration 

dependences for several substances are represented in 

works [35, 38, 55, 59]. 

For the evaluation of the selectivity both the rejection 

coefficient (equation (4)) and the solvent concentration in 

permeate were used.  

For the rejection calculation were proposed following 

relationships: 

in work [38]: 

 
( )

1

1
wp

i

AC
R

B p

−

 
= + 

 −  

 (35) 

where   is the water concentration in permeate.   

in work [47]: 

 
( )

( )

A p
R

A p B

 −
=

 − +
 (36) 

Also, the relationship between the rejection coefficient 

and other parameters can be represented in a form [41]: 

 
( )1 · wR J

B
R

−
=  (37) 

or [54]: 

 
1 1

1
w

B
R J
= +  (38) 

Also, the relationships for the solute concentration in 

permeate were proposed. In work [38] the following 

equation was used:   

 

( )exp /

f

P

w

w

C B
С

J
B

J k

=

+

 (39) 

where k is the mass transfer coefficient. 

A similar form of equation was applied in works [40], 

[48], and [53]. At the same time, in work [59], the 

temperature correction factor and fouling factor and with 

the accounting of them, the equation for the solvent 

concertation in permeate calculations became: 

 
( )· 11

· · · ·
2

f

P

w

C CF
С B FF TCF

J

+ 
=   

 
 (40) 

where CF is the concentration factor. 

For more accurate analysis of the process the solution-

diffusion model was complemented. In particular, in 

works [33-35, 49, 53, 56] during the RO process 

simulation the concertation polarization was taken into 

account (mainly by application of the film model). 

Moreover, the model was complemented by the material 

balance [49, 53, 55, 62], the optimization methods [35, 45, 

61, 63], unsteady-state conditions [32], and by the fouling 

impact [39]. Also, in work [64] for the description of the 

processes in spiral wound membrane module the 

cylindrical coordinate system was used.   

The solution-diffusion model was primarily used for the 

description of the water purification [30, 33, 36, 38, 47, 50, 

64, 65], including sea water [25, 40, 41, 43, 49, 52, 55, 57, 

61, 66] and brackish water [20, 31, 42, 45, 58, 59, 60, 65] 

desalination, and also the wastewater treatment [30, 48, 51, 

53-54, 56, 67]. Also, with using of this model it was 

described the processes of the removal of zinc [32], boron 

[28, 52], chlorophenol [36, 38], N-nitrosodimethylamine 

[38, 63], weak acids [25], and ammonia compounds [51, 

54], apple juice concentration [35, 37], and also for the 

membrane characterization [46]. The solution-diffusion 

model was also widely used for the analysis of the hybrid 

membrane systems performance [31, 41, 42-43, 48, 55, 57, 

61, 65, 69-70]. In most cases, the processes were analyzed 

in the spiral wound membrane modules [33, 34-35, 37, 39, 

58-60, 64, 68], the hollow fiber modules [62] and 

laboratory cells were also considered.    

For the mathematical models’ solutions, the most often 

used software includes MATLAB [32, 36, 52, 60], ROSA 

[39], and the programing language C++ [36]. 

The other models of this class were used much less 

often. Thus, the solution-diffusion-imperfection model 

was considered in works [71, 72], and the extended 

solution diffusion model was applied in work [72]. 

The solution-diffusion-imperfection model takes into 

account the possibility of the convective transport of 

substances through possible pores (imperfections) in the 

membrane active layer. In this case, the equations for the 

calculation of the solvent and solute fluxes will be written 

in a form [71]: 

 ( )· ·wJ A p L p=  − +   (41) 

 ( )· · ·S f P fJ B C C L p C= − +   (42) 

where L is the leakage factor. 

The rejection coefficient can be calculated by the 

equation [72]: 

 
1

1
B L p

R
A p A p

       
= + +       

 −  −       
 (43) 

The extended solution-diffusion model takes into 

account the influence of the applied pressure on the solute 

transport, which was not considered in the classical 

solution-diffusion model. In this case, the equations 

become [72]: 

 ( )wJ A p=  −   (44) 

 ( )s f p spJ B C C L p= − +   (45) 

here Lsp is the phenomenological coefficient.  

The rejection coefficient can be calculated by the 

equation [72]: 

 
( )

1
1 1 1

sp s s

f

L K D

R C A p A p

  
− − = +  

  −   

 (46) 



 

F12 CHEMICAL ENGINEERING: Processes in Machines and Devices 

 

The unexpected wide range of the solution diffusion 

models applications in the considered period is probably 

related to its relative simplicity, because of what there is 

no necessity for the application of the complex 

computational techniques, and also the convenience of the 

model for the hybrid system analysis and the model-based 

optimization. It should be noticed that the significant 

contribution in this field was done by one research group 

[3, 34-38, 57-58, 63]. At the same time, the solution-

diffusion-imperfection model and the extended solution 

diffusion model do not have these advantages, therefore, 

as in the previous period, they were applied in a limited 

range.  

3.3 Pore flow based models 

As in the previous period [1], the models of this class 

were used rarely, yielding to the computational fluid 

dynamics methods. Thus, among the large number of 

publications dedicated to the RO simulation the models 

which directly considered the pore flow are mentioned in 

less than 5% of cases. In most cases, the preferentially 

sorption pore flow model (also known as Kimura–

Sourirajan model) was considered. Also, the surface force-

pore flow model and some other approaches were applied 

(Figure 6). 

Unlike the solution diffusion model, the models of this 

class consider the active layer as porous, and the transport 

is carried out by both diffusion and convection [1].   

