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Our work is to study the bending behavior of sandwich beams with functional gradient by constituting 

an isotropic material whose material properties vary smoothly in the z direction only (FGM), where the 

central layer presents purely a homogeneous and isotropic ceramic. The mechanical properties of FG 

sandwich beams are assumed to be progressive in thickness according to a power law (P-FGM). Generally, 

the principle of virtual works is used to obtain the equilibrium equations, and their solutions are obtained 

based on Navier's solution technique. The present model is based on a shear deformation theory of 2D and 

3D beams which contains four unknowns to extract the equilibrium equations of FG sandwich beams. In 

addition, analytical solutions for bending are used and numerical models are presented to verify the accu-

racy of the present theory. All the results obtained show that the stiffness of the FG beam decreases as a 

function of the increase in the volume fraction index k, leading to an increase in the deflections. However, 

FG beams become flexible by increasing the proportion of the metal to the ceramic part. Furthermore, the 

influences of material volume fraction index, layer thickness ratio, side-to-height ratio, and the effect of the 

phase contrast, on the deflections, normal and shear stress of simply supported sandwich FG beams are 

taken into investigation and discussed in detail. Finally, all our results obtained are in agreement with 

other previous theoretical works. 
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1. INTRODUCTION 
 

Sandwich beams are a structural element composed 

of a two-sided layer and a core. Due to its low weight 

and high stiffness, this type of structural member has 

been widely used in several industries [1]. 

Functionally graded materials (FGM) are a class of 

composites in which the properties of the material grad-

ually change over one or more Cartesian directions [1, 2], 

the combination of which results in an assembly with 

higher performance than components taken separately 

[2], FGMs are widely used in many scientific and engi-

neering fields, such as aerospace, automobile, electron-

ics, optics, chemistry, biomedical engineering, nuclear 

engineering and mechanical engineering [3]. By gradual-

ly varying the volume fractions of the constituents, the 

mechanical properties of FGM exhibit a smoothly and 

continuously change from one surface to the other, thus 

distinguishing them from laminated composite materi-

als, which have a mismatch of mechanic properties 

across in interface due to two discrete materials bonded 

together [4]. The last two decades there has been consid-

erable research reports on thermal stresses, fracture, 

thermo-mechanical response, buckling, free vibration of 

FGM structural elements [5]. Sobhy [6] studied thermo-

mechanical bending and free vibration analyses of sin-

gle-layered graphene sheets embedded in an elastic 

foundation based on sinusoidal shear deformation plate 

theory. Based on the local model, Bourada et al. [7] pre-

sented buckling analysis of functionally graded plates by 

employing a novel higher-order shear deformation theo-

ry (HSDT).  Sankar [8] developed a beam theory similar 

to simple Euler-Bernoulli beam theory for functionally 

graded beams with elastic properties to vary exponen-

tially and evaluated thermal stresses. Mantari et al. [9] 

developed an analytical solution for the bending behav-

ior of FGPs using a trigonometric based HSDT. Kettaf et 

al. [10] examined the thermal buckling response of FG 

sandwich plates by proposing a new model of hyperbolic 

displacement. The present theory is employed to extract 

the equilibrium equations of the FG sandwich beams. 

Analytical solutions for bending are obtained. Numerical 

examples are presented to verify the accuracy of the 

present theory. 

 

2. FUNCTIONALLY GRADED SANDWICH BEAM 
 

A functionally graded sandwich beam of length L, 

width b, and thickness h is shown in Fig. 1. The face 

layers of the FG sandwich beam are made of an iso-

tropic material with material properties varying 

smoothly in the z direction only (FGM). The core layer is 

made of an isotropic homogeneous material (ceramic). 

The material properties of the FGM sandwich beam, 

such as Young’s modulus (E) and mass density (q), are 

assumed to be continually graded through the thick-

ness direction according to the following well-known 

rule of mixture [11]: 

http://jnep.sumdu.edu.ua/index.php?lang=en
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http://sumdu.edu.ua/
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Fig. 1 – Geometry and coordinates of the FG sandwich beam 
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The volume fraction of the FGMs is assumed to obey 

a power law function along the thickness direction: 
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where k is the volume fraction index, which indicates 

the variation profile of the materials through the 

thickness. V(n) (n  1, 2, 3) denotes the volume fraction 

function of layer n, P(z) represents the effective materi-

al property such as Young’s modulus E, Poisson’s ratio 

ν and mass density ρ. 

