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1 UNITS, PHYSICAL QUANTITIES, AND VECTORS 

Physics is one of the most fundamental sciences. Scientists of all disciplines use the ideas of 

physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct 

how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and 

oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-

screen TV, a prosthetic leg, or even a better mousetrap without first understanding the basic laws of 

physics. 

The study of physics is also an adventure. You’ll find it challenging, sometimes frustrating, 

occasionally painful, and often richly rewarding. If you have ever wondered why the sky is blue, how 

radio waves can travel through empty space, or how a satellite stays in orbit, you can find the answers by 

using fundamental physics. You’ll come to see physics as a towering achievement of the human intellect 

in its quest to understand our world and ourselves.  

In this opening chapter, we’ll go over some important preliminaries that we’ll need throughout our 

study. We’ll discuss the nature of physical theory and the use of idealized models to represent physical 

systems. We’ll introduce the systems of units used to describe physical quantities and discuss ways to 

describe the accuracy of a number. We’ll look at examples of problems for which we can’t (or don’t want 

to) find a precise answer, but for which rough estimates can be useful and interesting. Finally, we’ll study 

several aspects of vectors and vector algebra. We’ll need vectors throughout our study of physics to help 

us describe and analyze physical quantities, such as velocity and force, that have direction as well as 

magnitude.  

 

 

1.1 The Nature of Physics 
 

Physics is an experimental science. Physicists observe the phenomena of nature and try to find 

patterns that relate these phenomena. These patterns are called physical theories or, when they are very 

well established and widely used, physical laws or principles. 

CAUSION! The meaning of “theory”: A theory is not just a random thought or an unproven 

concept. Rather, a theory is an explanation of natural phenomena based on observation and accepted 

fundamental principles. An example is the well-established theory of biological evolution, which is the 

result of extensive research and observation by generations of biologists. 

To develop a physical theory, a physicist has to ask appropriate questions, design experiments to 

try to answer the questions, and draw appropriate conclusions from the results. 

The development of physical theories often takes an indirect path, with blind alleys, wrong 

guesses, and the discarding of unsuccessful theories in favor of more promising ones. Physics is not 

simply a collection of facts and principles; it is alsothe process by which we arrive at general principles 

that describe how the physical universe behaves. 

No theory is ever regarded as the ultimate truth. It’s always possible that new observations will 

require that a theory be revised or discarded. Note that we can disprove a theoryby finding behavior that 

is inconsistent with it, but we can never prove that a theory is always correct. 

 

 

1.2 Solving Physics Problems 

At some point in their studies, almost all students find themselves thinking, “I understand the 

concepts, but I just can’t solve the problems”. But in physics, truly understanding a concept means being 

able to apply it to a variety of problems. Learning how to solve problems is absolutely essential; you 

don’t know physics unless you can do physics. 

How do you learn to solve physics problems? In every chapter of this book, you’ll find Problem-

Solving Strategies that offer techniques for setting up and solving problems efficiently and accurately. 

Following each Problem-Solving Strategy are one or more worked Examples that show these techniques 

in action. The Problem-Solving Strategies will also steer you away from some incorrect techniques that 

you may be tempted to use. You’ll also find additional examples that aren’t associated with a particular 
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Problem-Solving Strategy. In addition, at the end of each chapter, you’ll find a Bridging Problem that 

uses more than one of the key ideas from the chapter. Study these strategies and problems carefully, and 

work through each example for yourself on a piece of paper. 

Different techniques are useful for solving different kinds of physics problems, which is why this 

book offers dozens of Problem-Solving Strategies. No matter what kind of problem you’re dealing with, 

however, there are certain key steps that you’ll always follow. These same steps are equally useful for 

problems in math, engineering, chemistry,and many other fields. In this book we’ve organized these steps 

into four stages of solving a problem. 

All of the Problem-Solving Strategies and Examples in this book will follow these four steps. In 

some cases we’ll combine the first two or three steps. We encourage you to follow these same steps when 

you solve problems yourself. You may find it useful to remember the acronym ISEE — short for Identify, 

Set up, Execute, and Evaluate. 

 

 

PROBLEM-SOLVING STRATEGY 

1.1 Solving Physics Problems 

 

 

IDENTIFY the relevant concepts: 

 

• Use the physical conditions stated in the problem to help you decide which physics 

concepts are relevant. 

• Identify the target variables of the problem — that is, the quantities whose values you’re 

trying to find, such as the speed at which a projectile hits the ground, the intensity of a sound made by a 

siren, or the size of an image made by a lens. 

• Identify the known quantities, as stated or implied in the problem. This step is essential 

whether the problem asks for an algebraic expression or a numerical answer. 

 

 

SET UP the problem: 

 

• Given the concepts, known quantities, and target variables that you found in the 

IDENTIFY step, choose the equations that you’ll use to solve the problem and decide how you’ll use 

them. Study the worked examples in this book for tips on how to select the proper equations. If this seems 

challenging, don’t worry — you will get better with practice! 

• Make sure that the variables you have identified correlate exactly with those in the 

equations. 

• If appropriate, draw a sketch of the situation described in the problem. (Graph paper and a 

ruler will help you make clear, useful sketches). 

 

 

EXECUTE the solution: 

 

• Here’s where you’ll “do the math” with the equations that you selected in the SET UP step 

to solve for the target variables that you found in the IDENTIFY step. Study the worked examples to see 

what’s involved in this step. 

 

 

EVALUATE your answer: 

 

• Check your answer from the SOLVE step to see if it’s reasonable. (If you’re calculating 

how high a thrown baseball goes, an answer of 1.0 mm is unreasonably small and an answer of 100 km is 

unreasonably large). If your answer includes an algebraic expression, confirm that it correctly represents 

what would happen if the variables in it had very large or very small values. 
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• For future reference, make note of any answer that represents a quantity of particular 

significance. Ask yourself how you might answer a more general or more difficult version of the problem 

you have just solved.  

 

 

Idealized Models 

 

In everyday conversation we use the word “model” to mean either a small-scale replica, such as a 

model railroad, or a person who displays articles of clothing (or the absence thereof). In physics a model 

is a simplified version of a physical system that would be too complicated to analyze in full detail. 

For example, suppose we want to analyze the motion of a thrown baseball (Fig. 1.1a).How 

complicated is this problem? The ball is not a perfect sphere (it has raised seams),and it spins as it moves 

through the air. Air resistance and wind influence its motion, the ball’s weight varies a little as its altitude 

changes, and so on. If we try to include all these effects, the analysis gets hopelessly complicated. Instead, 

we invent a simplified version of the problem. We ignore the size, shape, and rotation of the ball by 

representing it as a point object, or particle. We ignore air resistance by making the ball move in a 

vacuum, and make the weight constant. Now we have a problem which is simple enough to deal with 

(Fig. 1.1b). We’ll analyze this model in detail in Chapter 3. We have to overlook quite a few minor 

effects to make an idealized model, but we must be careful not to neglect too much. If we ignore the 

effects of gravity completely, then our model predicts that when we throw the ball up, it will go in a 

straight line and disappear into space. A useful model simplifies a problem enough to make it 

manageable, yet keeps its essential features. 

The validity of the predictions we make using a model is limited by the validity of the model. For 

example, Galileo’s prediction about falling objects (see Section 1.1) corresponds to an idealized model 

that does not include the effects of air resistance. This model works fairly well for a dropped cannonball, 

but not so well for a feather. 

Idealized models play a crucial role throughout this book. Watch for them in discussions of 

physical theories and their applications to specific problems. 

 

 

 

Figure 1.1 - To simplify the analysis of (a) a baseball in flight, we use (b) an idealized model 

 

 

1.1  Standards and Units 
 

As we learned in Section 1.1, physics is an experimental science. Experiments require 

measurements, and we generally use numbers to describe the results of measurements. Any number that is 

used to describe a physical phenomenon quantitatively is called a physical quantity. For example, two 

physical quantities that describe you are your weight and your height. Some physical quantities are so 

fundamental that we can define them only by describing how to measure them. Such a definition is called 

an operational definition. Two examples are measuring a distance by using a ruler and measuring a time 

interval by using a stopwatch. In other cases we define a physical quantity by describing how to calculate 

it from other quantities that we can measure. Thus we might define the average speed of a moving object 

as the distance traveled (measured with aruler) divided by the time of travel (measured with a stopwatch). 
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When we measure a quantity, we always compare it with some reference standard. When we say 

that a basketball hoop is 3.05 meters above the ground, we mean that this distance is 3.05 times as long as 

a meter stick, which we define to be 1 meter long. Such a standard defines a unit of the quantity. The 

meter is a unit of distance, and the second is a unit of time.When we use a number to describe a physical 

quantity, we must always specify the unit that we are using; to describe a distance as simply “3.05” 

wouldn’t mean anything. 

To make accurate, reliable measurements, we need units of measurement that do not change and 

that can be duplicated by observers in various locations. The system of units used by scientists and 

engineers around the world is commonly called “the metric system,” but since 1960 it has been known 

officially as the International System, or SI (the abbreviationfor its French name, Système 

International).  

 

 

Time 
 

From 1889 until 1967, the unit of time was defined as a certain fraction of the mean solar day, the 

average time between successive arrivals of the sun at its highest point in the sky.The present standard, 

adopted in 1967, is much more precise. It is based on an atomic clock, which uses the energy difference 

between the two lowest energy states of the cesium atom (133Cs). When bombarded by microwaves of 

precisely the proper frequency, cesium atoms undergo a transition from one of these states to the other. 

One second (abbreviated s) is defined as the time required for 9,192,631,770 cycles of this microwave 

radiation. 

 

 

Length 
 

In 1960 an atomic standard for the meter was also established, using the wavelength of theorange-

red light emitted by excited atoms of krypton (186Kr). From this length standard,the speed of light in 

vacuum was measured to be 299,792,458 m/s. In November 1983, the length standard was changed again 

so that the speed of light in vacuum was defined to be precisely 299,792,458 m/s. Hence the new 

definition of the meter (abbreviated m) is the distance that light travels in vacuum in 1/299,792,458 

second. This modern definition provides a much more precise standard of length than the one based on a 

wavelength of light. 

 

 

Mass 
 

Until recently the unit of mass, the kilogram (abbreviated kg), was defined to be the mass of a 

metal cylinder kept at the International Bureau of Weights and Measures in France. This was a very 

inconvenient standard to use. Since 2018 the value of the kilogram has been based on  

a fundamental constant of nature called Planck’s constant (symbol h), whose defined value  

h = 6.62607015 ×10-34 kg∙m2/s is related to those of the kilogram, meter, and second. Given the values of 

the meter and the second, the masses of objects can be experimentally determined in terms of h. (We’ll 

explain the meaning of h in Chapter 28). The gram (which is not a fundamental unit) is 0.001 kilogram. 

Other derived units can be formed from the fundamental units. For example, the units of speed are 

meters per second, or m/s; these are the units of length (m) divided by the units of time (s). 

 

 

Unit Prefixes 
 

Once we have defined the fundamental units, it is easy to introduce larger and smaller units for the 

same physical quantities. In the metric system these other units are related to the fundamental units (or, in 

the case of mass, to the gram) by multiples of 10 or 1/10. Thus one kilometer (1 km) is 1000 meters, and 

one centimeter (1 cm) is 1/100 meter. We usually express multiples of 10 or 1/10 in exponential notation: 

1000 = 103, 1/1000 = 10–3, and so on. With this notation, 1 km = 103 m and 1 cm = 10–2 m. 
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The names of the additional units are derived by adding a prefix to the name of the fundamental 

unit. For example, the prefix “kilo-,” abbreviated k, always means a unit larger by a factor of 1000; thus 

1 kilometer = 1 km = 103 meters = 103 m 

1 kilogram = 1 kg = 103 grams = 103 g 

1 kilowatt = 1 kW = 103 watts = 103 W 

 

 

1.4 Using and Converting Units 
 

We use equations to express relationships among physical quantities, represented by algebraic 

symbols. Each algebraic symbol always denotes both a number and a unit. For example, d might represent 

a distance of 10 m, t a time of 5 s, and a speed of 2 m/s. 

An equation must always be dimensionally consistent. You can’t add apples and automobiles; 

two terms may be added or equated only if they have the same units. For example, if an object moving 

with constant speed  travels a distance d in a time t, these quantities are related by the equation 

 d = t. 

If d is measured in meters, then the product t must also be expressed in meters. Using the above 

numbers as an example, we may write 

 ( )s5
s

m
2m10 








= . 

Because the unit s in the denominator of m/s cancels, the product has units of meters, as it must. In 

calculations, units are treated just like algebraic symbols with respect to multiplication and division. 

CAUTION! Always use units in calculations Make it a habit to always write numbers with the 

correct units and carry the units through the calculation as in the example above. This provides a very 

useful check. If at some stage in a calculation you find that an equation or an expression has inconsistent 

units, you know you have made an error. In this book we’ll always carry units through all calculations, 

and we strongly urge you to follow this practice when you solve problems.  

 

 

1.5 Uncertainty and Significant Figures 
 

Measurements always have uncertainties. If you measure the thickness of the cover of a 

hardbound version of this book using an ordinary ruler, your measurement is reliable to only the nearest 

millimeter, and your result will be 3 mm. It would be wrong to state this result as 3.00 mm; given the 

limitations of the measuring device, you can’t tell whether the actual thickness is 3.00 mm, 2.85 mm, or 

3.11 mm. But if you use a micrometer caliper, a device that measures distances reliably to the nearest 

0.01 mm, the result will be 2.91 mm. The distinction between the measurements with a ruler and with a 

caliper is in their uncertainty; the measurement with a caliper has a smaller uncertainty. The uncertainty 

is also called the error because it indicates the maximum difference there is likely to be between the 

measured value and the true value. The uncertainty or error of a measured value depends on the 

measurement technique used. 

We often indicate the accuracy of a measured value – that is, how close it is likely to be to the 

true value – by writing the number, the symbol  , and a second number indicating the uncertainty of the 

measurement. If the diameter of a steel rod is given as 56.47   0.02 mm, this means that the true value is 

likely to be within the range from 56.45 mm to 56.49 mm. In a commonly used shorthand notation, the 

number 1.6454(21) means 1.6454   0.0021. The numbers in parentheses show the uncertainty in the 

final digits of the main number. 

We can also express accuracy in terms of the maximum likely fractional error or percent error 

(also called fractional uncertainty and percent uncertainty). A resistor labeled “47 ohms   10 %" 

probably has a true resistance that differs from 47 ohms by no more than 10 % of 47 ohms -that is, by 
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about 5 ohms. The resistance is probably between 42 and 52 ohms. For the diameter of the steel rod given 

above, the fractional error is (0.02 mm)/(56.47 mm), or about 0.0004; the percent error is 

(0.0004)(100 %), or about 0.04 %. Even small percent errors can be very significant (Fig. 1.2). 

In many cases the uncertainty of a number is not stated explicitly. Instead, the uncertainty is 

indicated by the number of meaningful digits, or significant figures, in the measured value. We gave the 

thickness of the cover of the book as 2.91 mm, which has three significant figures. By this we mean that 

the first two digits are known to be correct, while the third digit is uncertain. The last digit is in the 

hundredths place, so the uncertainty is about 0.01 mm. Two values with the same number of significant 

figures may have different uncertainties; a distance given as 137 km also has three significant figures, but 

the uncertainty is about 1 km. A distance given as 0.25 km has two significant figures (the zero to the left 

of the decimal point doesn’t count); if given as 0.250 km, it has three significant figures. When you use 

numbers that have uncertainties to compute other numbers, the computed numbers are also uncertain. 

When numbers are multiplied or divided, the result can have no more significant figures than the factor 

with the fewest significant figures has. For example, 3.1416   2.34   0.58 = 4.3. When we add and 

subtract numbers, it is the location of the decimal point that matters, not the number of significant figures. 

For example, 123.62 + 8.9 = 132.5. Although 123.62 has an uncertainty of about 0.01, 8.9 has an 

uncertainty of about 0.1. So their sum has an uncertainty of about 0.1 and should be written as 132.5, not 

132.52. Table 1.2 summarizes these rules for significant figures. 

 

 
 

Figure 1.2 - This spectacular mishap was the 

result of a very small percent error - traveling a 

few meters too far at the end of a journey of 

hundreds of thousands of meters 

TABLE 1.1 - Using Significant Figures 

 

To apply these ideas, suppose you want to verify the value of  , the ratio of the circumference of 

a circle to its diameter. The true value of this ratio to ten digits is 3.141592654. To test this, you draw a 

large circle and measure its circumference and diameter to the nearest millimeter, obtaining 

 the values 424 mm and 135 mm. You enter these into your calculator and obtain the quotient  

(424 mm)/(135 mm) = 3.140740741. This may seem to disagree with the true value of  , but keep in 

mind that each of your measurements has three significant figures, so your measured value of   can have 

only three significant figures. It should be stated simply as 3.14. Within the limit of three significant 

figures, your value does agree with the true value. 