The preferentially sorption pore flow model describes 

the solute and solvent fluxes by the equations in a 

form [73]: 

 ( )w wJ A p=  −   (47) 

 ( )s s m pJ B C C= −  (48) 

Such equations have a similar form to solution-

diffusion models, which also can be seen in works [46, 74-

75]. However, as mentioned in the previous review [1], the 

principal difference is in the nature of the transport 

coefficients, which are determined by the different 

conceptions of the active layer structure. Unfortunately, 

due to the low number of publications in the considered 

period, the making of a detailed review of the parameters 

of the preferentially sorption pore flow model does not 

seem possible. 

For the evaluation of the selectivity the concertation in 

permeate may be used. It can be calculated by the 

equation [73-75]: 

 ( )s s m pJ B C C= −  (49) 

Also, in work [73], the recovery ratio, which was 

determined as the permeate and feed ratio, was calculated:   

 ·100%P

f

Q
R

Q
=  (49) 

 

 

 

Figure 6 – The distribution of the pore flow based model in 

chosen publications 

This model was complemented by the balance 

equations [73] and the optimization methods [74-75]. It 

was primarily used for the description of seawater 

desalination [74-76] and industrial effluent purification 

[73, 77], and also for the determinations of the 

characteristics and internal structure of the membrane [46]. 

This model was also used for the analysis of the hybrid 

system [76]. 

Also, in a few works, the surface force-pore flow model 

was found. This model considers the separate pore, which 

dimensions are characterized by the dimensionless 

coordinates [78-79]: 

 
w

r

R
 =  (51) 

 
z

 =


 (52) 

where r is the cylindrical coordinate perpendicular to 

the pore wall; Rw is the pore radius; z is the cylindrical 

coordinate parallel to the pore axis; τ is the average pore 

length. 

Taking this into account, the differential equation 

describing the velocity profile in pores can be written in a 

form [78-79]: 

 
( ) ( ) ( ) ( )2

2 2 3 3

2

1 2 2

1 1d d P

dd

        −   
+ + − −   
        

  

 
( )

( ) ( )
1

1 1
1

b

 
− −   +         

  

 
( ) ( )

( )( )

3

2

1 ·

1 exp ,0 0
exp 1

k
  

−   
   + −  =

   −  −   
  

 (53) 

Preferential sorption-
capillary flow (Kimura–
Sourirajan) model
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The physical meaning of the parameters in the equation 

(51) is described in detail in works [78-79].   

The boundary conditions herewith are following [78-

79]: 

 ( ) 0 at 1  =  =  (54) 

 
( )

0 at 0
d

d

 
=  =


 (55) 

The solution of the equation (51) allows to represent the 

solvent and solute fluxes in a form [78-79]: 

 
2

A

AB

N
X

 
=  

 
  

 
( ) ( )

( ) ( ) ( )

1

2 3

2

0

· ·

exp 1

k

b

−    +    −  
  +  

    −  −   
   

 ( )( )exp ,0 d −     (56) 

 ( )
1

0

2
B

AB

N CRT d
X

 
=     

 
  (57) 

The solute concentration in permeate can be calculated 

by the equation [78-79]: 

 

1

1

3

3

1A

l
C C CRT

l

−

 
= + 

 
 (58) 

Moreover, in work [80] the following equation for the 

rejection coefficient calculation was proposed: 

 
( ) ( )

1
1 1 exp Pe

c

c

K
R

K


= −

− − −
 (59) 

where Pe is the Peclet number.  

In contrast with previous models, the surface force-pore 

flow model is complex and requires complex solution 

methods without visualization, the distinctive for the CFD 

methods. This determined the narrow range of this model 

application which was only used for the description of the 

ground waters purification from pesticides [80].   

Also, in work [81] for the description of the pressure 

driven membrane processes including RO the Hagen-

Poiseuille equation was considered: 

 ( ) ( )2 21

4

dp
u r R r

dx
= − −


 (60) 

However, this approach is more suitable for the 

simulation of the ultrafiltration and microfiltration.  

Despite that, the models of this class take into account 

both diffusive and convective transport through the 

membrane, in work [82], the analytical solution-diffusion 

pore-flow model was presented. Also, in work [83] the 

similarity of the processes in the membrane with 

convective heat transfer was considered. However, that 

approaches were used rarely. 

3.4 Computational fluid dynamics based models 

As mentioned in work [1], the flow conditions have a 

significant influent on the operation of the processes 

during membrane separation, including mass transfer, 

concentration polarization, and fouling layers formation, 

the pressure drop in the membrane channels. Taking into 

account the critical importance of the hydrodynamic 

conditions not only for the membrane processes but for 

engineering in general, the development of the method for 

the mathematical description and analysis of the flow 

named computational fluid dynamics (CFD) is natural. 

The method itself is based on the mathematical description 

of the fluid flow, which includes the Navier-Stokes 

equation, the continuity equation, and the mass and energy 

conversation equation [84]. 

For the steady state laminar flow of the Newtonian fluid 

these equations can be written in a form: 

- the continuity equation [84]: 

 0
u v w

x y z

  
+ + =

  
 (61) 

- the Navier-Stokes equation [84]: 

 

2 2 2

2 2

1u u u P u u u
u v w

x x z x zx y

       
+ + = − + + +

       

 
 
 

 (62) 

 

2 2 2

2 2

1v v v P v v v
u v w

x x z x zx y

       
+ + = − + + +

       

 
 
 

 (63) 

 

2 2 2

2 2

1w w w P w w w
u v w

x x z x zx y

       
+ + = − + + +

       

 
 
 

 (64) 

- mass conversation equation [84]: 

 

2 2 2

2 2 2

C C C C C C
u v w D

x y z x y z

     
+ + = + +

     

 
 
 

 (65) 

In these equations: u, v, w are the velocity projections 

on the coordinate axes; P is the pressure; С is the solute 

concentration; ρ is the feed solution density; µ is the feed 

solution viscosity; D is the diffusivity. 