 

3. KINEMATICS 
 

The displacement field of the FGM beams according 

to the high order theory is written in the following 

form: 
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u0, w0, θ, and z are the four unknown displacements of 

the mid-plane of the beam. By considering that 

( / ),dx A x   the integrals defined in the above 

equations should be solved by Navier's method and the 

displacement field can be rewritten as: 
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with: 
2 21/ ,A K    , 

 

where f(z) is the shape function describing the shear 

deformation through the thickness. Forms of the shape 

function f(z) are given as follows: 
 

   2( ) 1 (4 / 3) /f z z z h  . (3.3) 

 

The strain components are related to the displace-

ments are given by: 
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Linear constitutive relations of the FG sandwich 

beam can be expressed as: 
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where: 
 

 

 

 

2
( ) ( ) ( ) ( )
11 33

( ) ( ) ( )
13 11

( ) ( ) ( )
55

( ) /1 ,

,

( ) / 2 1 .

n n n n

n n n

n n n

Q Q E z

Q Q

Q E z







  



 

 (3.7) 

 

4. VARIATIONAL FOMULATION 
 

The governing equations of equilibrium can be de-

rived by using the principle of virtual displacements. 

The principle of virtual work in the present case yields: 
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The variation of the deformation energy U of the 

beam can be stated as: 
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where Nxx, Mxx, Pxx, Nzz and Qxz are the stress result-

ants defined as: 
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The variation of the potential energy Uq by the ap-

plied transverse load q can be written as: 
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(4.5) 

 

By replacing the expressions of δU and δUq by equa-

tions (4.3), (4.5) in equation (4.1) and integrating parts 

of space by collecting coefficients of δu0, δw0, δθ and δφz, 

we obtain the following equations of equilibrium of the 

beam: 
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By substituting equations (3.4) and (3.5) into equa-

tion (3.6), and the subsequent results into equation 

(4.4), the constituent equations for the stress resultants 

are obtained as: 
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4.1 Equations of Equilibrium in Terms of  

Displacements 
 

Substituting the stress resultants (4.7) into equa-

tion (4.6), the equations of equilibrium can be ex-

pressed in terms of displacements (u0, w0, θ, φz) as: 
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4.2 Analytical Solution for Simply Supported 

FGM Sandwich Beams 
 

The above equations (4.9) are solved analytically for 

bending problems. The Navier solution is used to de-

termine the analytical solutions for a simply supported 

beam. The solution is assumed to be of the form: 
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where   mπ/l, Un, Wn, Xn and n are unknown dis-

placement coefficients. The transverse load q is also 

expanded in the double-Fourier sine series as [12]: 
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where Qn is the load amplitude calculated from 
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For uniform load q0, coefficients Qn are given as 
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Substituting extensions of u, w, θ, φ and q of equa-

tions (4.10) and (4.11) into equations (4.9), the analyti-

cal solutions can be obtained from the following equa-

tions: 
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5. RESULTS AND DISCUSSIONS 
 

5.1 Validation Study 
 

In this section, a number of numerical examples are 

analyzed to verify the accuracy of present study and 

investigate the bending of FG sandwich beams. 

The FG sandwich beams are constituted by a mix-

ture of isotropic ceramic (Al2O3) and metal (Al). The 

material properties of Al2O3 are Ec  380 GPa, νc  0.3, 

and those of Al are: Em  70 GPa, νm  0.3. 

For bending analysis, a beam subjected to a sinus-

oidal load is considered. For convenience, the following 

dimensionless forms are utilized [13]: 
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Table 1 and Table 2 present the comparison of the 

deflection, axial and tangential stresses obtained from 

the present beam theory. They are calculated for vari- 

ous values of the power-law index, various values of 

skin-core-skin thickness ratios and compared with the 

solutions obtained from HSBT Osofero et al. [14], TSDT 

Thanh Trung et al. [15], and quasi-3D theory Thuc P. 

Vo et al. [16]. 