In the examples and problems in this book we usually give numerical values with three significant 

figures, so your answers should usually have no more than three significant figures. (Many numbers in 

the real world have even less accuracy. The speedometer in a car, for example, usually gives only two 

significant figures). Even if you do the arithmetic with a calculator that displays ten digits, a ten-digit 
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answer would misrepresent the accuracy of the results. Always round your final answer to keep only the 

correct number of significant figures or, in doubtful cases, one more at most.  

Here’s a special note about calculations that involve multiple steps: As you work, it’s helpful to 

keep extra significant figures in your calculations. Once you have your final answer, round it to the 

correct number of significant figures. This will give you the most accurate results. 

When we work with very large or very small numbers, we can show significant figures much 

more easily by using scientific notation, sometimes called powers-of-10 notation. The distance from the 

earth to the moon is about 384,000,000 m, but writing the number in this form doesn’t indicate the 

number of significant figures. Instead, we move the decimal point eight places to the left (corresponding 

to dividing by 108) and multiply by 108; that is, 

 

 384,000,000 m = 3.84   108 m.  

 

In this form, it is clear that we have three significant figures. The number 4.00   10-7 also has 

three significant figures, even though two of them are zeros. Note that in scientific notation the usual 

practice is to express the quantity as a number between 1 and 10 multiplied by the appropriate power of 

10. 

When an integer or a fraction occurs in an algebraic equation, we treat that number as having no 

uncertainty at all. For example, in the equation )( 0
2
0

2 2 xxaxxx −+= , which is Eq. (2.13) in Chapter 2, 

the coefficient 2 is exactly 2. We can consider this coefficient as having an infinite number of significant 

figures (2.000000…). The same is true of the exponent 2 in 2
x  and 2

0x . 

Finally, let’s note that precision is not the same as accuracy. A cheap digital watch that gives the 

time as 10:35:17 a.m. is very precise (the time is given to the second), but if the watch runs several 

minutes slow, then this value isn’t very accurate. On the other hand, a grandfather clock might be very 

accurate (that is, display the correct time), but if the clock has no second hand, it isn’t very precise. A 

high-quality measurement is both precise and accurate.  

 

 

1.6 Estimates and Orders of Magnitude 
 

We have stressed the importance of knowing the accuracy of numbers that represent physical 

quantities. But even a very crude estimate of a quantity often gives us useful information. Sometimes we 

know how to calculate a certain quantity, but we have to guess at the data we need for the calculation. Or 

the calculation might be too complicated to carry out exactly, so we make rough approximations. In either 

case our result is also a guess, but such a guess can be useful even if it is uncertain by a factor of two, ten, 

or more. Such calculations are called order-of-magnitude estimates. The great Italian-American nuclear 

physicist Enrico Fermi (1901–1954) called them “back-of-the-envelope calculations.” Even when they 

are off by a factor of ten, the results can be useful and interesting.  

 

 

1.7 Vectors and Vector Addition 
 

Some physical quantities, such as time, temperature, mass, and density, can be described 

completely by a single number with a unit. But many other important quantities in physics have a 

direction associated with them and cannot be described by a single number. A simple example is the 

motion of an airplane: We must say not only how fast the plane is moving but also in what direction. The 

speed of the airplane combined with its direction of motion constitute a quantity called velocity. Another 

example is force, which in physics means a push or pull exerted on an object. Giving a complete 

description of a force means describing both how hard the force pushes or pulls on the object and the 

direction of the push or pull. When a physical quantity is described by a single number, we call it a scalar 

quantity. In contrast, a vector quantity has both a magnitude (the “how much” or “how big” part) and a 

direction in space. Calculations that combine scalar quantities use the operations of ordinary arithmetic. 
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For example, 6 kg + 3 kg = 9 kg, or 4   2 s = 8 s. However, combining vectors requires a different set of 

operations. 

To understand more about vectors and how they combine, we start with the simplest vector 

quantity, displacement. Displacement is a change in the position of an object. Displacement is a vector 

quantity because we must state not only how far the object moves but also in what direction. Walking 3 

km north from your front door doesn’t get you to the same place as walking 3 km southeast; these two 

displacements have the same magnitude but different directions. 

We usually represent a vector quantity such as 

displacement by a single letter, such as A


 inFig. 1.3a. 

In this book we always print vector symbols in italic 

type with an arrow above them. We do this to remind 

you that vector quantities have different properties 

from scalar quantities; the arrow is a reminder that 

vectors have direction. When you handwrite a symbol 

for a vector, always write it with an arrow on top. If 

you don’t distinguish between scalar and vector 

quantities in your notation, you probably won’t make 

the distinction in your thinking either, and confusion 

will result. 

We always draw a vector as a line with an 

arrowhead at its tip. The length of the line shows the 

vector’s magnitude, and the direction of the 

arrowhead shows the vector’s direction. Displacement 

is always a straight-line segment directed from the 

starting point to the ending point, even though the 

object’s actual path may be curved (Fig. 1.3b). Note 

that displacement is not related directly to the total 

distance traveled. If the object were to continue past 

P2 and then return to P1, the displacement for the 

entire trip would be zero (Fig. 1.3c). If two vectors 

have the same direction, they are parallel. If they 

have the same magnitude and the same direction, they 

are equal, no matter where they are located in space. 

The vector A


 from point P3 to point P4 in Fig. 1.4 

has the same length and direction as the vector A


 

from P1 to P2. These two displacements are equal, 

even though they start at different points. We write 

this as AA


=  in Fig. 1.4. Two vector quantities are 

equal only when they have the same magnitude and 

the same direction. 

Vector B


 in Fig. 1.4, however, is not equal to 

A


 because its direction is opposite that of A


. We 

define the negative of a vector as a vector having the 

same magnitude as the original vector but the opposite 

direction. The negative of vector quantity A


 is 

denoted as∙ A


− . If A


 is 87 m south, then A


−  is 87 m 

north. Thus we can write the relationship between 

A


−  and B


 in Fig. 1.4 as A


= B


−  or AB


−= . When 

two vectors A


 and B


 have opposite directions, 

whether their magnitudes are the same or not, we say that they are antiparallel. 

 
Figure 1.3 - Displacement as a vector quantity 

 

 
 

Figure 1.4 - The meaning of vectors that have the 

same magnitude and the same or opposite direction 
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We usually represent the magnitude of a vector quantity by the same letter used for the vector, but 

in lightface italic type with no arrow on top. For example, if displacement vector A


 is 87 m south,  

then A = 87 m. An alternative notation is the vector symbol with vertical bars on both sides: 

 

 (Magnitude of A


) = A = |A


| . (1.1) 

 

The magnitude of a vector quantity is a scalar quantity (a number) and is always positive. Note 

that a vector can never be equal to a scalar because they are different kinds of quantities. The expression  

" A


 = 6 m" is just as wrong as "2 oranges = 3 apples"! 

When we draw diagrams with vectors, it’s best to use a scale similar to those used for maps.  

For example, a displacement of 5 km might be represented in a diagram by a vector 1 cm long,  

and a displacement of 10 km by a vector 2 cm long.  

 

 

Vector Addition and Subtraction 

 

Suppose a particle undergoes a 

displacement A


 followed by a second displacement 

B


. Thefinal result is the same as if the particle had 

started at the same initial point and undergonea 

single displacement C


 (Fig. 1.5a). We call 

displacement C


 the vector sum, or resultant, of 

displacements A


 and B


. We express this 

relationship symbolically as 
 

 .BAC


+=  (1.2) 

 

The boldface plus sign emphasizes that 

adding two vector quantities requires a geometrical 

process and is not the same operation as adding two 

scalar quantities such as 2 + 3 = 5. In vector 

addition we usually place the tail of the second 

vector at the head,or tip, of the first vector 

(Fig. 1.5a). 

If we make the displacements A


 and B


 in 

reverse order, with B


first and A


 second, the result 

is the same (Fig. 1.5b). Thus 
 

ABC


+=  and .ABBA


+=+  (1.3) 

 

This shows that the order of terms in a 

vector sum doesn’t matter. In other words, vector 

addition obeys the commutative law. Figure 1.5c 

shows another way to represent the vector sum: If 

we draw vectors A


and B


 with their tails at the 

same point, vector C


 is the diagonal of a parallelogram constructed with A


 and B


 as two adjacent sides. 

 

 
 

Figure 1.5 - Three ways to add two vectors 
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CAUTION! Magnitudes in vector addition. It’s 

a common error to conclude that if BAC


+= , then 

magnitude C equals magnitude A plus magnitude B. In 

general, this conclusion is wrong; for the vectors shown 

in Fig. 1.5, BAC + . The magnitude of BA


+  depends 

on the magnitudes of A


 and B


 and on the angle between 

A


 and B


. Only in the special case in which A


 and B


 are 

parallel is the magnitude of BAC


+=  equal to the sum 

of the magnitudes of A


 and B


 (Fig. 1.6a). When the 

vectors are antiparallel (Fig. 1.6b), the magnitude of C


 

equals the difference of the magnitudesof A


 and B


. Be 

careful to distinguish between scalar and vector 

quantities, and you’ll avoid making errors about the 

magnitude of a vector sum.  

Figure 1.7a shows three vectors A


, B


, and C


. 

To find the vector sum of all three, in Fig. 1.7b we first 

add A


 and B


 to give a vector sum D


; we then add 

vectors C


 and D


 by the same process to obtain the 

vector sum R


: 

.)( CDCBAR


+=++=  

Alternatively, we can first add B


 and C


 to obtain vector E


 (Fig. 1.7c), and then add A


 and E


 to 

obtain R


: 

.)( EACBAR


+=++=  

We don’t even need to draw vectors D


 and E


; all we need to do is draw A


, B


, and C


 in 

succession,with the tail of each at the head of the one preceding it. The sum vector R


 extendsfrom the tail 

of the first vector to the head of the last vector (Fig. 1.7d). The order makes no difference; Fig. 1.7e 

shows a different order, and you should try others. Vector addition obeys the associative law. 

 

 

 
Figure 1.7 - Several constructions for finding the vector sum CBA


++  

 

We can subtract vectors as well as add them. To see how, recall that vector A


−  has the same 

magnitude as A


 but the opposite direction. We define the difference BA


−  of two vectors A


and B


 to be 

the vector sum of A


 and B


− : 

 

 )( BABA


−+=− . (1.4) 

 

 

 
 

Figure 1.6 - Adding vectors that are (a) parallel  

and (b) antiparallel 

 



16 

Figure 1.8 shows an example of vector subtraction. 

 

 
 

Figure 1.8 - To construct the vector difference BA


− , you can either place the tail of B


−  at the 

head of A


 or place the two vectors A


 and B


 head to head 

 

A vector quantity such as a displacement can be multiplied by a scalar quantity (an ordinary number). The 

displacement A

2  is a displacement (vector quantity) in the same direction as vector A


 but twice as long; 

this is the same as adding A


 to itself (Fig. 1.9a). In general, when we multiply vector A


 by a scalar c, the 

result Ac


 has magnitude Ac ||  (the absolute value of c multiplied by the magnitude of vector A


).  

If c is positive, Ac


 is in the same direction as A


;  

if c is negative, Ac


 is in the direction opposite to 

A


. Thus A

3  is parallel to A


, while A


3−  is 

antiparallel to A


 (Fig. 1.9b). 

A scalar used to multiply a vector can also 

be a physical quantity. For example, you may be 

familiar with the relationship amF


= ; the net 

force F


 (a vector quantity) that acts on an object is 

equal to the product of the object’s mass m  

(a scalar quantity) and its acceleration a


 (a vector 

quantity). The direction of F


 is the same as that of 

a


 because m is positive, and the magnitude of F


 

is equal to the mass m multiplied by the magnitude 

of a


. The unit of force is the unit of mass 

multiplied by the unit of acceleration. 

 

 

1.8 Components of Vectors 
 

In Section 1.7 we added vectors by using a 

scale diagram and properties of right triangles. But 

calculations with right triangles work only when 

the two vectors are perpendicular. So we need a 

simple but general method for adding vectors. This 

is called the method of components.  

To define what we mean by the components of a vector A


, we begin with a rectangular 

(Cartesian) coordinate system of axes (Fig. 1.10). If we think of A


 as a displacement vector, we can 

regard A


 as the sum of a displacement parallel to the x-axis and a displacementparallel to the y-axis. We 

use the numbers Ax and Ay to tell us how much displacement there is parallel to the x-axis and how much 

there is parallel to the y-axis, respectively. For example, if the +x-axis points east and the +y-axis points 

north, A


 in Fig. 1.10 could be the sum of a 2.00 m displacement to the east and a 1.00 m displacement to 

the north. Then Ax = +2.00 m and Ay = +1.00 m. We can use the same idea for any vectors, not just 

displacement vectors. The two numbers Ax  and Ay  are called the components of A


. 

 

 
Figure 1.9 - Multiplying a vector by a scalar 
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CAUTION! Components are not vectors.  

The components Ax and Ay of a vector A


 are numbers; 

they are not vectors themselves. This is why we print 

the symbols for components in lightface italic type 

with no arrow on top instead of in boldface italic with 

an arrow, which is reserved for vectors.  

We can calculate the components of vector A


 if 

we know its magnitude A and its direction. We’ll 

describe the direction of a vector by its angle relative 

to some reference direction. In Fig. 1.10 this reference 

direction is the positive x-axis, and the angle between 

vector A


 and the positive x-axis is    

(the Greek letter theta). Imagine that vector A


 
originally lies along the +x-axis and that you then 

rotate it to its true direction, as indicated by the arrow 

in Fig. 1.10 on the arc for angle  . If this rotation is from the +x-axis toward the +y-axis, as is the case in 

Fig. 1.10, then   is positive; if the rotation is from the +x-axis toward the –y-axis, then   is negative. 

Thus the +y-axis is at an angle of 90°, the –x-axis is at 180°, and the –y-axis is at 270° (or –90°). If   is 

measured in this way, then, from the definition of the trigonometric functions, 

 

= cos
A

Ax  and = sin
A

Ay
, 

 

 = cosAAx  and = sinAAy  (1.5) 

(measured from the +x-axis, rotating toward the +y-axis). 

 

In Fig. 1.10 Ax and Ay are positive. This is 

consistent with Eqs. (1.5);   is in the first quadrant 

(between 0° and 90°), and both the cosine and  

the sine of an angle in this quadrant are positive.  

But in Fig. 1.11a the component Bx  is negative and the 

component By  is positive. (If the +x-axis points east 

and the +y-axis points north, B


 could represent a 

displacement of 2.00 m west and 1.00 m north. Since 

west is in the –x-direction and north is in  

the +y-direction, Bx= –2.00 m is negative and  

By= +1.00 m is positive). Again, this is consistent with 

Eqs. (1.5); now   is in the second quadrant, so cos  

is negative and sin  is positive. In Fig. 1.11b both Cx  

and Cy  are negative (both cos  and sin  are negative 

in the third quadrant). 

CAUTION! Relating a vector’s magnitude 

and direction to its components. Equations (1.5) are 

correct only when the angle   is measured from the 

positive x-axis. If the angle of the vector is given from 

a different reference direction or you use a different 

rotation direction, the relationships are different!  
 

 

 

 

 
 

Figure 1.10 - Representing a vector A


 in terms of 

its components Ax and Ay 

 

 
Figure 1.11 - The components of a vector may 

be positive or negative numbers 
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Using Components to Do Vector Calculations 
 

Using components makes it relatively easy to do various calculations involving vectors. Let’s look 

at three important examples: finding a vector’s magnitude and direction, multiplying a vector by a scalar, 

and calculating the vector sum of two or more vectors. 

 

1  Finding a vector’s magnitude and direction from its components. We can describe a vector 

completely by giving either its magnitude and direction or its x- and y-components. Equations (1.5) show 

how to find the components if we know the magnitude and direction. We can also reverse the process: We 

can find the magnitude and direction if we know the components. By applying the Pythagorean theorem 

to Fig. 1.10, we find that the magnitude of vector A


: 
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yx AAA += . (1.6) 

 

(We always take the positive root). 

Equation (1.6) is valid for any choice of x-axis and y-axis as long as they are mutually 

perpendicular. The expression for the vector direction comes from the definition of the tangent  

of an angle. If   is measured from the positive x-axis, and a positive angle is measured toward  

the positive y-axis (as in Fig. 1.16), then  

 

 
x

y

A

A
=tan and 








=

x

y

A

A
arctan . (1.7) 

 

We’ll always use the notation arctan for the inverse tangent function. The notation tan–1 is also 

commonly used, and your calculator may have an INV or 2ND button to be used wih the TAN button. 

CAUTION! Finding the direction of a 

vector from its components. There’s one 

complication in using Eqs. (1.7) to find  : Any 

two angles that differ by 180° have the same 

tangent. For example, in Fig. 1.12 the tangent of 

the angle   is 1+== yx AA /tan . A calculator 

will tell you  

that =+= − 4511 )(tan . But the tangent of  

180° + 45° = 225° is also equal to +1, so   could 

also be 225° (which is actually the case in Fig. 