The equations are also represented in a similar way in 

works [85-97], including written for the two-dimension 

simplification [89, 91, 96], in the cylindrical coordinates 

[90], and matrix form [93]. Moreover, in works [93-94], 

the unsteady-state conditions were taken into account.   

However, the equations (61) – (65) due to their 

awkwardness are often written in an operator form with 

using of the differential operators, including the full 

derivative operator, the Hamilton operator, the Laplace 

operator etc., and also the rules of the vector and tensor 

analysis. In this case, the equations of the mathematical 

model of the fluid flow can be written in a form: 

- the Navier-Stokes equation [98]: 

 ( ) 2· 0u u P u  + − =  (66) 

- the continuity equation [98]: 
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 · 0u =  (67) 

- mass conversation equation [98]: 

 2 ·D C u C =   (68) 

The equations are written in a similar way, for example, 

in works [6, 99–126]. 

For accounting of the unsteady-state conditions these 

equations can be rewritten in a following way [127]: 

 ( )· 0u
t


+  =


 (69) 

 
( )

( ) ( )· ·
u

u u p u
t

 
+   = − + 


 (70) 

 ( ) ( )· ·
C

u C D C
t


+  =  


 (71) 

The similar equations are in works [128-129].  

Also, the equations are represented in the reviews [6-8].  

As it was mentioned above, equations (60)-(64) are 

suitable for the laminar flow. However, in the channels of 

the membrane apparatuses, there exist favorable 

conditions for turbulence development. Therefore, the 

models of flow are often supplemented by turbulence 

models. The k-ω and k-ε models are most widely used. The 

distribution between them is represented in Figure 7. 

The k-ε turbulence model operate by the terms of the 

specific turbulent kinetic energy k and the dissipation rate 

ε. The equations of this model are following [138]: 

 
2( ) eff

k eff

k

k
uk k S

t

   
+ =   +  + −  

    
 (72) 

 
( ) eff

k

k

u
t

   
+  =   +  +  

    
  

 

2

1 2C S C
k v


+  −

+ 
 (73) 

The physical meanings of the parameters in equations 

(72) and (73) are described in work [138].  

This model was also used, for example, in works [91, 

137, 139]. 

 

Figure 7 – The distributions of the main turbulence models in 

the chosen articles 

In contrast, the other model uses the value of the 

specific dissipation rate ω instead of ε. This model can be 

represented in a form [97]: 

 ( )
1 1i i

j t

j i j j

u uP
u

x x x x

   
= − +  + 

       

 (74) 

where the turbulent viscosity can be calculated by 

following equation [97]: 

 
( )

1

1 2max ;
t

a k

a F
 = 

 
 (75) 

The equations for calculations of the k and ω values 

according this model are following [97]: 

 
( )

( )*

1j ij k t

j j j

k k
u k

x x x

    
=  −  + +  

    

 (76) 

 
( ) 2k uiu j ij t
x x x xj t j j j
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  =  − + +  +        

  

 ( )1 2

1
2 1

j j

k
F

x x


 
+  − 

  
 (77) 

This model was also used, for example, in works [85-

88, 97, 126]. 

Since the equations of models are differential, the 

starting and boundary conditions are needed for the obtain 

the result. These conditions strongly depend from the 

geometrical and physical conditions of the considered 

process, for example, for the equations (61) – (65) for the 

case of the fluid flow in the spiral wound membrane 

channel with the spacer in work [84] the following 

boundary conditions were applied:    

- inlet boundary conditions: 

 0 ; ; 0
i

m
C C u v w

A
= = = =


 (78) 

- membrane boundary conditions: 

 ; 0mC C u v w= = = =  (79) 

- filament boundary conditions: 

 0; 0
C

u v w
n


= = = =


 (80) 

- symmetry face boundary conditions: 

 0; 0
C u v w

z z z z

   
= = = =

   
 (81) 

- outlet boundary condition: 

 0P P=  (82) 

Also, the boundary conditions are described in details, 

for example, in works 89-90, 92, 109, 117, 127-132, 134, 

140], and also in the review work [8]. 

k-ω

k-ε
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Due to the complexity of the equations described above, 

the mathematical models should be solved by numerical 

methods, mainly by using specialized software. In work 

[1], it was noticed, that for the case of RO, the most widely 

used commercial software included ANSYS FLUENT and 

ANSYS CFX, however, in the considered period, the 

range of applied software was wider. The distribution of 

them in chosen publications is shown in figure 8. Since the 

ANSYS software is still the most widely used, it is 

reasonable to consider the ratio between the main 

algorithms (FLUENT and CFX) that are shown in figure 

9. Thus, the ANSYS FLUENT was most widely used, in 

particular, in works [90-91, 95-96, 107, 110, 116, 118, 124, 

126-127. 133, 137-139, 141-145]. The ANSYS CFX was 

applied to a lesser extent, for example in works [85-88, 93, 

113, 128-131, 134, 146-147, 121]. Moreover, the ANSYS 

was used without pointing out the algorithm in works [84, 

99, 121, 123]. Among the other software un should be 

noticed the wide range of applications of COMSOL 

Multiphysics, for example, in works [98-99, 101-106, 111-

112, 119, 122-123, 148], and open-source product 

OpenFOAM [92, 94, 114, 132, 135, 137]. 

The other software, including MATLAB [102, 104, 

117], ROSA [149-151], NUMECA [152], MUSUBI [153], 

was used rarely. Also, in work [154], it was carried out the 

analysis of the possibility of applying the RO seawater 

desalination by the commercial systems CORMIX, 

VISUAL PLUMES, and VISJET. Meanwhile, the popular 

engineering system SolidWorks was not used almost. Only 

in work [121], the geometry was created in this system, 

whereas the calculations were carried out in ANSYS.     