The results presented in Table 1 and Table 2 show 

that the same accuracy is achievable with the present 

theory than other shear theories, as can be seen. 
 

Table 1 – Comparison of non-dimensional deflections and non-dimensional normal stresses of simply supported sandwich FG 

beam for different values of volume fraction exponent k and layer thickness ratio (length-to-thickness ratio L/h  20) z  0 
 

k Theory 
non-dimensional deflections w  non-dimensional normal stresses x 

1-1-1 2-2-1 2-1-2 1-8-1 1-1-1 2-2-1 2-1-2 1-8-1 

0 

Osofero [14] 2.896 2.896 2.896 2.896 14.988 14.988 14.988 14.988 

Thanh Tr [15] 2.896 2.896 2.896 2.896 15.030 15.030 15.030 15.030 

  Present 2.896 2.896 2.896 2.896 15.012 15.012 15.012 15.012 

1 

Osofero [14] 5.940 5.516 6.584 3.679 5.672 4.925 6.288 3.510 

Thanh Tr [15] 5.942 5.518 6.587 3.680 5.693 4.943 6.310 3.521 

  Present 5.940 5.515 6.583 3.679 5.684 4.936 6.301 3.513 

2 

Osofero [14] 8.031 7.207 9.285 4.017 7.673 6.273 8.874 3.832 

Thanh Tr [15] 8.035 7.211 9.292 4.017 7.702 6.297 8.908 3.845 

  Present 8.031 7.208 9.288 4.017 7.691 6.288 8.893 3.8345 

5 

Osofero [14] 10.837 9.412 12.756 4.394 10.360 7.990 12.197 4.193 

Thanh Tr [15] 10.844 9.417 12.765 4.395 10.400 8.022 12.242 4.208 

  Present 10.838 9.412 12.756 4.394 10.383 8.010 12.222 4.198 

10 

Osofero [14] 12.159 10.453 14.137 4.577 11.626 8.788 13.519 4.368 

Thanh Tr [15] 12.167 10.458 14.149 4.578 11.670 8.823 13.568 4.384 

  Present 12.159 10.452 14.136 4.558 11.650 8.809 13.546 4.3621 
 

Table 2 – Comparison of non-dimensional (deflections, normal and shear stresses of simply supported sandwich FG beam for 

different values of volume fraction exponent and layer thickness ratio k (length-to-thickness ratio L/h  20) z  0 
 

k Theory 
deflections w  normal stresses x  Shear stress τ 

1-1-1 1-2-1 2-1-1  1-1-1 1-2-1 2-1-1  1-1-1 1-2-1 2-1-1 

0 
Thuc [16] 2.8947 2.8947  15.0125 15.0125 15.0125 0.7432  0.7432 0.7432 

Present 2.8973 2.8973 2.8973 15.0128 15.0128 15.0128 0.7481 0.7481 0.7481 

1 
Thuc [16] 5.9364 5.0975 6.1810 5.6845 4.8797 5.4955 0.8657  0.8193 0.9166 

Present 5.9417 5.1017 6.1941 5.6844 4.8796 5.4805 0.8712 0.8245 0.9196 

2 
Thuc [16] 8.0262 6.4235 8.4572 7.6904 6.1526 7.3220 0.9316  0.8556 1.0212 

Present 8.0331 6.4288 8.4975 7.6905 6.1527 7.2850 0.9377 0.8610 1.0229 

5 
Thuc [16] 10.8309 8.1589 11.2886 10.3824 7.8185 9.5498 1.0194  0.8986 1.1826 

Present 10.8406 8.1662 11.3979 10.3824 7.8186 9.4925 1.0266 0.9045 1.1840 

10 
Thuc [16] 12.1519 9.0413 12.4206 11.6500 8.6655 10.4346 1.0736  0.9214 1.2969 

Present 12.1629 9.0500 12.5675 11.6502 8.6656 10.3799 1.0814 0.9276 1.2994 

 

5.1. Parametric Study 
 

Fig. 2a, b present the influence of phase contrast on 

the non-dimensional deflections of simply supported 

sandwich FG beams for different values of volume frac-

tion exponent k. We note that non-dimensional deflec-

tions become larger for smaller k (w111  36.5867 and 

w101  29.2856 at k  0.5), where Em is in the majority 

and Ec is zero. The increase in Ec has a direct influence 

on non-dimensional deflections, up to Ec  Em where the 

ratio Ec/Em = 1 which presents a point of deviation from 

non-dimensional deflections which becomes smaller for 

lower k. Non-dimensional deflections are inversely pro-

portional to the Ec/Em ratio (smaller w for larger Ec/Em). 