1.12). Always draw a sketch like Fig. 1.12 to 

determine which of the two possibilities is correct. 

 

2 Multiplying a vector by a scalar. If we 

multiply a vector A


 by a scalar c, each component 

of the product AcD


=  is the product of c and the 

corresponding component of A


: 

Dx= cAx, Dy= cAy (components of AcD


= ). (1.8) 

For example, Eqs. (1.8) say that each 

component of the vector A

2  is twice as great as the 

corresponding component of A


, so A

2  is in the 

same direction as A


 but has twice the magnitude. 

Each component of the vector A

3−  is three times 

 

Figure 1.12 - Drawing a sketch of a vector 

reveals the signs of its x- and y-components 
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as great as the corresponding component of A


 but has the opposite sign, so A

3−  is in the opposite 

direction from A


 and has three times the magnitude. Hence Eqs. (1.8) are consistent with our discussion 

in Section 1.7 of multiplying a vector by a scalar (see Fig. 1.9).  

 

3 Using components to calculate the vector sum (resultant) of two or more vectors. Figure 

1.13 shows two vectors A


 and B


 and their vector sum R


, along with the x- and y-components of all three 

vectors. The x-component Rxof the vector sum is simply the sum (Ax+ Bx) of the x-components of the 

vectors being added. The same is true for the y-components. In symbols 

 

 (1.9)
 

 

Figure 1.13 shows this result for the case in which the components Ax, Ay, Bx, and By  are all 

positive. Draw additional diagrams to verify for yourself that Eqs. (1.9) are valid for any signs of the 

components of A


 and B


. 

If we know the components of any two vectors A


 and B


, perhaps by using Eqs. (1.5), we can 

compute the components of the vector sum R


. Then if we need the magnitude and direction of R


, we can 

obtain them from Eqs. (1.6) and (1.7) with the A’s replaced by R’s. 

We can use the same procedure to find the sum of any number of vectors. If R


 is the vector sum 

of A


, B


, C


, D


, E


, …, the components of R


 are 

 

Rx= Ax + Bx + Cx + Dx + Ex + …, 

 

Ry= Ay+ By+ Cy+ Dy+ Ey+ ….           (1.10) 

 

We have talked about vectors that lie in the xy-plane only, 

but the component method works just as well for vectors 

having any direction in space. We can introduce a z-axis 

perpendicular to the xy-plane; then in general a vector A


 has 

components Ax, Ay, and Az in the three coordinate directions. 

Its magnitude A is 
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zyx AAAA ++= .                     (1.11) 

 

Again, we always take the positive root. Also,  

Eqs. (1.10) for the vector sum R


 have a third component: 

 

Rz= Az + Bz + Cz + Dz + Ez + …. 

 

We’ve focused on adding displacement vectors, but the 

method is applicable to all vector quantities. When we study the concept of force in Chapter 4, we’ll find 

that forces are vectors that obey the same rules of vector addition. 

 

 

 

  

 

 
 

Figure 1.13 - Finding the vector sum 

(resultant) of A


 and B


 using components 
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1.9 Unit Vectors       
 

A unit vector is a vector that has a magnitude of 

1, with no units. Its only purpose is to point—that is, to 

describe a direction in space. Unit vectors provide a 

convenient notation for many expressions involving 

components of vectors. We’ll always include a caret, or 

“hat” (^), in the symbol for a unit vector to distinguish it 

from ordinary vectors whose magnitude may or may not 

be equal to 1. 

In an xy-coordinate system we can define a unit 

vector dn that points in the direction of the positive x-

axis and a unit vector en that points in the direction of 

the positive y-axis (Fig. 1.14a). Then we can write a 

vector A


 in terms of its components as 

 

jAiAA yx
ˆˆ +=


.                           (1.12) 

 

Equation (1.12) is a vector equation; each term, 

such as iAx
ˆ , is a vector quantity (Fig. 1.14b). Using unit 

vectors, we can express the vector sum R


 of two vectors 

A


 and B


 as follows: 

 

      
jAiAA yx
ˆˆ +=


, jBiBB yx

ˆˆ +=


, 

 

      
.ˆˆˆ)(ˆ)( jRiRjBAiBABAR yxyyxx +=+++=+=



  

  
(1.13) 

 

Equation (1.13) restates the content of Eqs. (1.9) 

in the form of a single vector equation rather than two 

component equations. 

If not all of the vectors lie in the xy-plane, then 

we need a third component. We introduce a third unit 

vector k̂  that points in the direction of the positive z-

axis (Fig. 1.15). Then Eqs. (1.12) and (1.13) become 

 

kAjAiAA zyx
ˆˆˆ ++=


, kBjBiBB zyx

ˆˆˆ ++=


, (1.14) 

 

kRjRiRkBAjBAiBABAR zyxzzyyxx
ˆˆˆˆ)(ˆ)(ˆ)( ++=+++++=+=


.                   

(1.15) 

 

 

1.10 Products of Vectors 
 

We saw how vector addition develops naturally from the problem of combining displacements. It 

will prove useful for calculations with many other vector quantities. We can also express many physical 

relationships by using products of vectors. Vectors are not ordinary numbers, so we can’t directly apply 

ordinary multiplication to vectors. We’ll define two different kinds of products of vectors. The first, 

 

Figure 1.14 - (a) The unit vectors dn and en.  

(b) Expressing a vector A


 in terms of its 

components 

 

Figure 1.15 - The unit vectors î , ĵ , and k̂  
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called the scalar product, yields a result that is a scalar quantity. The second, the vector product, yields 

another vector. 

 

 

Scalar Product 
 

We denote the scalar product of two vectors A


 and B


 by BA


 . Because of this notation, the 

scalar product is also called the dot product. Although A


 and B


 are vectors, the quantity BA


  is a 

scalar. 

To define the scalar product BA


  we draw the two vectors A


 and B


 with their tails at the same 

point (Fig. 1.16a). The angle   (the Greek letter phi) between their directions ranges from 0° to 180°. 

Figure 1.16b shows the projection of vector B


 onto the direction of A


; this projection is the component 

of B


 in the direction of A


 and is equal to cosB . (We can take components along any direction that’s 

convenient, not just the x- and y-axes). We define BA


  to be the magnitude of A


 multiplied by the 

component of B


 in the direction of A


, or 

 

 
 

Alternatively, we can define BA


  to be the 

magnitude of B


 multiplied by the component of A


 in the 

direction of B


, as in Fig. 1.16c. Hence 

== cos)cos( ABABBA


, which is the same as 

Eq. (1.16). 

The scalar product is a scalar quantity, not a vector, 

and it may be positive, negative, or zero. When   is between 

0° and 90°, 0cos  and the scalar product is positive. When 

  is between 90° and 180° so 0cos , the component of B


 

in the direction of A


 is negative, and BA


  is negative. 

Finally, when   = 90°, 0=BA


. The scalar product of two 

perpendicular vectors is always zero. For any two vectors A


 

and B


, = coscos BAAB . This means that ABBA


= . 

The scalar product obeys the commutative law of 

multiplication; the order of the two vectors does not matter. 

We’ll use the scalar product in Chapter 6 to describe 

work done by a force. In later chapters we’ll use the scalar 

product for a variety of purposes, from calculating electric 

potential to determining the effects that varying magnetic 

fields have on electric circuits. 

 

 

Using Components to Calculate the Scalar Product 

 

We can calculate the scalar product BA


  directly if 

 
 

Figure 1.16 - Calculating the scalar 

product of two vectors, = cosABBA

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we know the x-, y-, and z-components of A


 and B


. To see how this is done, let’s first work out the scalar 

products of the unit vectors î , ĵ , and k̂ . All unit vectors have magnitude 1 and are perpendicular to each 

other. Using Eq. (1.16), we find 
 

 1011 ==== cosˆˆˆˆˆˆ kkjjii , 
 

 09011 ==== cosˆˆˆˆˆˆ kjkiji . (1.17) 

 

Now we express A


 and B


in terms of their components, expand the product, and use these 

products of unit vectors: 

 

 

.ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

)ˆˆˆ()ˆˆˆ(

kBkAjBkAiBkA

kBjAjBjAiBjA

kBiAjBiAiBiA

kBjBiBkAjAiABA

zzyzxz

zyyyxy

zxyxxx

zyxzyx

+++

++++

+++=

=++++=


 (1.18) 

 

From Eqs. (1.17) you can see that six of these nine terms are zero. The three that survive give 

 

 
 

Thus the scalar product of two vectors is the sum of the 

products of their respective components.  

The scalar product gives a straightforward way to find the angle 

  between any two vectors A


 and B


 whose components are 

known. In this case we can use Eq. (1.19) to find the scalar 

product of A


 and B


. 

 

 

Vector Product 

 

We denote the vector product of two vectors A


 and  

B


, also called the cross product, by BA


 . As the name 

suggests, the vector product is itself a vector. We’ll use this 

product in Chapter 10 to describe torque and angular 

momentum; in Chapters 27 and 28 we’ll use it to describe 

magnetic fields and forces. 

To define the vector product BA


 , we again draw the 

two vectors A


 and B


 with their tails at the same point  

(Fig. 1.17a). The two vectors then lie in a plane. We define the 

vector product to be a vector quantity with a direction 

perpendicular to this plane (that is, perpendicular to both A


 and 

B


) and a magnitude equal to AB sin  . That is, if BAC


= , then 

 

= sinABC .     (1.20) 

 
Figure 1.17 - The vector product  

of (a) BA


  and (b) AB


  
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We measure the angle   from A


 toward B


 and take it to be the smaller of the two possible 

angles, so f ranges from 0° to 180°. Then 0sin  and C in Eq. (1.20) is never negative, as must be the 

case for a vector magnitude. Note that when A


 and B


 are parallel or antiparallel,   = 0° or 180° and C = 

0. That is, the vector product of two parallel or antiparallel vectors is always zero. In particular, the 

vector product of any vector with itself is zero. 

CAUTION! Vector product vs. scalar product. Don’t confuse the expression sinAB  for the 

magnitude of the vector product BA


  with the similar expression cosAB  for the scalar product BA


 . 

To see the difference between these two expressions, imagine that we vary the angle between A


 and B


 

while keeping their magnitudes constant. When A


 and B


 are parallel, the magnitude of the vector 

product will be zero and the scalar product will be maximum. When A


 and B


 are perpendicular, the 

magnitude of the vector product will be maximum and the scalar product will be zero.  

There are always two directions perpendicular to a given plane, one on each side of the plane. We 

choose which of these is the direction of BA


  as follows. Imagine rotating vector A


 about the 

perpendicular line until A


 is aligned with B


, choosing the smaller of the two possible angles between A


 

and B


. Curl the fingers of your right hand around the perpendicular line so that your fingertips point in 

the direction of rotation; your thumb will then point in the direction of BA


 . Figure 1.17a shows this 

right-hand rule and describes a second way to think about this rule.  

Similarly, we determine the direction of AB


  by rotating B


 into A


 as in Fig. 1.17b. The result is 

a vector that is opposite to the vector BA


 . The vector product is not commutative but instead is 

anticommutative: For any two vectors A


 and B


, 

 

                       .ABBA


−=                        (1.21) 

 

 

Using Components to Calculate the Vector Product 

 

If we know the components of A


 and B


, we can 

calculate the components of the vector product by using a 

procedure similar to that for the scalar product. First we work out 

the multiplication table for unit vectors î , ĵ , and k̂ , all three of 

which are perpendicular to each other (Fig. 1.18a). The vector 

product of any vector with itself is zero, so 

 

 .0ˆˆˆˆˆˆ === kkjjii  

 

The boldface zero is a reminder that each product is a 

zero vector - that is, one with all components equal to zero and 

an undefined direction. Using Eqs. (1.20) and (1.21) and the 

right-hand rule, we find 

 

 ,ˆˆˆˆˆ kijji =−=  

 

 ,ˆˆˆˆˆ ijkkj =−=  (1.22) 

 

 
 

Figure 1.18 - (a) We’ll always use a 

right-handed coordinate system,  

like this one. (b) We’ll never use a 

lefthanded coordinate system  

(in which kji ˆˆˆ −= , and so on) 
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 .ˆˆˆˆˆ jkiik =−=  

Next we express A


 and B


 in terms of their components and the corresponding unit vectors, and 

we expand the expression for the vector product: 

  

         

.ˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆˆˆˆ

)ˆˆˆ()ˆˆˆ(

kBkAjBkAiBkA

kBjAjBjAiBjAkBiAjBiAiBiA

kBjBiBkAjAiABA

zzyzxz

zyyyxyzxyxxx

zyxzyx

+++

++++++=

=++++=


 (1.23) 

 

We can also rewrite the individual terms in Eq. (1.23) as )ˆˆ(ˆˆ jiBAjBiA yxyx = , and so on. 

Evaluating these by using the multiplication table for the unit vectors in Eqs. (1.22) and then grouping the 

terms, we get 

 

 kBABAjBABAiBABABA xyyxzxxzyzzy
ˆ)(ˆ)(ˆ)( −+−+−=


. (1.24) 

If you compare Eq. (1.24) with Eq. (1.14), you’ll see that the components of BAC


=  are 

 

 
 

CHAPTER 1: SUMMARY 

 Physical quantities and units: Three fundamental physical quantities are mass, length, and time. 

The corresponding fundamental SI units are the kilogram, the meter, and the second. Derived units for 

other physical quantities are products or quotients of the basic units. Equations must be dimensionally 

consistent; two terms can be added only when they have the same units. 

 Significant figures: The 

accuracy of a measurement can be 

indicated by the number of 

significant figures or by a stated 

uncertainty. The significant figures 

in the result of a calculation are 

determined by the rules summarized 

in Table 1.2. When only crude 

estimates are available for input data, 

we can often make useful order-of-

magnitude estimates 

 

 Scalars, vectors, and vector 

addition: Scalar quantities are 

numbers and combine according to 

the usual rules of arithmetic. Vector 

quantities have direction as well as 

magnitude and combine according to 

the rules of vector addition. The 

negative of a vector has the same 

magnitude but points in the opposite 

direction 
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 Vector components and 

vector addition: Vectors can be 

added by using components of 

vectors. The x-component of 

R A B= +  is the sum of the x-

components of A  and B , and 

likewise for the y- and z-components 

x x x

y y y

z z z

R A B

R A B

R A B

= +

= +

= +

 

 
 Unit vectors: Unit vectors 

describe directions in space. A unit 

vector has a magnitude of 1, with no 

units. The unit vectors î , ĵ , and k̂ , 

aligned with the x-, y-, and z-axes of 

a rectangular coordinate system, are 

especially useful 

ˆˆ ˆ
x y zA A i A j A k= + +  

 

 Scalar product: The scalar 

product C A B=   of two vectors A  

and B  is a scalar quantity. It can be 

expressed in terms of the magnitudes 

of A  and B  and the angle   

between the two vectors, or in terms 

of the components of A  and B . The 

scalar product is commutative; 

A B B A =  . The scalar product of 

two perpendicular vectors is zero 

cos cos

x x y y z z

A B AB A B

A B A B A B A B

  = =

 = + +
 

 

 Vector product: The vector 

product C A B=  of two vectors A  

and B  is a third vector C . The 

magnitude of A B  depends on the 

magnitudes of A  and B  and the 

angle  between the two vectors. The 

direction of A B  is perpendicular 

to the plane of the two vectors being 

multiplied, as given by the right-

hand rule. The components of 

C A B=   can be expressed in terms 

of the components of A and B . The 

vector product is not commutative; 

A B B A = −  . The vector product 

of two parallel or antiparallel vectors 

is zero 

sin

x y z z y

y z x x z

z x y y x

C AB

C A B A B

C A B A B

C A B A B

=

= −

= −

= −
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2 MOTION ALONG A STRAIGHT LINE 

What distance must an airliner travel down a runway before it reaches take-off speed? When you 

throw a ball straight up in the air, how high does it go? Whe na glass slips from your hand, how much 

time do you have to catch it before it hits the floor? These are the kinds of questions you’ll learn to 

answer in this chapter. Mechanics is the study of the relationships among force, matter, and motion. In 

this chapter and the next we’ll study kinematics, the part of mechanics that enables us to describe motion. 

Later we’ll study dynamics, which helps us understand why objects move in different ways. 

In this chapter we’ll concentrate on the simplest kind of motion: an object moving along a straight 

line. To describe this motion, we introduce the physical quantities velocity and acceleration. In physics 

these quantities have definitions that are more precise and slightly different from the ones used in 

everyday language. Both velocity and acceleration are vectors: As you learned in Chapter 1, this means 

that they have both magnitude and direction. Our concern in this chapter is with motion along a straight 

line only, so we won’t need the full mathematics of vectors just yet. But using vectors will be essential in 

Chapter 3 when we consider motion in two or three dimensions. 