 

Figure 8 – The application of the software for the RO 

simulations   

 

Figure 9 – The application of the algorithms of the ANSYS 

software for RO simulation   

In some works, namely [23, 89, 97, 100, 108-109, 140, 

155-157], it was not pointed out the applied software or 

mentioned that the algorithm of the mathematical model 

solution was designed independently. 

Taking into account the importance of the geometry of 

the channels for the simulation by the CFD method, great 

attention was dedicated to the module design. As in others 

approaches, the greatest number of researches were carried 

out for the spiral wound membrane modules, in particular 

in works [6, 23, 84, 88, 98, 101, 104, 106, 110, 112-114, 

117, 121, 141, 149, 151, 155-157]. In this case, it should 

be noticed, that in work [149] it was declared that the 

influence of the channel curvature is significant and the 

neglect of this factor can lead to a significant mistake. At 

the same time, the channels of the spiral wound membrane 

modules were conditionally rolled out into the plane, in 

particular in works [6, 88-89, 104]. Also, in a significant 

number of works the hollow fiber modules were 

considered [86, 106, 116, 121, 125-126, 137, 139], 

whereas the plate and frame modules were considered in a 

lesser number of the researches [91, 108-109]. The same 

situation is observed for the tubular modules [127, 137], 

and also for the multichannel ceramic modules [124] and 

similar designs [152]. Also, in some works the original 

designs were considered including rotating [90, 142] and 

test and lab cells [98, 135, 143]. The works, in which the 

patterned [111] and corrugated [97] membrane surface, 

should be noticed individually. 

Taking into account the importance of the spiral wound 

modules and the correspondingly large number of studies, 

it was expected, that a large number of the investigations 

by CFD methods were dedicated to the influence of 

spacers on the process performance. Thus, in work [147], 

the important parameters, which impact the process, were 

pointed out. They include the angle between the spacer 

filament, the spacer thickness, and the filament placement 

in the channel. In some works, for example [92, 141, 144, 

155] the commercial spacers designs were considered. 

Also, it should be noticed, that in works [87, 92, 95] the 

spacer filament was considered cylindrical, and in work 

[144] it was considered with the elliptical cross-section. 

Therefore, along with this, it should be pointed out the 

works [104[ and [105], in which the real geometry of the 

spacer was determined by the microscope measurements 

and X-ray computer tomography and reproduced in the 

CFD programs. Moreover, in the result of the comparison 

with the ideal geometry, in work [104] it was mentioned, 

that the cylindrical form of the spacer filament is a good 

approximation, whereas in work [105] it was pointed out 

the possible inaccuracies (in particular the overestimation 

of the pressure drop), which can be obtained without 

taking into account the real geometry of spacer filament. 

The comparison of the wound and non-wound spacers was 

another direction of the investigations, as was shown in 

works [84, 103, 153]. In this case, in work [103], it was 

pointed out, that the wound geometry has advantages, 

while in work [153] it was shown the bigger pressure drop 

in the channel with the wound spacers. Great attention was 

dedicated to the spacer filament placement by the channel 

width, in particular in works [96, 100, 114, 119, 129, 134]. 

ANSYS

ROSA

Comsol
Multiphysics
MATLAB

OpenFOAM

Ansys
Fluent

ANSYS CFX
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At that, in most cases, it was pointed out, that the pest 

results were obtained for the zigzag placement of the 

filament. The influence of the angle between spacers was 

investigated in works [87-88, 106, 145, 155-157]. In work 

[1] it was pointed out, that the determination of the optimal 

angles is still debatable. The result of the consideration of 

the mentioned publication confirms this statement. In 

contrast with the previous period, in 2011-2020, it was 

proposed a large number of novel spacer designs, in 

particular in many studies the design with the different 

thicknesses of the filament between the spacer nodes, in 

particular in works [99, 101, 102, 112, 113, 118]. Also, it 

was proposed the sinusoidal spacer design [123] and the 

design with the screw thread on the filament [107]. Despite 

the benefits of the proposed designs, there are some doubts 

about the possibility of realizing these geometrical forms 

for the manufacturing of the real spacers taking into 

account their real thickness. The same doubts are also 

related to the original design of the hollow fibers with the 

specific cross-section, with was described in the work 

[116]. These doubts are appearing from the accounting of 

the results of the comparison of the real and ideal 

geometry, carried out in works [104-105]. Moreover, in 

work [148] it was also pointed out the significant influence 

of the deviations from ideal geometry for the multibore 

polymer membrane modules. It also should be noticed the 

application of the multilayer spacers [121, 130]. The novel 

designs of the spacers were also considered in the review 

[8].   

In works using the CFD method, the separation process 

for which the simulation is carried out is not often pointed 

out, however, in most cases, this is about the desalination 

processes [85-87, 101, 108-109, 152].   

In general, the mathematical simulation of the RO using 

CFD methods, as was predicted in work [1], is intensively 

developing and, likely, in the near future, will remain the 

most effective and widely used. 

3.5 Artificial neural networks based models 

In work [1], among the novel approaches except the 

CFD methods, the artificial neuron networks (ANN) were 

considered. Such systems are built by analogy with the 

architecture of the biological nervous systems, which 

mainly consist of simple nerve cells or neurons, which 

work in parallel for the simplification of quick decisions. 