The shema has a very slight influence on w depending 

on the Ec/Em ratio. On the other hand, for a larger ce-

ramic interlayer, the non-dimensional deflections are 

larger for an Ec/Em  0 ratio. 

The non-dimensional deflections decrease as the 

middle layer decreases for different k. After Ec is more 

important compared to Em, the non-dimensional deflec-

tions are inversely modified for different arrow, where 

the results are almost identical for k  0.5, and they are 

slightly increased at k  2 (Fig. 2c). 
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Fig. 2 – Influence of phase contrast on the non-dimensional 

deflections of simply supported sandwich FG beams for diffe-

rent values of exponent k 
 

Fig. 3a, b presents the influence of length-to-thick-

ness ratio L/h on the non-dimensional deflections of 

simply supported sandwich FG beams for different 

values of Ec/Em, k  2. It is clearly observable that non-

dimensional deflections are larger for k  0.5 at 

L/h  10. However, the non-dimensional deflections 

decrease with increasing length-to-thickness (L/h) 

where the slope becomes almost zero after L/h  40. On 

the other hand, the value of the Ec/Em ratio has a sig-

nificant influence on the value of non-dimensional de-

flections, where w is greater for Ec/Em smaller. 

In Fig. 3c, the w121  38.7423 presents the highest 

value at L/h  10 for Ec/Em  0.5, this value is very 

slightly decreased for the other types of FG beam 

sandwich. Also, the w decreases with larger L/h for all 

beam types. The ratio Ec/Em  5 has a major effect on 

the value of w, where they have the same tendency as 

with Ec/Em  0.5 but with inverted values of w, where 

w101  22.6223 presents the highest value. Finally, we 

find that the difference in the values of non-dimen-

sional deflections is larger throughout length-to-thick-

ness ratio L/h for different types of FG beam sandwich 
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Fig. 3 – Influence of length-to-thickness ratio L/h on the non-

dimensional deflections of simply supported sandwich FG 

beams for different values of Ec/Em, k  2 
 

with a larger Ec/Em ratio (Fig. 3c). The case studies of 

the change in volume fraction index from 0 to 9, we 

graph the bending of the sandwich beam as shown in 

Fig. 4a, b, where we see that when increasing the vol-

ume index k, the non-dimensional maximum deflec-

tions of the sandwich will increase, as increasing vol-

ume fraction index means increasing the ceramic con-

tent, whereas ceramic has a Young’s modulus higher 

than metal, so the beam will be stiffer, and the non-

dimensional maximum deflections must increase. 
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Fig. 4 – Variation of non-dimensional transverse deflection w with respect to the volume fraction index k for FG sandwich beams 
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6. CONCLUSIONS 
 

In the present paper, we present the bending of 

simply supported FGB using different types of FG 

sandwich beams. The present method is based on a 2D 

and 3D beams shear deformation theory that contains 

four unknowns. The effect of the volume fraction index, 

the beam length-to-thickness ratio and the phase con-

trast on the beam bending behavior is examined and 

found to be very important. The conclusions are sum-

marized as follows: 

 Increasing of the volume fraction index k will re-

duce the stiffness of the FG beams, and consequently, 

leads to an increase in the deflections. This is due to 

the fact that higher values of volume fraction index k 

correspond to high portion of metal in comparison with 

the ceramic part, thus makes such FG beams more 

flexible. 

 The arrow w is inversely proportional with the 

Ec/Em and L/h ratios, where the values of deflections 

are maximum respectively for k  0.5 and Ec/Em close to 

zero. 

 The arrow deflections decrease as the length L in-

creases with respect to the thickness h. 

 The thickness of the ceramic layer has a signifi-

cant influence on the deflection value w. 

 All our results are in good agreement with other 

published results, including Osofero A.I. et al., Thuc P. 

V. et al., Thanh Trung et al. 
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