We’ll develop simple equations to describe straight-line motion in the important special case when 

acceleration is constant. An example is the motion of a freely falling object. We’ll also consider situations 

in which acceleration varies during the motion; in this case, it’s necessary to use integration to describe 

the motion. 

 

 

2.1 Displacement, Time, and Average Velocity 
 

Suppose a drag racer drives her dragster along a straight track (Fig. 2.1). To study the dragster’s 

motion, we need a coordinate system. We choose the x-axis to lie along the dragster’s straight-line path, 

with the origin O at the starting line. We also choose a point on the dragster, such as its front end, and 

represent the entire dragster by that point. Hence we treat the dragster as a particle. 
 

 

 

Figure 2.1 - Positions of a dragster at two times during its run 

 

A useful way to describe the motion of this particle is in terms of the change in its coordinate x 

over a time interval. Suppose that 1.0 s after the start the front part of the dragster is at the point P1, 19 m 

from the origin, and 4.0 s after the start - at the point P2, at a distance of 277 m from the origin. The 

displacement of the particle is a vector that points from P1 to P2 (see Section 1.7). Figure 2.1 shows that 

this vector points along the x-axis. The x-component (see Section 1.8) of the displacement is the change in 

the value of x, (277 m – 19 m) = 258 m, that took place during the time interval of (4.0 s - 1.0 s) = 3.0 s. 

We define the dragster’s average velocity during this time interval as a vector whose x-component is the 

change in x divided by the time interval: (258 m)/(3.0 s) = 86 m/s. 



27 

In general, the average velocity depends on the particular time interval chosen. For a 3.0 s time 

interval before the start of the race, the dragster is at rest at the starting line and has zero displacement, so 

its average velocity for this time interval is zero.  

Let’s generalize the concept of average velocity. At time t1 the dragster is at point P1, with 

coordinate x1, and at time t2 it is at point P2, with coordinate x2. The displacement of the dragster during 

the time interval from t1 to t2 is the vector from P1 to P2. The x-component of the displacement, denoted 

∆x, is the change in the coordinate x: 

 

 ∆x= x2–x1. (2.1) 

 

The dragster moves along the x-axis only, so the y- and z-components of the displacement are 

equal to zero. 

The x-component of average velocity, or the average x-velocity, is the x-component of 

displacement, ∆x, divided by the time interval ∆t during which the displacement occurs. We use the 

symbol x−av  
for average x-velocity (the subscript “av” signifies average value, and the subscript x 

indicates that this is the x-component): 
 

  (2.2) 

 

As an example, for the dragster in Fig. 2.1, x1 = 19 m, x2 = 277 m, t1 = 1.0 s, and t2 = 4.0 s.  

So Eq. (2.2) gives 

 

m/s.86
s1.0 s4.0

m19 m277
av ==−

-

-
x

 
 

The average x-velocity of the dragster is positive. This means that during the time interval, the 

coordinate x increased and the dragster moved in the positive x-direction (to the right in Fig. 2.1). 

If a particle moves in the negative x-direction during a time interval, its average velocity for that 

time interval is negative. For example, suppose an official’s truck moves to the left along the track 

(Fig. 2.2). The truck is at x1 = 277 m at t1 = 16.0 s and is at x2 = 19 m at t2 = 25.0 s.  

Then x = (19 m – 277 m) = –258 m and t = (25.0 s – 16.0 s) = 9.0 s. The x-component of average 

velocity is x−av = x/t = (–258 m)/(9.0 s) = –29 m/s. 
 

 

 
Figure 2.2 - Positions of an official’s truck at two times during its motion. The points P1 and P2 now 

indicate the positions of the truck, not the dragster, and so are the reverse of Fig. 2.1 
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CAUTION! The sign of average x-velocity. In our example positive x−av  
means motion to the 

right, as in Fig. 2.1, and negative x−av  
means motion to the left. But that’s only because we chose 

the +x-direction to be to the right. Had we chosen the +x-direction to be to the left, the average x-velocity 

x−av  
would have been negative for the dragster moving to the right. In many problems the direction of 

the coordinate axis is yours to choose. Once you’ve made your choice, you must take it into account when 

interpreting the signs of x−av  
and other quantities that describe motion.  

With straight-line motion we sometimes call ∆x simply the displacement and x−av  - simply the 

average velocity. But remember that these are the x-components of vector quantities that, in this special 

case, have only x-components. In Chapter 3, displacement, velocity, and acceleration vectors will have 

two or three nonzero components. 

Figure 2.3 is a graph of the dragster’s position as a function of time - that is, an x-t graph. The 

curve in the figure does not represent the dragster’s path; as Fig. 2.1 shows, the path is a straight line. 

Rather, the graph represents how the dragster’s position changes with time. The points p1 and p2 on the 

graph correspond to the points P1 and P2 along the dragster’s path. Line p1 p2 is the hypotenuse of a right 

triangle with vertical side ∆x = x2–x1 and horizontal side ∆t = t2–t1. The average x-velocity  

x−av = ∆x / ∆t of the dragster equals the slope of the line p1 p2 - that is, the ratio of the triangle’s vertical 

side ∆x to its horizontal side ∆t. (The slope has units of meters divided by seconds, or m/s, the correct 

units for average x-velocity). 

The average x-velocity depends on only the total displacement ∆x = x2–x1 that occurs during the 

time interval ∆t = t2–t1, not on what happens during the time interval. At time t1 a motorcycle might have 

raced past the dragster at point P1 in Fig. 2.1, then slowed down to pass through point P2 at the same time 

t2 as the dragster. Both vehicles have the same displacement during the same time interval and so have the 

same average x-velocity. 

If distance is given in meters and time in seconds, average velocity is measured in meters per 

second, or m/s. Other common units of velocity are kilometers per hour (km/h), miles per hour  

(1 mi/h = 1.609 km/h), and knots (1 knot =1 nautical mile/h = 1.852 km/h). 

 

 
 

Figure 2.3 - A graph of the position of a dragster as a function of time 

 

 

2.2 Instantaneous Velocity 
 

Sometimes average velocity is all you need to know about a particle’s motion. For example,a race 

along a straight line is really a competition to see whose average velocity, x−av , has the greatest 

magnitude. The prize goes to the competitor who can travelthe displacement ∆x from the start to the 

finish line in the shortest time interval, ∆t. 
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But the average velocity of a particle during a time interval can’t tell us how fast or in what 

direction the particle was moving at any given time during the interval. For that we need to know the 

instantaneous velocity, or the velocity at a specific instant of time or specific point along the path. 
 

CAUTION! How long is an instant? You might use the phrase “It lasted just an instant” to refer 

to something that spanned a very short time interval. But in physics an instant has no duration at all; It 

refers to a single value of time.  
 

To find the instantaneous velocity of the dragster in Fig. 2.1 at point P1, we move point P2 closer 

and closer to point P1 and compute the average velocity x−av = ∆x/∆t over the ever-shorter displacement 

and time interval. Both ∆x and ∆t become very small, but their ratio does not necessarily become small. In 

the language of calculus, the limit of ∆x/∆t as ∆t approaches zero is called the derivative of x with respect 

to t and is written dx/dt. We use the symbol x , with no “av” subscript, for the instantaneous velocity 

along the x-axis,or the instantaneous x-velocity: 

 

  (2.3) 

 

The time interval ∆t is always positive, so vx has the same algebraic sign as ∆x. A positive value 

of x means that x is increasing and the motion is in the positive x-direction; a negative value of x means 

that x is decreasing and the motion is in the negative x-direction. An object can have positive x and 

negative x , or the reverse; x tells us where the object is, while x tells us how it’s moving.  

Instantaneous velocity, like average velocity, is a vector; Eq. (2.3) defines its x-component. In 

straight-line motion, all other components of instantaneous velocity are zero. In this case we often call x

simply the instantaneous velocity. (In Chapter 3 we’ll deal with the general case in which the 

instantaneous velocity can have nonzero x-, y-, and z-components). When we use the term “velocity,” 

we’ll always mean instantaneous rather than average velocity. 

“Velocity” and “speed” are used interchangeably in everyday language, but they have distinct 

definitions in physics. We use the term speed to denote distance traveled divided by time, on either an 

average or an instantaneous basis. Instantaneous speed, for which we use the symbol with no subscripts, 

measures how fast a particle is moving; instantaneous velocity measures how fast and in what direction 

it’s moving. Instantaneous speed is the magnitude of instantaneous velocity and so can never be negative. 

For example, a particle with instantaneous velocity x  = 25 m/s and a second particle with  

x  = –25 m/s are moving in opposite directions at the same instantaneous speed 25 m/s. 
 

CAUTION! Average speed and average velocity. Average speed is not the magnitude of average 

velocity. When Cesar Cielo set a world record in 2009 by swimming 100.0 m in 46.91 s, his average 

speed was (100.0 m)/(46.91 s) = 2.132 m/s. But because he swam two lengths in a 50 m pool, he started 

and ended at the same point and so had zero total displacement and zero average velocity! Both average 

speed and instantaneous speed are scalars, not vectors, because these quantities contain no information 

about direction.  

 

 

Finding Velocity on an x-t Graph 

 

We can also find the x-velocity of a particle from the graph of its position as a functionof time. 

Suppose we want to find the x-velocity of the dragster in Fig. 2.1 at point P1. As point P2 in Fig. 2.1 

approaches point P1, point p2 in the x-t graphs of Figs. 2.4a and 2.4b approaches point p1 and the average 

x-velocity is calculated over shorter time intervals t. In the limit that t→0, shown in Fig. 2.4c, the slope 

of the line p1 p2 equals the slope of the line tangent to the curve at point p1. Thus, on a graph of position as 
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a function of time for straight-line motion, the instantaneous x-velocity at any point is equal to the slope 

of the tangent to the curve at that point. 

If the tangent to the x-t curve slopes upward to the right, as in Fig. 2.4c, then its slope is positive, 

the x-velocity is positive, and the motion is in the positive x-direction. If the tangent slopes downward to 

the right, the slopes of the x-t graph and the x-velocity are negative, and the motion is in the negative x-

direction. When the tangent is horizontal, the slope and the x-velocity are zero. Figure 2.5 illustrates 

these three possibilities. 
 

 

Figure 2.7 - Using an x-t graph to go from (a), (b) average x-velocity to (c) instantaneous x-velocity 

vx. In (c) we find the slope of the tangent to the x-t curve by dividing any vertical interval (with distance 

units) along the tangent by the corresponding horizontal interval (with time units) 

 
 

 

Figure 2.8 - (a) The x-t graph of the motion of a particular particle. (b) A motion diagram showing 

the position and velocity of the particle at each of the times labeled on the x-t graph 

 
 

Figure 2.8 depicts the motion of a particle in two ways: as (a) an x-t graph and (b) a motion 

diagram that shows the particle’s position at various instants (like frames from a video of the particle’s 

motion) as well as arrows to represent the particle’s velocity at each instant. We’ll use both x-t graphs and 

motion diagrams in this chapter to represent motion. You’ll find it helpful to draw both an x-t graph and a 

motion diagram when you solve any problem involving motion. 

 

 

2.3 Average and Instantaneous Acceleration 
 

Just as velocity describes the rate of change of position with time, acceleration describes the rate 

of change of velocity with time. Like velocity, acceleration is a vector quantity. When the motion is along 

a straight line, its only nonzero component is along that line. In everyday language, acceleration refers 

only to speeding up; in physics, acceleration refers to any kind of velocity change, so we say an object 

accelerates if it is either speeding up or slowing down.  
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Average Acceleration 

 

Let’s consider again a particle moving along the x-axis. Suppose that at time t1 the particle is at 

point P1 and has x-component of (instantaneous) velocity x1 , and at a later time t2 it is at point P2 and 

has x-component of velocity x2 . So the x-component of velocity changes by an amount 

xxx 22 −=
 
during the time interval t = t2–t1. As the particle moves from P1 to P2, its average 

acceleration is a vector quantity whose x-component xa −av  
(called the average x-acceleration) equals 

x , the change in the x-component of velocity, divided by the time interval t: 

 

 
 

For straight-line motion along the x-axis we’ll often call xa −av  
simply the average acceleration. 

(We’ll encounter the other components of the average acceleration vector in Chapter 3). If we express 

velocity in meters per second and time in seconds, then average acceleration is in meters per second per 

second. This is usually written as m>s2 and is read “meters per second squared”. 
 

CAUTION! Don’t confuse velocity and acceleration. Velocity describes how an object’s 

position changes with time; it tells us how fast and in what direction the object moves. Acceleration 

describes how the velocity changes with time; it tells us how the speed and direction of motion change. 

Another difference is that you can feel acceleration but you can’t feel velocity. If you’re a passenger in a 

car that accelerates forward and gains speed, you feel pushed backward in your seat; if it accelerates 

backward and loses speed, you feel pushed forward. If the velocity is constant and there’s no acceleration, 

you feel neither sensation. (We’ll explain these sensations in Chapter 4).  

 

 

Instantaneous Acceleration 

 

We can now define instantaneous acceleration by following the same procedure that we used 

to define instantaneous velocity. Suppose a race car driver is driving along a straightaway as shown in 

Fig. 2.6. To define the instantaneous acceleration at point P1 ,we take point P2 in Fig. 2.6 to be closer and 

closer to P1 so that the average acceleration is computed over shorter and shorter time intervals. Thus 

 

 

 
Figure 2.6 - A Grand Prix car at two points on the straightaway 
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In Eq. (2.5) ax is the x-component of the acceleration vector, which we call the instantaneous  
x-acceleration; in straight-line motion, all other components of this vector are zero. From now on, when 

we use the term “acceleration,” we’ll always mean instantaneous acceleration, not average acceleration. 

 

 

Finding Acceleration on a vx-t Graph or an x-t Graph 

 

In Section 2.2 we interpreted average and instantaneous x-velocity in terms of the slope of a graph 

of position versus time. In the same way, we can interpret average and instantaneous x-acceleration by 

using a graph of instantaneous velocity x versus time t - that is, a x -t graph (Fig. 2.7). Points p1 and p2 

on the graph correspond to points P1 and P2 in Fig. 2.6. The average x-acceleration ta xx =− /av

during this interval is the slope of the line p1p2. 

As point P2 in Fig. 2.6 approaches point P1, point p2 in the x -t graph of Fig. 2.7 approaches point 

p1 , and the slope of the line p1p2 approaches the slope of the line tangent to the curve at point p1. Thus, on 

a graph of x-velocity as a function of time, the instantaneous x-acceleration at any point is equal to the 

slope of the tangent to the curve at that point. Tangents drawn at different points along the curve in 

Fig. 2.7 have different slopes, so the instantaneous x-acceleration varies with time. 

 

 
Figure 2.7 - A x -t graph of the motion in Fig. 2.6 

 

CAUTION! Signs of x-acceleration and x-velocity. The algebraic sign of the x-acceleration does 

not tell you whether an object is speeding up or slowing down. You must compare the signs of the  

x-velocity and the x-acceleration.  

The term “deceleration” is sometimes used for a decrease in speed. Because it may mean positive 

or negative xa , depending on the sign of x , we avoid this term. We can also learn about the acceleration 

of an object from a graph of its position versus time. Because dtda xx /= and dtdxx /= , we can write 
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That is, ax is the second derivative of x with respect to t. The second derivative of any function is 

directly related to the concavity or curvature of the graph of that function (Fig. 2.8)). At a point where the 

x-t graph is concave up (curved upward), such as point A or E in Fig. 2.8a, the x-acceleration is positive 
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and vx is increasing. At a point where the x-t graph is concave down (curved downward), such as point C 

in Fig. 2.5a, the x-acceleration is negative and x is decreasing. At a point where the x-t graph has no 

curvature, such as the inflection points B and D in Fig. 2.8a, the x-acceleration is zero and the velocity is 

not changing. 

Examining the curvature of an x-t graph is an easy way to identify the sign of acceleration. This 

technique is less helpful for determining numerical values of acceleration because the curvature of a 

graph is hard to measure accurately. 

 

 
Figure 2.8 - (a) The same x-t graph as shown in Fig. 2.5a. (b) A motion diagram showing the 

position, velocity, and acceleration of the particle at each of the times labeled on the x-t graph 

 

 

2.4 Motion with Constant Acceleration 
 

The simplest kind of accelerated motion is 

straight-line motion with constant acceleration. In 

this case the velocity changes at the same rate 

throughout the motion. As an example, a falling 

object has a constant acceleration if the effects of 

the air are not important. The same is true for an 

object sliding on an incline or along a rough 

horizontal surface, or for an airplane being 

catapulted from the deck of an aircraft carrier. 

Figures 2.9 and 2.10 depict a particle 

moving with constant acceleration in the form of 

graphs. Since the x-acceleration is constant, the 

tax − graph (graph of x-acceleration versus time) 

in Fig. 2.9 is a horizontal line. The graph of x-

velocity versus time, or tx − graph, has a 

constant slope because the acceleration is 

constant, so this graph is a straight line 

(Fig. 2.10).  