Similarly, the neuron networks are made from a large 

number of primitive processing elements, which are 

organized in a massive parallel set. Then, in the neuron 

networks the artificial connections (synapses), connect 

these elements. They are characterized by the set of the 

weight coefficients, which could be updated in the learning 

proves [79, 158-160]. Thus, the artificial neuron networks 

are the computational method for comparing the input and 

output data from the process be the nonlinear regression 

model. The ANN method has the ability to analyze the 

relationship between input and output data based on the 

functions of the biological neuron networks, as mentioned 

above. The simple architecture of the ANN includes three-

layer namely, input, hidden, and output. The input signal 

received from an external source is multiplied by the 

mentioned above weight coefficients. When the result of 

the multiplication exceeds the threshold, the signal would 

be released and sent to the output depending on the ANN 

activation function. In this respect, three stages, namely 

training, testing, and validating, with several 

computational operations are applied to achieve the 

desired goal through ANN [161].    

The advantages of the simulations using the ANN 

include [160]: (1) the ability of the simulation of complex 

relationships, which is impossible for the models based on 

conventional mathematical methods; (2) in many cases the 

ANN has higher accuracy than conventional mathematical 

models; (3) the ANN can be adapted with new data and 

modernized with them; (4) the best combination of the 

design parameters in the ANN can be obtained by the trial 

and error method. 

In each stage of the ANN, the main computational 

operation has the following form [161]: 

The equations of the output signal for any hidden or 

output layer are determinated by the following 

equations [161]: 

 ( )1

1

1
i n

i i

i

a W X b
=

=

= +  (83) 

 ( )2 1

1

2
j k

j

j

a W a b
=

=

= +  (84) 

where a1, a2 are the output signals of the first and second 

layer correspondingly; X is input parameter; W and b are 

the weight coefficients and bias, correspondingly [161].   

The activation function is used for the data 

normalization in range [0 -1] and [-1 1], which is discrete 

or continuous in a form of sigmoid [161]: 

 ( )
1

1 s
f s

e−
=

+
 (85) 

or in a form of the hyperbolic tangent: 

 ( ) ( ) ( )/s s s sf s e e e e− −= − +  (86) 

s is the value of the input parameter. The network may 

ne linear on nonlinear in the activation function [161]: 

 
1 if 0

1 otherwise

s
f


= 

−
 (87) 

The normalization equation has following form [161]: 

 ( )min

max min

0.8
0.1i is d d

d d
= − +

−
 (88) 

dmin, dmax and di are minimum, maximum and i value of 

the input/output data correspondingly. The predicted or 

target equation can be represented in a form [161]: 

 2 1

1 1

j k i n

j i i

j i

Y f W f W X
= =

= =

  
=   

  
   (89) 

Y is predicted output value. The weight matrices are 

calculated by applying an error back-propagation method. 
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The accuracy of the weight coefficient depends on the 

minimal error (E) of the output {z(k); 1 ≤ k ≤ K} on the 

learning stage and calculated using the sum of the square 

error [161]: 

 ( ) ( ) ( )
2 2

1 1

K K

k k

E e k d k z k
= =

= = − =          

 ( ) ( )( )
2

1

K

x

k

d k f W k
=

 = −   (90) 

where  xW  is the weight matrices;  x  is input vector; 

and d is desired target value. 

In general, there are three criteria used for the 

evaluation of the ANN performance, namely coefficient of 

correlation (r), mean square error, and mean absolute error 

[162]. 

The ANN are especially effective when it is difficult to 

develop mechanistic models [161].  

In some works, the ANN were used together with other 

methods, in particular with the solution-diffusion model 

[158, 163], the surface force-pore flow model [79], the 

CFD methods [164], and also with the surface response 

methodology [166]. Moreover, in work [79], it was 

noticed, that the ANN predictions were more accurate than 

the surface force-pore flow model ones. Also. The ANN 

were applied for consideration of the systems with a high 

level of fouling [167-168], moreover, in work [168], it was 

mentioned that mechanistic models oversimplify the 

fouling phenomena. 

In most cases, the ANN methods of simulation were 

used for the analysis of the desalination processes [158, 

160, 162, 166, 168-169] and the water and wastewater 

treatment [161, 163, 165, 167]. 

In general, during 2011-2020, ANN were used for the 

RO process simulation in a limited range. The likely 

reason for this is the high enough level of the development 

of mechanistic models, in particular, the suitability of the 

CFD methods for these purposes. The ANN and be used 

the most effectively in systems with a high level of fouling 

[167-168] or systems with nonconventional energy 

sources [163, 169].   

3.6 Molecular dynamics based models 

In addition to the CFD and ANN methods, the 

molecular dynamics (MD) methods are a relatively new 

approach to the RO process. As in the case of CFD, this 

method is based on the numerical solution of the Newton 

equations of motion, but on the molecular level [10]. 

The concept of classical molecular dynamics is based 

on Newtonian mechanics. According to the second 

Newton law, the relationship among the mass, 

acceleration, and force excreted to the particle i is 

described by the equations [10]: 

 
2

2

i

i i i i

d r
F m a m

dt
= =  (91) 

where mi is the particle mass; ai is the acceleration; Fi is 

the force excreted to the particle; ri is the distance between 

particles; t is the time. 

The Newtonian force also can be expressed in a form of 

the gradient of the potential energy [10]: 

 ( )
( )N

i i i

i

U r
F U r

r


= − = −


 (92) 

Using the relationships, represented by equations (90) 

and (91), it is possible to obtain the trajectories for all 

atoms, which are described by the successive positions, 

velocities, and momenta. These trajectories become the 

initial data for the prediction of the bulk properties of the 

systems, with further conations to the physical 

phenomena [10]. 