When the x-acceleration ax is constant, the average x-acceleration xa −av  
for any time interval is 

the same as ax. This makes it easy to derive equations for the position x and the x-velocity x  
as functions 

of time. To find an equation for x , we first replace xa −av in Eq. (2.4) by ax: 

 .
12

12

tt
a xx

x
−

−
=


 (2.7) 

 
 

Figure 2.9 - An acceleration-time )( tax − graph  

of straight-line motion with constant positive  

x-acceleration ax 
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Now we let t1 = 0 and let t2 be any later time t. We use the symbol x0 for the initial x-velocity at 

time t = 0; the x-velocity at the later time t is x . Then Eq. (2.7) becomes 

 

 
0

0

−

−
=

t
a xx
x   or  

 
 

In Eq. (2.8) the term ax t is the product of the constant rate of change of x-velocity, ax, and the time 

interval t. Therefore, it equals the total change in x-velocity from t = 0 to time t. The x-velocity x at any 

time t then equals the initial x-velocity x0 (at t = 0) plus the change in x-velocity axt. (Fig. 2.10). 

Equation (2.8) also says that the change in 

x-velocity xx 0− of the particle between t = 0 

and any later time t equals the area under the 

tax − graph between those two times. You can 

verify this from Fig. 2.9: Under this graph is a 

rectangle of vertical side ax, horizontal side t, and 

area axt. From Eq. (2.8) the area axt is indeed equal 

to the change in velocity xx 0− . In Section 2.6 

we’ll show that even if the x-acceleration is not 

constant, the change in x-velocity during a time 

interval is still equal to the area under the  

tax − curve, although then Eq. (2.8) does not 

apply. 

Next we’ll derive an equation for the 

position x as a function of time when the  

x-acceleration is constant. To do this, we use two 

different expressions for the average x-velocity 

x−av  
during the interval from 0=t  to any later 

time t. The first expression comes from the 

definition of x−av , Eq. (2.2), which is true 

whether or not the acceleration is constant. The 

position at time t = 0, called the initial position, is x0. The position at time t is simply x. Thus for the time 

interval 0−= tt  the displacement is 0−= xx , and Eq. (2.2) gives 

 

 .0

av
t

xx
x

−
=−  (2.9) 

 

To find a second expression for x−av , note that the x-velocity changes at a constant rate if  

the x-acceleration is constant. In this case the average x-velocity for the time interval from 0 to t is simply 

the average of the x-velocities at the beginning and end of the interval: 

 

 ( )xxx += − 0av
2

1
(constant x-acceleration only). (2.10) 

 

 

 
Figure 2.10 - A velocity-time )( tx −  graph of 

straight-line motion with constant positive 

x-acceleration ax. The initial x-velocity x0  is also 

positive in this case 
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Equation (2.10) is not true if the x-acceleration varies during the time interval. We also know that 

with constant x-acceleration, the x-velocity x  
at any time t is given by Eq. (2.8). Substituting that 

expression for x into Eq. (2.10), we find 

 

 ( ) taxxxxx
2

1

2

1
000av +=++= −   (constant x-acceleration only). (2.11) 

 

Finally, we set Eqs. (2.9) and (2.11) equal to each other and simplify: 
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Equation (2.12) tells us that the particle’s position at time t is the sum of three terms: its initial 

position at t = 0, x0, plus the displacement tx0 it would have if its x-velocity remained equal to its initial 

value, plus an additional displacement axt
2/2 caused by the change in x-velocity. 

A graph of Eq. (2.12) - that is, an x-t graph for motion with constant x-acceleration (Fig. 2.11a) - 

is always a parabola. Figure 2.12b shows such a graph. The curve intercepts the vertical axis (x-axis) at 

x0, the position at t = 0. The slope of the tangent at t = 0 equals 0x, the initial x-velocity, and the slope of 

the tangent at any time t equals the x-velocity x at that time. The slope and x-velocity are continuously 

increasing, so the x-acceleration ax is positive and the graph in Fig. 2.11b is concave up (it curves 

upward). If ax is negative, the x-t graph is a parabola that is concave down (has a downward curvature). If 

there is zero x-acceleration, the x-t graph is a straight line; if there is a constant x-acceleration, the 

additional axt
2/2 term in Eq. (2.12) for x as a function of t curves the graph into a parabola (Fig. 2.12a). 

Similarly, if there is zero x-acceleration, the x-t graph is a horizontal line (the x-velocity is constant). 

Adding a constant x-acceleration in Eq. (2.8) gives a slope to the graph (Fig. 2.12b). 

Here’s another way to derive Eq. (2.12). Just as the change in x-velocity of the particle equals the 

area under the ax-t graph, the displacement (change in position) equals the area under the x-t graph. So 

the displacement x – x0 of the particle between t = 0 and any later time t equals the area under the  

x-t graph between those times. In Fig. 2.10 we divide the area under the graph into a dark-colored 

rectangle (vertical side 0x, horizontal side t, and area 0xt) and a light-colored right triangle (vertical side 

axt, horizontal side t, and area 22 2 //))(( tatta xx = . The total area under the x-t graph is 

22
00 /tatxx xx +=− , in accord with Eq. (2.12). 

It’s often useful to have a relationship for position, x-velocity, and (constant) x- acceleration that 

does not involve time. To obtain this, we first solve Eq. (2.8) for t and then substitute the resulting 

expression into Eq. (2.12): 
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We transfer the term x0 to the left side, multiply through by 2ax, and simplify: 

 .222)(2 2
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Figure 2.11 - (a) Straight-line motion with constant acceleration. (b) A position-time ( tx− ) graph 

for this motion (the same motion as is shown in Figs 2.9, and 2.10). For this motion the initial position x0, the 

initial velocity 0x, and the acceleration ax are all positive 

 

 

Figure 2.12 - (a) How a constant x-acceleration affects a particle’s (a) x-t graph and (b) --t graph 

 

Finally, 

 
We can get one more useful relationship by equating the two expressions for av–x, Eqs. (2.9) and 

(2.10), and multiplying through by t: 

 

 
Note that Eq. (2.14) does not contain the x-acceleration ax. This equation can be handy when ax  is 

constant but its value is unknown. 
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Equations (2.8), (2.12), (2.13), and (2.14) are 

the equations of motion with constant acceleration 

(Table 2.1). By using these equations, we can solve 

any problem involving straight-line motion of a 

particle with constant acceleration. 

For the particular case of motion with constant 

x-acceleration graphed in Figs. 2.9, 2.10, and 2.11, the 

values of x0, 0x, and ax are all positive. We 

recommend that you redraw these figures for cases in 

which one, two, or all three of these quantities are 

negative. 

 

 

PROBLEM-SOLVING STRATEGY  

 

IDENTIFY the relevant concepts: In most straight-line motion problems, you can use the 

constant-acceleration Equations (2.8), (2.12), (2.13), and (2.14). If you encounter a situation in which the 

acceleration isn’t constant, you’ll need a different approach (see Section 2.6). 

 

SET UP the problem using the following steps: 

1. Read the problem carefully. Make a motion diagram showing the location of the particle at the 

times of interest. Decide where to place the origin of coordinates and which axis direction is positive. It’s 

often helpful to place the particle at the origin at time t = 0; then x0 = 0. Your choice of the positive axis 

direction automatically determines the positive directions for x-velocity and x-acceleration. If x is positive 

to the right of the origin, then x and ax are also positive toward the right. 

2. Identify the physical quantities (times, positions, velocities, and accelerations) that appear in 

Eqs. (2.8), (2.12), (2.13), and (2.14) and assign them appropriate symbols: t, x, x0, x, 0x, and ax, or 

symbols related to those. Translate the prose into physics: “When does the particle arrive at its highest 

point” means “What is the value of t when x has its maximum value?” In Example 2.4, “Where is he 

when his speed is 25 m/s?” means “What is the value of x when x= 25 m/s?” Be alert for implicit 

information. For example, “A car sits at a stop light” usually means 0x = 0. 

3. List the quantities such as x, x0, x, 0x, ax, and t. Some of them will be known and some will be 

unknown.  Write  down  the  values of  the  known quantities, and decide which of the unknowns are the 

target variables. Make note of the absence of any of the quantities that appear in the four constant-

acceleration equations. 

4. Use Table 2.5 to identify the applicable equations. (These are often the equations that don’t 

include any of the absent quantities that you identified in step 3). Usually you’ll find a single equation 

that contains only one of the target variables. Sometimes you must find two equations, each containing 

the same two unknowns. 

5. Sketch graphs corresponding to the applicable equations. The x-t graph of Eq. (2.8) is a 

straight line with slope ax. The x-t graph of Eq. (2.12) is a parabola that’s concave up if ax is positive and 

concave down if ax is negative. 

6. On the basis of your experience with such problems, and taking account of what your sketched 

graphs tell you, make any qualitative and quantitative predictions you can about the solution. 

 

EXECUTE the solution: If a single equation applies, solve it for the target variable, using 

symbols only; then substitute the known values and calculate the value of the target variable. If you have 

two equations in two unknowns, solve them simultaneously for the target variables.  

 

EVALUATE your answer: Take a hard look at your results to see whether they make sense. Are 

they within the general range of values that you expected? 

 

 

 

Table 2.1 - Equations of Motion with Constant 

Acceleration 
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2.5 Freely Falling Objects 
 

The most familiar example of motion with (nearly) constant acceleration is an object falling under 

the influence of the earth’s gravitational attraction. Such motion has held the attention of philosophers 

and scientists since ancient times. In the fourth century b.c., Aristotle thought (erroneously) that heavy 

objects fall faster than light objects, in proportion to their weight. Nineteen centuries later, Galileo (see 

Section 1.1) argued that an object should fall with a downward acceleration that is constant and 

independent of its weight. 

Experiment shows that if the effects of the air can be ignored, Galileo is right; all objects at a 

particular location fall with the same downward acceleration, regardless of their size or weight. If in 

addition the distance of the fall is small compared with the radius of the earth, and if we ignore small 

effects due to the earth’s rotation, the acceleration is constant. The idealized motion that results under all 

of these assumptions is called free fall, although it includes rising as well as falling motion. (In Chapter 3 

we’ll extend the discussion of free fall to include the motion of projectiles, which move both vertically 

and horizontally). 

The constant acceleration of a freely falling object is called the acceleration due to gravity, and 

we denote its magnitude with the letter g. We’ll frequently use the approximate value of g at or near the 

earth’s surface: 

 

 g = 9.80 m/s2 (approximate value near the earth’s surface). 

 

The exact value varies with location, so we’ll often give the value of g at the earth’s surface to 

only two significant figures as 9.8 m/s2. On the moon’s surface, the acceleration due to gravity is caused 

by the attractive force of the moon rather than the earth, and g = 1.6 m/s2. Near the surface of the sun,  

g = 270 m/s2. 

CAUTION! g is always a positive number. Because g is the magnitude of a vector quantity, it is 

always a positive number. If you take the positive y-direction to be upward, as we do in most situations 

involving free fall, the y-component of the acceleration is negative and equal to -g. Be careful with the 

sign of g, or you’ll have trouble with free-fall problems. ❙ 

 

 

2.6 Velocity and Position by Integration 
 

This section is intended for students who have 

already learned a little integral calculus. In Section 2.4 we 

analyzed the special case of straight-line motion with 

constant acceleration. When ax  is not constant, as is 

frequently the case, the equations that we derived in that 

section are no longer valid. But even when ax varies with 

time, we can still use the relationship x= dx/dt to find the 

x-velocity x  as a function of time if the position x is a 

known function of time. And we can still use ax= dx/dt to 

find the  

x-acceleration ax as a function of time if the x-velocity x 

is a known function of time. 

In many situations, however, position and velocity 

are not known functions of time. How can we find the 

position and velocity in straightline motion from the 

acceleration function ax(t)? 

Figure 2.28 is a graph of x-acceleration versus 

time for a particle whose acceleration is not constant. We 

can divide the time interval between times t1 and t2 into 

 

 
Figure 2.28 - An ax–t graph for a particle whose 

x-acceleration is not constant 
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many smaller subintervals, calling a typical one t. Let the average x-acceleration during t be aav-x. From 

Eq. (2.4) the change in x-velocity x during t is  

 

 .av ta xx = −
 

 

Graphically, x equals the area of the shaded strip with height aav-x and width t - that is, the area 

under the curve between the left and right sides of t. The total change in x-velocity from t1 to t2 is the 

sum of the x-velocity changes x in the small subintervals. So the total x-velocity change is represented 

graphically by the total area under the aav-x curve between the vertical lines t1 and t2. (In Section 2.4 we 

showed this for the special case in which ax is constant). 

In the limit that all the t's become very small and they become very large in number, the value of 

aav-x for the interval from any time t to t + t approaches the instantaneous x-acceleration ax at time t.  

In this limit, the area under the ax–t curve is the integral of ax  (which is in general a function of t) from t1 

to t2. If 1x is the x-velocity of the particle at time t1 and 2x is the velocity at time t2, then  
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The change in the x-velocity x is the time integral of the x-acceleration ax. 

We can carry out exactly the same procedure with the curve of x-velocity versus time. If x1 is a 

particle’s position at time t1 and x2 is its position at time t2, from Eq. (2.2) the displacement x during a 

small time interval t is equal to av-xt, where av-x is the average x-velocity during t. The total 

displacement x2–x1 during the interval t2–t1 is given by 
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The change in position x - that is, the displacement - is the time integral of x-velocity x. 

Graphically, the displacement between times t1 and t2 is the area under the x-t curve between those two 

times. [This is the same result that we obtained in Section 2.4 for the special case in which vx is given by 

Eq. (2.8)]. 

If t1 = 0 and t2 is any later time t, and if x0 and 0x are the position and velocity, respectively, at 

time t = 0, then we can rewrite Eqs. (2.15) and (2.16) as 

 

 
 

 

 
If we know the x-acceleration ax as a function of time and we know the initial velocity 0x, we can 

use Eq. (2.17) to find the x-velocity x at any time; that is, we can find x as a function of time. Once we 

know this function, and given the initial position x0, we can use Eq. (2.18) to find the position x at any 

time. 
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CHAPTER 2: SUMMARY 

 Straight-line motion, average 

and instantaneous x-velocity: When a 

particle moves along a straight line, we 

describe its position with respect to an 

origin O by means of a coordinate such as 

x. The particle’s average x-velocity av x −  

during a time interval 2 1t t t = −  is equal 

to its displacement 2 1x x x = −  divided by 

∆t. The instantaneous x-velocity x  at any 

time t is equal to the average x-velocity 

over the time interval from t to t + ∆t in 

the limit that ∆t goes to zero. 

Equivalently, x  is the derivative of the 

position function with respect to time 

2 1
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x xx

t t t

x dx
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 Average and instantaneous  

x-acceleration: The average xacceleration 

av xa −  during a time interval ∆t is equal to 

the change in velocity 2 1x x x   = −  

during that time interval divided by ∆t. 

The instantaneous x-acceleration ax is the 

limit of av xa −  as ∆t goes to zero, or the 

derivative of x with respect to t  
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 Straight-line motion with 

constant acceleration: When the x-

acceleration is constant, four equations 

relate the position x and the x-velocity x

at any time t to the initial position x0, the 

initial x-velocity 0 x (both measured at 

time t = 0), and the x-acceleration ax  
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 Freely falling objects: Free fall 

(vertical motion without air resistance, so 

only gravity affects the motion) is a case 

of motion with constant acceleration.  

The magnitude of the acceleration due to 

gravity is a positive quantity, g.  

The acceleration of an object in free fall is 

always downward. (See Examples 2.6–

2.8) 
 

 Straight-line motion with 

varying acceleration: When the 

acceleration is not constant but is a known 

function of time, we can find the velocity 

and position as functions of time by 

integrating the acceleration function  
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3 MOTION IN TWO OR THREE DIMENSIONS 
 

What determines where a batted baseball lands? How do you describe the motion of a roller 

coaster car along a curved track or the flight of a circling hawk? Which hits the ground first: a cricket ball 

that you simply drop or one that you throw horizontally? 

We can’t answer these kinds of questions by using the techniques of Chapter 2, in which particles 

moved only along a straight line. Instead, we need to extend our descriptions of motion to two- and three-

dimensional situations. We’ll still use the vector quantities displacement, velocity, and acceleration, but 

now these quantities will no longer lie along a single line. We’ll find that several important kinds of 

motion take place in two dimensions only - that is, in a plane. 

We also need to consider how the motion of a particle is described by different observers who are 

moving relative to each other. The concept of relative velocity will play an important role later in the 

book when we explore electromagnetic phenomena and when we introduce Einstein’s special theory of 

relativity. 

This chapter merges the vector mathematics of Chapter 1 with the kinematic language of  

Chapter 2. As before, we’re concerned with describing motion, not with analyzing its causes. But the 

language you learn here will be an essential tool in later chapters when we study the relationship between 

force and motion.  
 

 

3.1 Position and Velocity Vectors 
 

Let’s see how to describe a particle’s motion in space. If the particle is at a point P at a certain 

instant, the position vector r


 of the particle at this instant is a vector that goes from the origin of the 

coordinate system to point P (Fig. 3.1). The Cartesian coordinates x, y, and z of point P are the x-, y-, and 

z-components of vector r


. Using the unit vectors we introduced in Section 1.9, we can write 
 

 
 

During a time interval Δt the particle moves from P1, 

where its position vector is 1r


, to P2, where its position vector is 

2r


. The change in position (the displacement) during this 

interval is kzzjyyixxrrr ˆ)(ˆ)(ˆ)( 12121222 −+−+−=−=


. 

We define the average velocity vS av during this interval in the 

same way we did in Chapter 2 for straight-line motion, as the 

displacement divided by the time interval (Fig. 3.2): 
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At any instant, the magnitude of 


 is the speed   of the 

particle at that instant, and the direction of 


 is the direction in 

which the particle is moving at that instant. 

As Δt→0, points P1 and P2 in Fig. 3.2 move closer and 

closer together. In this limit, the vector r


  becomes tangent to 

the path. The direction of r


  in this limit is also the direction of 




. So at every point along the path, the instantaneous velocity vector is tangent to the path at that point. 

It’s often easiest to calculate the instantaneous velocity vector by using components. During any 

displacement r


 , the changes Δx, Δy, and Δz in the three coordinates of the particle are the components 

 

 
Figure 3.1 - The position vector r


 from 

origin O to point P has components  

x, y, and z 
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of r


 . It follows that the components x, y, and z of the instantaneous velocity kji zyx
ˆˆˆ ++=


 are 

simply the time derivatives of the coordinates x, y, and z: 
 

 
 

The x-component of 


 is dtdxx /= , which 

is the same as Eq. (2.3) for straight-line motion (see 

Section 2.2). Hence Eq. (3.4) is a direct extension of 

instantaneous velocity to motion in three dimensions. 

We can also get Eq. (3.4) by taking the 

derivative of Eq. (3.1). The unit vectors î , ĵ , and k̂  

don’t depend on time, so their derivatives are zero 

and we find 
 

 .ˆˆˆ k
dt

dz
j

dt

dy
i

dt

dx

dt

rd
++==



  (3.5) 

 

This shows again that the components of 


 

are dx/dt, dy/dt, and dz/dt. 

The magnitude of the instantaneous velocity 

vector 


 - that is, the speed - is given in terms of the components x, y, and z by the Pythagorean 

relationship: 
 

 .|| 222

zyx  ++==


 (3.6) 

 

From now on, when we use the word “velocity,” we’ll always mean the instantaneous velocity 

vector 


 (rather than the average velocity vector). Usually, we won’t even bother to call 


 a vector; it’s 

up to you to remember that velocity is a vector quantity with both magnitude and direction. 
 

 

3.2 The Acceleration Vector 
 

Now let’s consider the acceleration of a particle moving in space. Just as for motion in a straight 

line, acceleration describes how the velocity of the particle changes. But since we now treat velocity as a 

vector, acceleration will describe changes in the velocity magnitude (that is, the speed) and changes in the 

direction of velocity (that is, the direction in which the particle is moving).  

In Fig. 3.3a, a car (treated as a particle) is moving along a curved road. Vectors 1


 and 2


 

represent the car’s instantaneous velocities at time t1, when the car is at pointP1, and at time t2, when the 

car is at point P2 . During the time interval from t1 to t2, the vector change in velocity is =−


12 ,  

so +=


12  (Fig. 3.3b). The average acceleration ava


 of the car during this time interval is the 

velocity change divided by the time interval t2–t1 = Δt: 

 

 
Figure 3.2 - The average velocity av  

between points P1 and P2 has the same direction  

as the displacement r


  
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Average acceleration is a vector quantity in the same direction as 


 (Fig. 3.3c).  

The x-component of Eq. (3.8) is ttta xxxx =−−=− /)/()( 1212av , which is just Eq. (2.4) for 

average acceleration in straight-line motion. 

 

 
 

Figure 3.3 (a) A car moving along a curved road from P1 to P2. (b) How to obtain the change in velocity 

12 −=


 by vector subtraction. (c) The vector dta /=


av represents the average acceleration 

 between P1 and P2 
 

As in Chapter 2, we define the instantaneous acceleration a


 (a vector quantity) at point P1 as the 

limit of the average acceleration vector when point P2 approaches point P1, so both 


 and Δt approach 

zero: 
 

 
 

The velocity vector 


 is always tangent to the particle’s path, but the instantaneous acceleration 

vector a


 does not have to be tangent to the path. If the path is curved, a


 points toward the concave side 

of the path - that is, toward the inside of any turn that the particle is making. The acceleration is tangent to 

the path only if the particle moves in a straight line. 

CAUTION! Any particle following a curved path is accelerating. When a particle is moving in 

a curved path, it always has nonzero acceleration, even when it moves with constant speed. This 

conclusion is contrary to the everyday use of the word “acceleration” to mean that speed is increasing. 

The more precise definition given in Eq. (3.9) shows that there is a nonzero acceleration whenever the 

velocity vector changes in any way, whether there is a change of speed, direction, or both.  

To convince yourself that a particle is accelerating as it moves on a curved path with constant 

speed, think of your sensations when you ride in a car. When the car accelerates, you tend to move inside 

the car in a direction opposite to the car’s acceleration. (In Chapter 4 we’ll learn why this is so). Thus you 

tend to slide toward the back of the car when it accelerates forward (speeds up) and toward the front of 

the car when it accelerates backward (slows down). If the car makes a turn on a level road, you tend to 

slide toward the outside of the turn; hence the car is accelerating toward the inside of the turn. 
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We’ll usually be interested in instantaneous acceleration, not average acceleration. From now on, 

we’ll use the term “acceleration” to mean the instantaneous acceleration vector a


. 
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Each component of the acceleration vector kajaiaa zyx
ˆˆˆ ++=


 is the derivative of the 

corresponding component of velocity: 

 

 
 

In terms of unit vectors, 

 

.ˆˆˆ k
dt

d
j

dt

d
i

dt

d

dt

d
a zyx 

++==




    
(3.11) 

 

The x-component of Eqs. (3.10) and (3.11),  

ax = dx/dt, is just Eq. (2.5) for instantaneous 

acceleration in one dimension.  

Since each component of velocity is the 

derivative of the corresponding coordinate, we can 

express the components ax, ay, and azof the 

acceleration vector a


 as 

 

,
2

2

dt

xd
a x = ,

2

2

dt

yd
a y = .

2

2

dt

zd
a z =  (3.12) 

 

 

Parallel and Perpendicular Components of 

Acceleration 

 

Equations (3.10) tell us about the components 

of a particle’s instantaneous acceleration vector aS 

along the x-, y-, and z-axes. Another useful way to 

think about a


 is in terms of one component parallel 

to the particle’s path and to its velocity 


, and one 

component perpendicular to the path and to 


  

(Fig. 3.4). That’s because the parallel component ||a  

tells us about changes in the particle’s speed, while 

the perpendicular component ⊥a  tells us about 

changes in the particle’s direction of motion. To see 

why the parallel and perpendicular components of a


 

have these properties, let’s consider two special 

cases. 

In Fig. 3.5a the acceleration vector is in the 

same direction as the velocity 1


, so a


 has only a 

parallel component ||a  (that is, ⊥a  = 0). The velocity 

change 


 during a small time interval Δt is in the 

same direction as a


 and hence in the same direction 

as 1


. The velocity 2


 at the end of Δt is in the same 

direction as 1


 but has greater magnitude. Hence 

during the time interval Δt the particle in Fig. 3.5a moved in a straight line with increasing speed. 

 
Figure 3.4 - The acceleration can be resolved into  

a component ||a  parallel to the path 

 (that is, along the tangent to the path) and  

a component ⊥a perpendicular to the path 

 (that is, along the normal to the path) 

 

 
Figure 3.5 - The effect of acceleration directed  

(a) parallel to and (b) perpendicular to a particle’s 

velocity 
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In Fig. 3.5b the acceleration is perpendicular to the velocity, so a


 has only a perpendicular 

component ⊥a  (that is, 0=||a ). In a small time interval Δt, the velocity change 


 is very nearly 

perpendicular to 1


, and so 1


 and 2


 have different directions. As the time interval Δt approaches zero, 

the angle f in the figure also approaches zero, 


 comes perpendicular to both 1


 and 2


, and 1


 and 

2


 have the same magnitude. In other words, the speed of the particle stays the same, but the direction of 

motion changes and the path of the particle curves. In the most general case, the acceleration a


 has both 

components parallel and perpendicular to the velocity 


, as in Fig. 3.4. Then the particle’s speed will 

change (described by the parallel component ||a ) and its direction of motion will change (described by the 

perpendicular component ⊥a ). 

Figure 3.6 shows a particle moving along a curved path for three situations: constant speed, 

increasing speed, and decreasing speed. If the speed is constant, a


 is perpendicular, or normal, to the path 

and to 


 and points toward the concave side of the path (Fig. 3.6a). If the speed is increasing, there is still 

a perpendicular component of a


, but there is also a parallel component with the same direction as 


 

(Fig. 3.6b). Then a


 points ahead of the normal to the path. If the speed is decreasing, the parallel 

component has the direction opposite to vS, and a


 points behind the normal to the path (Fig. 3.6c). We’ll 

use these ideas again in Section 3.4 when we study the special case of motion in a circle. 

 

 
 
Figure 3.6 - Velocity and acceleration vectors for a particle moving through a point P on a curved path with  

(a) constant speed, (b) increasing speed, and (c) decreasing speed 

 

 

3.3 Projectile Motion 
 

A projectile is any object that is given an initial velocity and then follows a path determined 

entirely by the effects of gravitational acceleration and air resistance. A batted baseball, a thrown 

basketball, and a bullet shot from a rifle are all projectiles. The path followed by a projectile is called its 

trajectory. 

To analyze the motion of a projectile, we’ll use 

an idealized model. We’ll represent the projectile as a 

particle with an acceleration (due to gravity) that is 

constant in both magnitude and direction. We’ll ignore 

the effects of air resistance and the curvature and 

rotation of the earth. This model has limitations, 

however: We have to consider the earth’s curvature 

when we study the flight of long-range missiles, and air 

resistance is of crucial importance to a sky diver. 

Nevertheless, we can learn a lot from analysis of this 

simple model. For the remainder of this chapter the 

phrase “projectile motion” will imply that we’re 

ignoring air resistance. In Chapter 5 we’ll see what 

happens when air resistance cannot be ignored. 

 
Figure 3.7 - The trajectory of an idealized 

projectile 
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 Projectile motion is always confined to a vertical plane determined by the direction of the initial 

velocity (Fig. 3.7). This is because the acceleration due to gravity is purely vertical; gravity can’t 

accelerate the projectile sideways. Thus projectile motion is twodimensional. We’ll call the plane of 

motion the xy-coordinate plane, with the x-axis horizontal and the y-axis vertically upward. 

The key to analyzing projectile motion is that we can treat the x- and y-coordinates separately. The 

horizontal motion of the projectile has no effect on its vertical motion. For projectiles, the x-component of 

acceleration is zero and the y-component is constant and equal to –g. So we can analyze projectile motion 

as a combination of horizontal motion with constant velocity and vertical motion with constant 

acceleration. 

We can then express all the vector relationships for the projectile’s position, velocity, and 

acceleration by separate equations for the horizontal and vertical components. The components of a


 are 
 

 ax= 0 ay= –g (projectile motion, no air resistance).  (3.13) 

 

Since both the x-acceleration and y-acceleration are constant, we can use Eqs. (2.8), (2.12), (2.13), 

and (2.14) directly. Suppose that at time t = 0 our particle is at the point (x0, y0) and its initial velocity at 

this time has components 0x and 0y. The components of acceleration are ax= 0, ay= –g. Considering the  

x-motion first, we substitute 0 for ax in Eqs. (2.8) and (2.12). We find 
 

 x= 0x,      x = x0 + 0x t. (3.14–15)  

 

For the y-motion we substitute y for x, y for x, 0y for 0x, and ay= –g for ax: 
 

 y= 0y–gt,         y = y0 + 0y t –gt2/2.  (3.16–17) 

 

It’s usually simplest to take the initial position (at t = 0) as the origin; then x0 = y0 = 0. This might 

be the position of a ball at the instant it leaves the hand of the person who throws it or the position of a 

bullet at the instant it leaves the gun barrel. 

Figure 3.8 shows the trajectory of a projectile that starts at (or passes through) the origin  

at time t = 0, along with its position, velocity, and velocity components at equal time intervals.  

The x-velocity xis constant; the y-velocity y changes by equal amounts in equal times, just as if the 

projectile were launched vertically with the same initial y-velocity. 

 
Figure 3.8 - If air resistance is negligible, the trajectory of a projectile is a combination of horizontal motion 

with constant velocity and vertical motion with constant acceleration 
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We can also represent the initial velocity 0


 by its magnitude 0 (the initial speed) and its angle 

0  with the positive x-axis. In terms of these quantities, the components 0x and 0y of the initial velocity 

are 

 0x= 0 cos( 0 )0y= 0 sin( 0 ). (3.18) 

 

If we substitute Eqs. (3.18) into Eqs. (3.14) through (3.17) and set x0 = y0 = 0, we get the following 

equations. They describe the position and velocity of the projectile in Fig. 3.8 at any time t: 
 

 
 

We can get a lot of information from Eqs. (3.19) through (3.22). For example, the distance r from 

the origin to the projectile at any time t is 
 

 
.22 yxr +=
 (3.23) 

 

The projectile’s speed (the magnitude of its velocity) at any time is 
 

 .22

yx  +=  (3.24) 

 

The direction of the velocity, in terms of the angle a it makes with the positive x-direction (see 

Fig. 3.17), is 

 .tan
x

y




 =  (3.25) 

 

The velocity vector 


 is tangent to the trajectory at each point. 

We can derive an equation for the trajectory’s shape in terms of x and y by eliminating t. From 

Eqs. (3.19) and (3.20), we find )cos/( 00 = xt  and 

 

 ( ) .
cos2

tan 2

0

22

0

0 x
g

xy


 −=  (3.36) 

 

Don’t worry about the details of this equation; the important point is its general form. Since v0, 

tan a0, cos a0, and g are constants, Eq. (3.26) has the form 
 

 ,2cxbxy −=  
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where b and c are constants. This is the equation of a parabola. In our simple model of projectile motion, 

the trajectory is always a parabola. 

When air resistance isn’t negligible and has to be included, calculating the trajectory becomes a lot 

more complicated; the effects of air resistance depend on velocity, so the acceleration is no longer 

constant. Air resistance has a very large effect; the projectile does not travel as far or as high, and the 

trajectory is no longer a parabola. 

 

 

3.4 Motion in a Circle 
 

When a particle moves along a curved path, the direction of its velocity changes. As we saw in 

Section 3.2, this means that the particle must have a component of acceleration perpendicular to the path, 

even if its speed is constant (see Fig. 3.5b). In this section we’ll calculate the acceleration for the 

important special case of motion in a circle. 

 

 

Uniform Circular Motion 

 

When a particle moves in a circle with constant 

speed, the motion is called uniform circular motion.  

A car rounding a curve with constant radius at constant 

speed, a satellite moving in a circular orbit, and an ice 

skater skating in a circle with constant speed are all 

examples of uniform circular motion. There is no 

component of acceleration parallel (tangent) to the path; 

otherwise, the speed would change. The acceleration 

vector is perpendicular (normal) to the path and hence 

directed inward (never outward!) toward the center of the 

circular path. This causes the direction of the velocity to 

change without changing the speed. 

We can find a simple expression for the magnitude 

of the acceleration in uniform circular motion. We begin 

with Fig. 3.9a, which shows a particle moving with 

constant speed in a circular path of radius R with center  

at O. The particle moves a distance Δs from P1 to P2 in a 

time interval Δt. Figure 3.28b shows the vector change in 

velocity 


 during this interval. 

The angles labeled   in Figs. 3.9a and 3.9b are 

the same because 1


 is perpendicular to the line OP1 and 

2


 is perpendicular to the line OP2 . Hence the triangles in 

Figs. 3.9a and 3.9b are similar. The ratios of 

corresponding sides of similar triangles are equal, so 
 

 
R

s
=





1

||


  or  .|| 1 =
R





 

 

The magnitude aav of the average acceleration 

during Δt is therefore 

 

 .
|| 1

av
t

s

Rt
a




=




=




 

 

 

Figure 3.9 - Finding the velocity change 


, 

average acceleration ava , and instantaneous 

acceleration rada


 for a particle 
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The magnitude a of the instantaneous acceleration a


 at point P1 is the limit of this expression as 

we take point P2 closer and closer to point P1: 

 

 .limlim
0

11

0












=


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






=

→→ t

s
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s

R
a

tt
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If the time interval Δt is short, Δs is the distance the particle moves along its curved path. So the 

limit of Δs/Δt is the speed 1 at point P1. Also, P1 can be any point on the path, so we can drop the 

subscript and let represent the speed at any point. Then 

 

 
 

The subscript “rad” is a reminder that the direction of the instantaneous acceleration at each point 

is always along a radius of the circle (toward the center of the circle; see Fig. 3.9c). So in uniform circular 

motion, the magnitude arad of the instantaneous acceleration is equal to the square of the speed  divided 

by the radius R of the circle. Its direction is perpendicular to 


and inward along the radius. Because the 

acceleration in uniform circular motion is along the radius, we often call it radial acceleration. 