Insight the determined system, the pair of atoms are in 

interaction, irrespective of that they are bounded or 

separated by the distance. These interactions formed the 

basis of the simulation by the MD method. From this force, 

the equation for the potential energy can be obtained for 

the description of the stretching, vibrations, and rotation of 

the particles around the bounds as a result of the 

intermolecular force. This equation can be represented in 

the following way [10]:   

 total bond angle dihedralU U U U= + + +   

 VdW Coulomb externalU U U+ + +  (93) 

The values Ubond, Uangle and Udihedral take into account 

the stretching, bending, and torsion, which take place in 

atoms, correspondingly. On the other hand, the values  

UVdW and UCoulomb describe the non-bounded interactions. 

Moreover, the van der Waal’s forces have origin in the 

weak force existing for the non-bounded atoms, whereas 

the UCoulomb is used for the description of the electrostatic 

interactions, which are caused by electrostatic interactions. 

The last term of the total potential energy Uexternal takes into 

account the external forces, applied to the system. In the 

investigation of the RO process, the main external force is 

the applied pressure [10]. 

The protentional energy of the intermolecular 

interaction also can be described by the following 

equation [171, 172]: 
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 (94) 

where rij is the distance between particles i and j; qi and 

qj are the patiale charges of the i and j; εij and σij are 

empirical Lennard-Jones parameters. 

The MD method has an advantage, which consists of 

the ability to achieve the temporal and spatial solutions 

which are difficultly available by experimental 

investigations. For example, the solutions are possible for 

the dimension less than Angstrom and the periods of time 

less than a femtosecond [173].  

Taking into account that the considered approach 

requires large volumes of calculations, the necessity of the 
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special software application is evident. For the MD 

methods realization of the many software packages, 

algorithms, and codes. In particular, for the RO 

simulations the following software was used: Visual 

Molecular Dynamics (VMD) [171-172, 174-178], 

Nanoscale Molecular Dynamics (NAMD) [171-172, 174-

175, 179-180], Groningen Molecular Simulation package 

(GROMACS) [176-178, 181-183], Chemistry at Harvard 

Molecular Mechanics (CHARMM) [172, 175-176, 184], 

Large-scale Atomic/Molecular Massively Parallel 

Simulator (LAMMPS) [185-187], Materials Studio [181, 

188-191], especially Amorphous Cell package of Material 

Studio software [192-193], Assisted Model Building and 

Energy Refinement (AMBER) [180, 192-195], Optimized 

Potential for Liquid Simulations (OPLS-AA) [181-182], 

Condensed-phased-optimized Molecular Potential for 

Atomistic Simulation Studies (COMPASS) [188, 190], 

DL_POLY [194-195]. The data about such software 

developers and more detailed pieces of information about 

its application are represented in the review work [11].  

During the simulation by MD methods, statistical 

techniques were used, including the Monte-Carlo method 

[174, 192-194] and surface response methodology [189]. 

A more detailed description of the MD methods is 

represented in the review work [10].   

Taking into account the features of the method, during 

its application special attention was dedicated to the 

membrane material. In many works, conventional 

materials, such as polyamides [11, 175, 179, 184, 187, 190, 

192-195], sulfonated diamine [189], and polyether 

sulphones [181], were considered. At the same time, a 

significant number of publications were dedicated to the 

use of membrane manufacturing such novel materials as 

graphene [9, 182, 187, 196] and graphene oxide [178, 

197]. Also, the considered method was used for the 

analysis of the performance of the membrane made using 

the carbon [172, 176, 196, 198] and aluminosilicate [185], 

nanoporous carbon [199], boron nitride [171, 200], 

fullerite [188], and MoSe2 [177]. It should be noticed that 

in work [188] it was claimed that the fullerite membranes 

have the higher flux than the graphene and conventional 

membranes, and in work [177], it was declared that the 

flux of the productivity of the proposed membranes is who 

orders of magnitude higher than the commercially 

available membrane one.     

In most cases, the investigation was dedicated the water 

treatment [175-176, 180, 190-191, 194-195, 199, 201], 

including desalination [11, 177, 182-185, 187-188, 192-

193, 196-197, 200] and the heavy metal ions removal [171-

172, 178].    

3.7 Optimization and process control 

In work [1], it was noticed that the determination of the 

optimal condition and processes control are the important 

practical application of the mathematical simulation of the 

pressure driven membrane processes, including RO. The 

large number of publications dedicated to these questions 

in the period from 2011 to 2020 completely confirm this 

statement. 

Also, in work [1] it was noticed, that the optimization 

problem consists in finding the most beneficial values of 

the operation parameters. The important factor of the 

successive optimization procedure includes the choice of 

the target function and the optimization criterion. As in 

20200-2010, in the considered period in most works 

authors used the economical optimization criteria, 

primarily the minimization of costs [49, 61, 74-75, 202-

217], and also the minimization of the energy 

consumption, which is the significant part of the 

operational cost [27, 38, 49, 66, 73, 204-205, 219-228]. 

Also, the economic criteria included the profit 

maximization [229-230], and the minimization of the cost 

factor, which in work [231] was determined as the ratio of 

the water price and energy price in a hybrid system with 

reverse osmosis and pressure retarded osmosis. The main 

technological parameters for optimization included 

maximization of the removal of the component from 

solution 27, 36, 38, 63, 200, 221, 232-233], minimization 

of the concertation [234], maximizing of the permeate 

concertation [35], maximizing of the recovery ratio [235], 

maximizing of the productivity [236-237], and 

minimization of the applied pressure [36]. The other 

direction of the optimization involved the minimization of 

the fouling level [238] and the minimization of the 

environmental impact [230]. In the set of works, 

multiobjective optimization was applied [239-240]. 

In many works, the optimization was carried out based 

on the conventional mathematical models described in 

previous chapters. In particular, the solution-diffusion 

model was the most widely used [35-36, 38, 61, 66, 75, 

204, 209, 214, 218, 221, 241]. Also, it was applied the 

Kedem-Katchalsky model [205, 219], Spiegler-Kedem 

model [27], Kimura-Surirajan [73], the surface force-pore 

flow model [78], and also the molecular dynamics models 

[200]. Moreover, the factor experiment method and other 

regression and statistical methods were applied [212, 228, 

232, 235, 243-244]. The questions of the optimal control 

and processes control were considered in the works [220, 

236-237, 245-248]. 

For the optimization problem solution, a large number 

of methods and algorithms can be used. In the considered 

researches the most widely used methods included the 

nonlinear programming [35, 49, 61, 74-75, 204-211, 218, 

222, 229-230], the generic algorithm [28, 38, 237, 241-

242], the particle swarm method [202, 247, 250], the 

sequential quadratic programming [219, 233], the surface 

response methodology [232], the pattern search algorithm 

[251], the harmony search algorithm [66], and the bees 

algorithm [213]. The work [216] should be pointed out, 

since in it the nineteen optimization algorithms were 

considered and compared. 

For the solution of the considered optimization 

problems the wide range of the software and programing 

languages was applied including Matlab [73, 203, 250, 

252], gPROMS [63, 218, 235], GAMS [49, 209, 211, 246, 

254], Design–Expert [232], ASPEN [214], ChemCAD 

[215], ROSA [206-207], Modelica [219], C++ [36, 38], R 

[244]. 
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As in the most considered RO simulation methods, the 

optimization was applied mainly for the analysis of the 

water treatment processes, primarily the seawater and 

brackish water desalination [49, 61, 66, 73-75, 200, 202-

203, 206-210, 212-217, 219-227, 229, 234-235, 237-240, 

242, 244-246, 248-250, 251-255], the potable water 

production from ground waters [256-257], the wastewater 

treatment [230-231, 238, 258], and recycling [211], and 

also the ultrapure water production [259]. In some works, 

it was considered the special pollutant removal including 

chlorophenol [36, 204, 233, 243], N-nitrosamine [27, 63], 

arsenic [205], boron [218] and bentazon [232]. Except for 

the water treatment, the concentration of the apple juice 

[35] and the maple syrup [228] was also considered. 

The optimization methods appear to be effective for the 

analysis of the hybrid systems performance, in which the 

RO was combined with thermal distillation [214-215, 

241], forward osmosis [238], pressure retarded osmosis 

[219, 229, 231], and forward osmosis and electrodialysis 

[224]. The other important direction was the optimization 

of the system with renewable energy sources [216, 260], 

including solar [202, 216, 253] and wind [216] energy.       

It should be noticed, that the application of the 

optimization methods can give a significant economic 

effect, for example, it was noticed the achievement of 

decreasing of energy consumption by 16% in work [227], 

the decreasing operational cost by 26% in work [209], and 

the economy of the 27 % of the annual costs of the obtained 

product in work [211].   

3.8 Energy analysis 

It was mentioned above that energy consumption is a 

significant part of the operative costs during RO 

exploration. In the period from 2010 to 2020, a large 

number of articles dedicated to calculations and analysis 

of the energy parameters of RO were published, therefore, 

it is reasonable to consider this direction in general terms. 

Mainly, the energy analysis of the RO systems was 

based on the mass and energy balances [43, 228, 261-266], 

theoretical calculations of the specific energy consumption 

[43, 228, 261-266], the exergy analysis [15, 43, 241-242, 

263, 265, 275, 286-290], the pinch-analysis [292], and the 

calculations of the thermodynamical effectivity [293-294].  

It should be noticed that, in many cases, the energy and 

exergy balances were written for the full set-up rather than 

RO apparatuses.  At that the RO can be combined with 

energy recovery systems (including pressure exchangers 

and turbines) [276, 288-289, 290], Rankin cycle [296], 

internal combustion engine [269], electrodialysis [268, 

270], distillation [262-263, 282, 290-291], humidification-

dehumidification [43], membrane distillation [278, 298], 

forward and pressure retarded osmosis [278, 299], 

photovoltage system [264], and capacitive deionization 

[284]. 

As in the case of the optimization, the grate attention 

was dedicated to renewable energy sources including solar 

energy [262-264, 272-273, 275, 289, 293, 297, 301-303], 

wind energy [267, 287, 262-263, 301-302, 304], and also 

tidal energy [266, 272]. 

As in all previous cases, the high effectiveness of the 

analysis was achieved via the application of specialized 

software and programming languages. For the energy 

analysis such means as ROSA [150, 265, 272, 295, 300], 

Matlab [261, 295], ASPEN [205], Visual Design Software 

[288], WAWE [305], EES [289], and R [244] were widely 

used. 

In most cases, the desalination processes were 

considered. Also, in many works, the significant 

economical effect was pointed out. For example, in work 

[287] on the results of the exergo-economic analysis, the 

authors managed to find a way of decreasing energy 

consumption by 24%. In works [288] a similar analysis 

shows that the application of the turbine allows to decrease 

the energy consumption by 49%, and the application of the 

pressure exchanger – by 77. In work [289]. It was shown 

that application of the Pelton turbine allows for recovery 

of 24% of the consumed energy.   

3.9 Economic analysis 

During consideration of most approaches, especially 

optimization and energy analysis, it was pointed out that 

the economic parameters have significant importance for 

the performance analysis of the RO systems. Therefore, it 

is reasonable also to consider in general terms the 

economic methods of the analysis of the considered 

process. 