Because the acceleration in uniform circular motion is always directed toward the center of the 

circle, it is sometimes called centripetal acceleration. The word “centripetal” is derived from two Greek 

words meaning “seeking the center.”  

We can also express the magnitude of the acceleration in uniform circular motion in terms of the 

period T of the motion, the time for one revolution (one complete trip around the circle). In a time T the 

particle travels a distance equal to the circumference 2R of the circle, so its speed is 
 

.
2

T

R
 =

              (3.28) 

 

When we substitute this into Eq. (3.27), we obtain the alternative expression 
 

 
 

 

Nonuniform Circular Motion 

 

We have assumed throughout this section that the particle’s speed is constant as it goes around the 

circle. If the speed varies, we call the motion nonuniform circular motion. In nonuniform circular 

motion, Eq. (3.27) still gives the radial component of acceleration Ra /2rad = , which is always 

perpendicular to the instantaneous velocity and directed toward the center of the circle. But since the 

speed has different values at different points in the motion, the value of arad is not constant. The radial 

(centripetal) acceleration is greatest at the point in the circle where the speed is greatest. 

In nonuniform circular motion there is also a component of acceleration that is parallel to the 

instantaneous velocity (see Figs. 3.8b and 3.8c). This is the component ||a  that we discussed in Section 

3.2; here we call this component atan to emphasize that it is tangent to the circle. This component, called 

the tangential acceleration atan, is equal to the rate of change of speed. Thus 

 

 
R

a
2

rad


=   and  

dt

d
a

||
tan


=


  (nonuniform circular motion). (3.30) 
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The tangential component is in the same direction as the velocity if the particle is speeding up, and 

in the opposite direction if the particle is slowing down. If the particle’s speed is constant, 0=tana . 
 

CAUTION! Uniform vs. nonuniform circular motion. The two quantities 
dt

d || 


 and 
dt

d


 

are 

not the same. The first, equal to the tangential acceleration, is the rate of change of speed; it is zero 

whenever a particle moves with constant speed, even when its direction of motion changes (such as in 

uniform circular motion). The second is the magnitude of the vector acceleration; it is zero only when the 

particle’s acceleration vector is zero—that is, when the particle moves in a straight line with constant 

speed. In uniform circular motion radtd /|/| 2
rad ==


; in nonuniform circular motion there is also a 

tangential component of acceleration, so 
22

rad tan|/| aadtd +=


.  

 

 

3.5 Relative Velocity 
 

If you stand next to a one-way highway, all the cars appear to be moving forward. But if you’re 

driving in the fast lane on that highway, slower cars appear to be moving backward. In general, when two 

observers measure the velocity of the same object, they get different results if one observer is moving 

relative to the other. The velocity seen by a particular observer is called the velocity relative to that 

observer, or simply relative velocity. In many situations relative velocity is extremely important  

We’ll first consider relative velocity along a straight line and then generalize to relative velocity in 

a plane. 

 

 

Relative Velocity in One Dimension 

 

A passenger walks with a velocity of +1.0 m/s along 

the aisle of a train that is moving with a velocity of +3.0 m/s 

(Fig. 3.10a). What is the passenger’s velocity? It’s a simple 

enough question, but it has no single answer. As seen by a 

second passenger sitting in the train, she is moving  

at +1.0 m/s. A person on a bicycle standing beside  

the train sees the walking passenger moving at  

+1.0 m/s + 3.0 m/s = +4.0 m/s. An observer in another train 

going in the opposite direction would give still another 

answer. We have to specify which observer we mean, and we 

speak of the velocity relative to a particular observer. The 

walking passenger’s velocity relative to the train is +1.0 m/s, 

her velocity relative to the cyclist is +4.0 m/s, and so on. 

Each observer, equipped in principle with a meter stick and a 

stopwatch, forms what we call a frame of reference. Thus a 

frame of reference is a coordinate system plus a time scale. 

Let’s use the symbol A for the cyclist’s frame of 

reference (at rest with respect to the ground) and the symbol 

B for the frame of reference of the moving train. In straight-

line motion the position of a point P relative to frame A is 

given by xP/A(the position of P with respect to A), and the 

position of P relative to frame B is given by xP/B(Fig. 3.10b). 

The position of the origin of B with respect to the origin of A 

is xB/A. Figure 3.10b shows that 

 

xP/A= xP/B+ xB/A                                                                (3.31) 

 
Figure 3.10 - (a) A passenger 

walking in a train. (b) The position of the 

passenger relative to the cyclist’s frame of 

reference and the train’s frame of reference 
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In words, the coordinate of P relative to A equals the coordinate of P relative to B plus the 

coordinate of B relative to A. 

The x-velocity of P relative to frame A, denoted by P/A-x, is the derivative of xP/Awith respect to 

time. We can find the other velocities in the same way. So the time derivative of Eq. (3.31) gives us a 

relationship among the various velocities: 

 

 
dt

dx

dt

dx

dt

dx ABBPAP /// +=   or 

 

 
Getting back to the passenger on the train in Fig. 3.10a, we see that A is the cyclist’s frame of 

reference, B is the frame of reference of the train, and point P represents the passenger. Using the above 

notation, we have 

 

 P/B-x= +1.0 m/s B/A-x= +3.0 m/s.  

 

From Eq. (3.32) the passenger’s velocity P/B-xrelative to the cyclist is 

 

 P/A-x= +1.0 m/s + 3.0 m/s = +4.0 m/s,  

 

as we already knew. 

In this example, both velocities are toward the right, and we have taken this as the positive  

x-direction. If the passenger walks toward the left relative to the train, then P/B-x= –1.0 m/s, and her  

x-velocity relative to the cyclist is P/A-x= –1.0 m/s + 3.0 m/s = +2.0 m/s. The sum in Eq. (3.32) is always 

an algebraic sum, and any or all of the x-velocities may be negative. 

When the passenger looks out the window, the stationary cyclist on the ground appears to her to 

be moving backward; we call the cyclist’s velocity relative to her A/P-x. This is just the negative of the 

passenger’s velocity relative to the cyclist, P/A-x. In general, if A and B are any two points or frames of 

reference, 

 

 A/B-x= –B/A-x. (3.33) 

 

 

Relative Velocity in Two or Three Dimensions 

 

Let’s extend the concept of relative velocity to include motion in a plane or in space. Suppose that 

the passenger in Fig. 3.10a is walking not down the aisle of the railroad car but from one side of the car to 

the other, with a speed of 1.0 m/s (Fig. 3.11a). We can again describe the passenger’s position P in two 

frames of reference: A for the stationary ground observer and B for the moving train. But instead of 

coordinates x, we use position vectors rS because the problem is now two-dimensional. Then,  

as Fig. 3.11b shows, 

 

 
./// ABBPAP rrr


+=

 (3.34) 

 

Just as we did before, we take the time derivative of this equation to get a relationship among the 

various velocities; the velocity of P relative to A is dtr APAP ///


= and so on for the other velocities.  
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We get 

 

 
 

 
 

Figure 3.34 - (a) A passenger walking across a railroad car. (b) Position of the passenger relative to 

the cyclist’s frame and the train’s frame. (c) Vector diagram for the velocity of the passenger relative to the 

ground (the cyclist’s frame), AP /


 

 

Equation (3.35) is known as the Galilean velocity transformation. It relates the velocity of an 

object P with respect to frame A and its velocity with respect to frame B ( AP /


and BP /


, respectively) to 

the velocity of frame B with respect to frame A ( AB /


). If all three of these velocities lie along the same 

line, then Eq. (3.35) reduces to Eq. (3.32) for the components of the velocities along that line. 

As in the case of motion along a straight line, we have the general rule that if A and B are any two 

points or frames of reference, 

 

 
.// ABBA 


−=

 (3.36) 

 

The velocity of the passenger relative to the train is the negative of the velocity of the train relative 

to the passenger, and so on. 

In the early 20th century Albert Einstein showed that Eq. (3.35) has to be modified when speeds 

approach the speed of light, denoted by c. It turns out that if the passenger in Fig. 3.10a could walk down 

the aisle at 0.30c and the train could move at 0.90c, then her speed relative to the ground would be not 

1.20c but 0.94c; nothing can travel faster than light! We’ll return to Einstein and his special theory of 

relativity. 

 

 

CHAPTER 3: SUMMARY 

 Projectile motion: In projectile 

motion with no air resistance, ax = 0 and  

ay = –g. The coordinates and velocity 

components are simple functions of time, 

and the shape of the path is always a 

parabola. We usually choose the origin to be 

at the initial position of the projectile  
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 Position, velocity, and acceleration 

vectors: The position vector r  of a point P 

in space is the vector from the origin to P. 

Its components are the coordinates x, y, and 

z.  

 The average velocity vector av  

during the time interval ∆t is the 

displacement r  (the change in position 

vector r ) divided by ∆t. The instantaneous 

velocity vector   is the time derivative of 

r , and its components are the time 

derivatives of x, y, and z. The instantaneous 

speed is the magnitude of   The velocity 

  of a particle is always tangent to the 

particle’s path.  

The average acceleration vector ava  during 

the time interval ∆t equals   (the change 

in velocity vector  ) divided by ∆t. The 

instantaneous acceleration vector a is the 

time derivative of  , and its components 

are the time derivatives of x , y , and z .  

 The component of acceleration 

parallel to the direction of the instantaneous 

velocity affects the speed, while the 

component of a  perpendicular to   affects 

the direction of motion  
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 Uniform and nonuniform circular 

motion: When a particle moves in a circular 

path of radius R with constant speed   

(uniform circular motion), its acceleration a
is directed toward the center of the circle 

and perpendicular to  . The magnitude arad 

of this radial acceleration can be expressed 

in terms of  and R or in terms of R and the 

period T (the time for one revolution), 

where 2 /R T = .  

 If the speed is not constant in 

circular motion (nonuniform circular 

motion), there is still a radial component of 

a given by Eq. (3.27) or (3.29), but there is 

also a component of a  parallel (tangential) 

to the path. This tangential component is 

equal to the rate of change of speed, /d dt  
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 Relative velocity: When an object P 

moves relative to an object (or reference 

frame) B, and B moves relative to an object 

(or reference frame) A, we denote the 

velocity of P relative to B by /P B , the 

velocity of P relative to A by /P A , and the 

velocity of B relative to A by /B A . If these 

velocities are all along the same line, their 

components along that line are related by 

Eq. (3.32). More generally, these velocities 

are related by Eq. (3.35) 

( )

( )

/ / /

/ / /

relative velocity along a line

relative velocity in space
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4 NEWTON’S LAWS OF MOTION 
 

We’ve seen in the last two chapters how to use kinematics to describe motion inone, two, or three 

dimensions. But what causes objects to move the way that theydo? For example, why does a dropped 

feather fall more slowly than a droppedbowling ball? Why do you feel pushed backward in a car that 

accelerates forward? Theanswers to such questions take us into the subject of dynamics, the relationship 

of motionto the forces that cause it. 

The principles of dynamics were clearly stated for the first time by Sir Isaac Newton(1642–1727); 

today we call them Newton’s laws of motion. Newton did not derive thelaws of motion, but rather 

deduced them from a multitude of experiments performed byother scientists, especially Galileo Galilei 

(who died the year Newton was born). Newton’slaws are the foundation of classical mechanics (also 

called Newtonian mechanics); usingthem, we can understand most familiar kinds of motion. Newton’s 

laws need modificationonly for situations involving extremely high speeds (near the speed of light) or 

very smallsizes (such as within the atom). 

 

 

4.1 Force and Interactions 
 

A force is a push or a pull. More precisely, 

a force is an interaction between two objects or 

between an object and its environment (Fig. 4.1). 

That’s why we always refer to the force that one 

object exerts on a second object. When you push 

on a car that is stuck in the snow, you exert a force 

on the car; a steel cable exerts a force on the beam 

it is hoisting at a construction site; and so on. As 

Fig. 4.1 shows, force is a vector quantity; you can 

push or pull an object in different directions. 

When a force involves direct contact 

between two objects, such as a push or pull that 

you exert on an object with your hand, we call it a 

contact force. Figures 4.2a, 4.2b, and 4.2c show 

three common types of contact forces. The normal 

force (Fig. 4.2a) is exerted on an object by any surface with which it is in contact. The adjective “normal” 

means that the force always acts perpendicular to the surface of contact, no matter what the angle of that 

surface. By contrast, the friction force (Fig. 4.2b) exerted on an object by a surface acts parallel to the 

surface, in the direction that opposes sliding. The pulling force exerted by a stretched rope or cord on an 

object to which it’s attached is called a tension force (Fig. 4.2c). When you tug on your dog’s leash, the 

force that pulls on her collar is a tension force. 

In addition to contact forces, there are long-range forces that act even when the objects are 

separated by empty space. The force between two magnets is an example of a longrange force, as is the 

force of gravity (Fig. 4.2d); the earth pulls a dropped object toward it even though there is no direct 

contact between the object and the earth. The gravitational force that the earth exerts on your body is 

called your weight. 

To describe a force vector F


, we need to describe the direction in which it acts as well as its 

magnitude, the quantity that describes “how much” or “how hard” the force pushes or pulls. The SI unit 

of the magnitude of force is the newton, abbreviated N. (We’ll give a precise definition of the newton in 

Section 4.3).  

A common instrument for measuring force magnitudes is the spring balance. It consists of a coil 

spring enclosed in a case with a pointer attached to one end. When forces are applied to the ends of the 

spring, it stretches by an amount that depends on the force. We can make a scale for the pointer by using a 

number of identical objects with weights of exactly 1 N each. When one, two, or more of these are 

suspended simultaneously from the balance, the total force stretching the spring is 1 N, 2 N, and so on, 

and we can label the corresponding positions of the pointer 1 N, 2 N, and so on. Then we can use this 

 
Figure 4.1 - Some properties of forces 
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instrument to measure the magnitude of an unknown force. We can also make a similar instrument that 

measures pushes instead of pulls. 

 

  

Figure 4.2 - Four common types of forces 

 

 

Superposition of Forces 

 

When you hold a ball in your hand to throw it, 

at least two forces act on it: the push of your hand and 

the downward pull of gravity. Experiment shows that 

when two forces 1F


 and 2F


 act at the same time at the 

same point on an object (Fig. 4.3), the effect on the 

object’s motion is the same as if a single force R


 

were acting equal to the vector sum, or resultant, of 

the original forces: 21 FFR


+= . More generally, any 

number offorces applied at a point on an object have 

the same effect as a single force equal to the vector 

sum of the forces. This important principle is called 

superposition of forces. 

Since forces are vector quantities and add like vectors, we can use all of the rules of vector 

mathematics that we learned in Chapter 1 to solve problems that involve vectors. This would be a good 

time to review the rules for vector addition presented in Sections 1.7 and 1.8. 

We learned in Section 1.8 that it’s easiest to add vectors by using components. That’s why we 

often describe a force F


 in terms of its x- and y-components Fxand Fy. Note that the x- and  

y-coordinate axes do not have to be horizontal and vertical, respectively. As an example, Fig. 4.4 shows a 

crate being pulled up a ramp by a force F


. In this situation it’s most convenient to choose one axis to be 

parallel to the ramp and the other to be perpendicular to the ramp. For the case shown in Fig. 4.4, both 

Fxand Fyare positive; in other situations, depending on your choice of axes and the orientation of the force  

F


, either Fx or Fy may be negative or zero. 

CAUTION! Using a wiggly line in force diagramsю In Fig. 4.4 we draw a wiggly line through 

the force vector F


 to show that we have replaced it by its x- and y-components. Otherwise, the diagram 

would include the same force twice. We’ll draw such a wiggly line in any force diagram where a force is 

replaced by its components. We encourage you to do the same in your own diagrams! 

 
Figure 4.3 - Superposition of forces 
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We’ll often need to find the vector sum (resultant) 

of all forces acting on an object. We call this the net force 

acting on the object. We’ll use the Greek letter   (capital 

sigma, equivalent to the Roman S) as a shorthand notation 

for a sum. If the forces are labeled 321 FFF


,, , and so on, we 

can write 

 

 ...+++== 321 FFFFR


. (4.1) 

 

We read F


  as “the vector sum of the forces” or 

“the net force.” The x-component of the net force is the 

sum of the x-components of the individual forces, and 

likewise for the y-component (Fig. 4.5): 

 

 = xx FR = .yy FR  (4.2) 

 

Each component may be positive or negative, so be 

careful with signs when you evaluate these sums. 