Except optimization [202, 204-205, 231, 241] and 

energoeconomic analysis [205, 230, 241, 266-270, 280, 

285-287, 306], the economical models included the 

determination of the relationship for calculation of the 

capital cost (CAPEX) [55, 204-205, 234, 230, 266, 268, 

270, 280, 286, 297, 300, 307-317], operating costs (OPEX) 

[55, 204-205, 209, 230, 234, 266, 280, 300, 307, 309-318], 

and product price [268, 274, 280, 297-298, 302, 306-307, 

314, 319-324]. Among other parameters the profit [325], 

cost saving coefficient [319], cost factor [231], and water 

price index [326] can be pointed out. In certain works, the 

simplified economic balance [327] and socio-economic 

evaluation [328] were considered. 

The other joint characteristic of the investigation based 

on economic analysis with ones based on optimization and 

energy analysis is the significant number of works 

dedicated to hybrid systems and systems with renewable 

energy sources. In particular, the hybrid systems RO-

distillation were considered in works [55, 230, 241, 307-

308, 314-315], and the works [321, 241, 300, 309, 311] 

were dedicated to the systems RO-FO and RO-PRO. The 

other hybrid systems including electrodialysis [270, 310], 

crystallization [268, 270], and power plant [55, 274]. 

Among the alternative energy sources, the most attention 

was dedicated to solar energy [202, 297, 302, 308, 320-

321, 328]. Wind energy [302, 306], tidal energy [266], and 

geothermal energy [314] were also considered.     

Among the software, in works dedicated to the 

economic analysis of the RO systems, it was mentioned 

ROSA [231, 266, 324], COMFAR III [323], and ESS 

[324]. 

As in all other approaches to the RO simulation, in most 

cases, the application of RO for the seawater and brackish 
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waters desalination [55, 202, 209, 234, 241, 266-270, 274, 

280, 287, 297, 302, 306-309, 311-312, 314, 317-324] was 

considered. In addition, the questions about wastewater 

treatment [298, 300, 310, 315-316, 327], including the 

removal of certain pollutants such as chlorophenol [204] 

and arsenic [205], were regarded.   

4 Discussion 

In certain works, the other approaches, which cannot be 

related to the described above groups, were applied. Those 

models can be based on the empirical data (both with and 

without combination with conventional models) [329-

336], the mass and energy balances [337-341], the Monte-

Carlo method [342-344], the concentration polarization 

models [345-347] and osmotic pressure [348], the 

boundary layer theory [349], the dynamic modeling [350], 

the materials flow analysis [351], the risk and fault 

analysis [352-353], the numerical methods [354], the 

chemical kinetics and equilibrium [355], or its 

combinations [356]. However, such investigations were 

low numerous and it does not seem possible to define some 

of them as perspectives.  

It should also be noted, that in some works for the RO 

description the extended Nernst-Plank equation [358-359] 

and the Donnan equilibrium [359] were used, however, 

such approaches are conventionally used for the NF, as 

was shown in work [1], Moreover, the special software 

(such as ROSA or Q+), which was widely used for the 

analysis of the economical and energy paraments of RO 

systems, can be also used for the simulation of the 

technological parameters and system design, as it was 

realized, for example, in works [340, 360-365].   

5 Conclusions 

The technological, energetic, and economic advantages 

of the reverse osmosis process in conjunction with the 

benefits of the mathematical simulation determined the 

considerable spread of this type of investigation. 

Therefore, it is natural, that the stable trend increasing in 

the number of publications dedicated to the reverse 

osmosis simulation is observed. The analysis of 

publications about this question in the period from 2011 to 

2020 allows also traces the main direction and the 

advantages and disadvantages of the main approaches to 

the RO simulations. 

Thus, the number of publications dedicated to the 

application of the CFD methods for the mathematical 

simulation of RO appears to be the largest. The increasing 

computational power of computer equipment and the 

development of specialized software, including the 

appearance the open-source programs, are the evident 

reasons for this. It is logical to assume, that the same 

factors promoted the significant increase in the application 

of the molecular dynamics methods in comparison with the 

previous decade. Such a trend allows us to conclude, that 

these two approaches will remain the most widely used in 

the near future. The main advantages of this method 

consist in the possibility to obtain a deep understanding of 

the processes which take place in the membrane apparatus 

(CFD) or in the membrane itself and on its surface (MD). 

They also allow us to determine the influence of the large 

number of factors affecting the process and, therefore, the 

productivity and effectiveness of separation. However, the 

simulation using these methods requires the application of 

more complex and cumbersome calculation methods, and 

also a high level of skills of operation in corresponding 

software. 

On the other hand, the published results indicate that the 

interest of the researchers and engineers in hybrid systems, 

in which the RO is combined with other processes, mostly 

with distillation, forward osmosis, and renewable energy 

sources increased significantly. For the simulations of such 

systems, it is reasonable to apply the simulation techniques 

which require simpler calculation methods. It was quite 

unexpected that, for these purposes, the solution-diffusion 

model was used in the widest range. In the considered 

period it was used both for the direct RO simulation and 

for the optimization, energy and economic analysis, and 

even as boundary conditions in CFD investigation. 

At the same time, the application of the irreversible 

thermodynamics methods, pore flow based models, and 

other diffusion based models was limited and, likely, 

further these models will be used mainly for the specific 

processes analysis. Also, the application of artificial 

neuron networks was limited, which probably is due to the 

fact that the possibility of the mechanistic model 

construction is relatively high for the case of RO. In these 

conditions, the ANN will be the most effective in systems 

that are significantly complicated by concentration 

polarization and fouling. 

Therefore, based on the current review it is possible to 

choose the strategy for the simulation of the RO system. It 

also should be noticed that represented in the current 

review the analysis of the software applied for the reverse 

osmosis simulation, would be useful for educational 

purposes.   
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