Once we have Rxand Rywe can find the magnitude 

and direction of the net force FR


=  acting on the object. 

The magnitude is  

 

,22

yx RRR +=
 

 

and the angle   between R


 and the +x–axis can be found 

from the relationship xy RR /tan = . The components Rx 

and Ry may be positive, negative, or zero, and the angle u 

may be in any of the four quadrants. 

In three-dimensional problems, forces may also 

have z-components; then we add the equation zz FR = to 

Eqs. (4.2). The magnitude of the net force is then  

 

.2.22

zyx RRRR ++=  

 

 

4.2 Newton’s First Law 
 

How do the forces acting on an object affect that object’s motion? Let’s first note that it’s 

impossible for an object to affect its own motion by exerting a force on itself. If that were possible, you 

could lift yourself to the ceiling by pulling up on your belt! The forces that affect an object’s motion are 

external forces, those forces exerted on the object by other objects in its environment. So the question we 

must answer is this: How do the external forces that act on an object affect its motion? 

To begin to answer this question, let’s first consider what happens when the net external force on 

an object is zero. You would almost certainly agree that if an object is at rest, and if no net external force 

acts on it (that is, no net push or pull from other objects), that object will remain at rest. But what if there 

is zero net external force acting on an object in motion? 

To see what happens in this case, suppose you slide a hockey puck along a horizontal tabletop, 

applying a horizontal force to it with your hand. After you stop pushing, the puck does not continue to 

move indefinitely; it slows down and stops. To keep it moving, you have to keep pushing (that is, 

 
 

Figure 4.4 - Fx and Fy are the components of 

F


 parallel and perpendicular to the sloping 

surface of the inclined plane 

 

 
Figure 4.5 - Finding the components of the 

vector sum (resultant) R


 of two forces 1F


 and 

2F

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applying a force). You might come to the “common sense” conclusion that objects in motion naturally 

come to rest and that a force is required to sustain motion. 

But now imagine pushing the puck across a smooth surface of ice. After you quit pushing, the 

puck will slide a lot farther before it stops. Put it on an air-hockey table, where it floats on a thin cushion 

of air, and it moves still farther. In each case, what slows the puck down is friction, an interaction 

between the lower surface of the puck and the surface on which it slides. Each surface exerts a friction 

force on the puck that resists the puck’s motion; the difference in the three cases is the magnitude of the 

friction force. The ice exerts less friction than the tabletop, so the puck travels farther. The gas molecules 

of the air-hockey table exert the least friction of all. If we could eliminate friction completely, the puck 

would never slow down, and we would need no force at all to keep the puck moving once it had been 

started. Thus the “common sense” idea that a force is required to sustain motion is incorrect. 

Experiments like the ones we’ve just described show that when no net external force acts on an 

object, the object either remains at rest or moves with constant velocity in a straight line. Once an object 

has been set in motion, no net external force is needed to keep it moving. We call this observation 

Newton’s first law of motion: 
 

NEWTON’S FIRST LAW OF MOTION: An object acted on by no net external force has a 

constant velocity (which may be zero) and zero acceleration. 
 

The tendency of an object to keep moving once it is set in motion is called inertia. You use inertia 

when you try to get ketchup out of a bottle by shaking it. First you start the bottle (and the ketchup inside) 

moving forward; when you jerk the bottle back, the ketchup tends to keep moving forward and, you hope, 

ends up on your burger. Inertia is also the tendency of an object at rest to remain at rest. You may have 

seen a tablecloth yanked out from under a table setting without breaking anything. The force on the table 

setting isn’t great enough to make it move appreciably during the short time it takes to pull the tablecloth 

away. 

It’s important to note that the net external force is what matters in Newton’s first law. For 

example, a physics book at rest on a horizontal tabletop has two forces acting on it: an upward supporting 

force, or normal force, exerted by the tabletop (see Fig. 4.2a) and the downward force of the earth’s 

gravity (see Fig. 4.2d). The upward push of the surface is just as great as the downward pull of gravity, so 

the net external force acting on the book (that is, the vector sum of the two forces) is zero. In agreement 

with Newton’s first law, if the book is at rest on the tabletop, it remains at rest. The same principle applies 

to a hockey puck sliding on a horizontal, frictionless surface: The vector sum of the upward push of the 

surface and the downward pull of gravity is zero. Once the puck is in motion, it continues to move with 

constant velocity because the net external force acting on it is zero. 

We find that if the object is at rest at the start, it remains at rest; if it is initially moving, it 

continues to move in the same direction with constant speed. These results show that in Newton’s first 

law, zero net external force is equivalent to no external force at all. This is just the principle of 

superposition of forces that we saw in Section 4.1. When an object is either at rest or moving with 

constant velocity (in a straight line with constant speed), we say that the object is in equilibrium.  

For an object to be in equilibrium, it must be acted on by no forces, or by several forces such that 

their vector sum - that is, the net external force - is zero: 

 

We’re assuming that the object can be represented adequately as a point particle. When the object 

has finite size, we also have to consider where on the object the forces are applied. We’ll return to this 

point in Chapter 11. 
 

 

Inertial Frames of Reference 
 

In discussing relative velocity in Section 3.5, we introduced the concept of frame of reference. 

This concept is central to Newton’s laws of motion. Suppose you are in a bus that is traveling on a 

straight road and speeding up. If you could stand in the aisle on roller skates, you would start moving 

backward relative to the bus as the bus gains speed. If instead the bus was slowing to a stop, you would 
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start moving forward down the aisle. In either case, it looks as though Newton’s first law is not obeyed; 

there is no net external force acting on you, yet your velocity changes. What’s wrong? 

The point is that the bus is accelerating with respect to the earth and is not a suitable frame of 

reference for Newton’s first law. This law is valid in some frames of reference and not valid in others. A 

frame of reference in which Newton’s first law is valid is called an inertial frame of reference. The earth 

is at least approximately an inertial frame of reference, but the bus is not. (The earth is not a completely 

inertial frame, owing to the acceleration associated with its rotation and its motion around the sun. These 

effects are quite small, however). Because Newton’s first law is used to define what we mean by an 

inertial frame of reference, it is sometimes called the law of inertia. 

Figure 4.6 helps us understand what you experience when riding in a vehicle that’s accelerating. 

In Fig. 4.6a, a vehicle is initially at rest and then begins to accelerate to the right. A passenger standing on 

roller skates (which nearly eliminate the effects of friction) has virtually no net external force acting on 

her, so she tends to remain at rest relative to the inertial frame of the earth. As the vehicle accelerates 

around her, she moves backward relative to the vehicle. In the same way, a passenger in a vehicle that is 

slowing down tends to continue moving with constant velocity relative to the earth, and so moves forward 

relative to the vehicle (Fig. 4.6b). A vehicle is also accelerating if it moves at a constant speed but is 

turning (Fig. 4.6c). In this case a passenger tends to continue moving relative to the earth at constant 

speed in a straight line; relative to the vehicle, the passenger moves to the side of the vehicle on the 

outside of the turn. 

 
Figure 4.6 - Riding in an accelerating vehicle 

In each case shown in Fig. 4.6, an observer in the vehicle’s frame of reference might be tempted to 

conclude that there is a net external force acting on the passenger, since the passenger’s velocity relative 

to the vehicle changes in each case. This conclusion is simplywrong; the net external force on the 

passenger is indeed zero. The vehicle observer’s mistake is in trying to apply Newton’s first law in the 

vehicle’s frame of reference, which is not an inertial frame and in which Newton’s first law isn’t valid. In 

this book we’ll use only inertial frames of reference. 

We’ve mentioned only one (approximately) inertial frame of reference: the earth’s surface. But 

there are many inertial frames. If we have an inertial frame of reference A, in which Newton’s first law is 

obeyed, then any second frame of reference B will also be inertial if it moves relative to A with constant 

velocity AB /


. We can prove this by using the relative-velocity relationship Eq. (3.35) from Section 3.5:  

 

 ./// ABBPAP 


+=
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Suppose that P is an object that moves with constant velocity AP /


with respect to an inertial 

frame A. By Newton’s first law the net external force on this object is zero. The velocity of P relative to 

another frame B has a different value, ABAPBP /// −=


. But if the relative velocity AB /


 
of the two 

frames is constant, then BP /


 is constant as well. Thus B is also an inertial frame; the velocity of P in 

this frame is constant, and the net external force on P is zero, so Newton’s first law is obeyed in B. 

Observers in frames A and B will disagree about the velocity of P, but they will agree that P has a 

constant velocity (zero acceleration) and has zero net external force acting on it.  

There is no single inertial frame of reference that is preferred over all others for formulating 

Newton’s laws. If one frame is inertial, then every other frame moving relative to it with constant velocity 

is also inertial. Viewed in this light, the state of rest and the state of motion with constant velocity are not 

very different; both occur when the vector sum of forces acting on the object is zero. 

 

 

4.3 Newton’s Second Law 
 

Newton’s first law tells us that when an object is acted on by zero net external force, the object 

moves with constant velocity and zero acceleration. In Fig. 4.7a (next page), a hockey puck is sliding to 

the right on wet ice. There is negligible friction, so there are no horizontal forces acting on the puck; the 

downward force of gravity and the upward normal force exerted by the ice surface sum to zero. So the net 

external force F


  acting on the puck is zero, the puck has zero acceleration, and its velocity is constant. 

 

 
 

Figure 4.7 - Using a hockey puck on a frictionless surface to explore the relationship between the net external force 

F


  on an object and the resulting acceleration aS of the object 
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But what happens when the net external force is 

not zero? In Fig. 4.7b we apply a constant horizontal 

force to a sliding puck in the same direction that the 

puck is moving. Then F


  is constant and in the same 

horizontal direction as 


. We find that during the time 

the force is acting, the velocity of the puck changes at a 

constant rate; that is, the puck moves with constant 

acceleration. The speed of the puck increases, so the 

acceleration a


 is in the same direction as 


 and F


 .  

In Fig. 4.7c we reverse the direction of the force 

on the puck so that F


  acts opposite to vS. In this case 

as well, the puck has an acceleration; the puck moves 

more and more slowly to the right. The acceleration a


 

in this case is to the left, in the same direction as F


 . 

As in the previous case, experiment shows that the 

acceleration is constant if F


  is constant. We conclude 

that a net external force acting on an object causes the 

object to accelerate in the same direction as the net 

external force. If the magnitude of the net external 

force is constant, as in Fig. 4.7b and Fig. 4.7c, then so is the magnitude of the acceleration. 

These conclusions about net external force and 

acceleration also apply to an object moving along a 

curved path. For example, Fig. 4.8 shows a hockey puck 

moving in a horizontal circle on an ice surface of 

negligible friction. A rope is attached to the puck and to a 

stick in the ice, and this rope exerts an inward tension 

force of constant magnitude on the puck. The net external 

force and acceleration are both constant in magnitude and 

directed toward the center of the circle. The speed of the 

puck is constant, so this is uniform circular motion (see 

Section 3.4). 

Figure 4.9a shows another experiment involving 

acceleration and net external force. We apply a constant 

horizontal force to a puck on a frictionless horizontal 

surface, using the spring balance described in Section 4.1 

with the spring stretched a constant amount. As in Figs. 

4.7b and Figs. 4.7c, this horizontal force equals the net 

external force on the puck. If we change the magnitude of 

the net external force, the acceleration changes in the 

same proportion.  

Doubling the net external force doubles the 

acceleration (Fig. 4.9b), halving the net external force 

halves the acceleration (Fig. 4.9c), and so on. 

Many such experiments show that for any given 

object, the magnitude of the acceleration is directly 

proportional to the magnitude of the net external force 

acting on the object. 

 

Mass and Force 

 

Our results mean that for a given object, the ratio of the magnitude || F


  of the net external force 

to the magnitude || aa


=  of the acceleration is constant, regardless of the magnitude of the net external 

force. We call this ratio the inertial mass, or simply the mass, of the object and denote it by m. That is, 

 
Figure 4.8 - A top view of a hockeypuck in 

uniform circular  motion on africtionless  

horizontal surface 

 
Figure 4.9 - The magnitude of an object’s 

acceleration a


 is directly proportional to the 

magnitude of the net external force F


 acting on 

the object of mass m 
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a

F
m

||



=  or maF = ||


 or .

||

m

F
a




=
     

 (4.4) 

 

Mass is a quantitative measure of inertia, which 

we discussed in Section 4.2. The last of the equations in 

Eqs. (4.4) says that the greater an object’s mass, the more 

the object “resists” being accelerated. When you hold a 

piece of fruit in your hand at the supermarket and move 

it slightly up and down to estimate its heft, you’re 

applying a force and seeing how much the fruit 

accelerates up and down in response. If a force causes a 

large acceleration, the fruit has a small mass; if the same 

force causes only a small acceleration, the fruit has a 

large mass. In the same way, if you hit a table-tennis ball 

and then a basketball with the same force, the basketball 

has much smaller acceleration because it has much 

greater mass. 

The SI unit of mass is the kilogram. We 

mentioned in Section 1.3 that the kilogram is officially 

defined in terms of the definitions of the second and the 

meter, as well as the value of a fundamental quantity 

called Planck’s constant. We can use this definition: 

One newton is the amount of net external force 

that gives an acceleration of 1 meter per second 

squared to an object with a mass of 1 kilogram. 

This definition allows us to calibrate the spring 

balances and other instruments used to measure forces. 

Because of the way we have defined the newton, it is 

related to the units of mass, length, and time. For Eqs. 

(4.4) to be dimensionally consistent, it must be true that 

 

1 newton = (1 kilogram)(1 meter per second 

squared) or 1 N = 1 kg  m/s2. 

 

We’ll use this relationship many times in the next 

few chapters, so keep it in mind. 

Here’s an application of Eqs. (4.4). Suppose we 

apply a constant net external force F


  to an object of known mass m1 and we find an acceleration of 

magnitude a1 (Fig. 4.10a). We then apply the same force to another object of unknown mass m2 , and we 

find an acceleration of magnitude a2 (Fig. 4.10b). Then, according to Eqs. (4.4), 

 

 2211 amam =
2

12

1 a

a

m

m
=  (same net external force).  (4.5) 

For the same net external force, the ratio of the masses of two objects is the inverse of the ratio of 

their accelerations. In principle we could use Eq. (4.5) to measure an unknown mass m2, but it is usually 

easier to determine mass indirectly by measuring the object’s weight. We’ll return to this point in Section 

4.4. 

When two objects with masses m1 and m2 are fastened together, we find that the mass of the 

composite object is always m1 + m2 (Fig. 4.10c). This additive property of mass may seem obvious, but it 

has to be verified experimentally. Ultimately, the mass of an object is related to the number of protons, 

electrons, and neutrons it contains. This wouldn’t be a good way to define mass because there is no 

 

Figure 4.10 - For a given net external force F


  

acting an object, the acceleration is inversely 

proportional to the mass of the object. Masses 

add like ordinary scalars 
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practical way to count these particles. But the concept of mass is the most fundamental way to 

characterize the quantity of matter in an object. 

 

 

Stating Newton’s Second Law 

 

Experiment shows that the net external force on an object is what causes that object to accelerate. 

If a combination of forces 1F


, 2F


, 3F


, and so on is applied to an object, the object will have the same 

acceleration vector a


 as when only a single force is applied, if that single force is equal to the vector sum 

...+++ 321 FFF


. In other words, the principle of superposition of forces (see Fig. 4.3) also holds true 

when the net external force is not zero and the object is accelerating. 

Equations (4.4) relate the magnitude of the net external force on an object to the magnitude of the 

acceleration that it produces. We have also seen that the direction of the net external force is the same as 

the direction of the acceleration, whether the object’s path is straight or curved. Finally, we’ve seen that 

the forces that affect an object’s motion are external forces, those exerted on the object by other objects in 

its environment. Newton wrapped up all these results into a single concise statement that we now call 

Newton’s second law of motion: 

 

NEWTON’S SECOND LAW OF MOTION: If a net external force acts on an object, the 

object accelerates. The direction of acceleration is the same as the direction of the net external 

force. The mass of the object times the acceleration vector of the object equals the net external force 

vector. 
 

In symbols, 

 

 
 

An alternative statement is that the acceleration of an object is equal to the net external force 

acting on the object divided by the object’s mass: 

 

 .
m

F
a


=




 
 

Newton’s second law is a fundamental law of nature, the basic relationship between force and 

motion. Most of the remainder of this chapter and all of the next are devoted to learning how to apply this 

principle in various situations. 

Equation (4.6) has many practical applications. You’ve actually been using it all your life to 

measure your body’s acceleration. In your inner ear, microscopic hair cells are attached to a gelatinous 

substance that holds tiny crystals of calcium carbonate called otoliths. When your body accelerates, the 

hair cells pull the otoliths along with the rest of your body and sense the magnitude and direction of the 

force that they exert. By Newton’s second law, the acceleration of the otoliths - and hence that of your 

body as a whole - is proportional to this force and has the same direction. In this way, you can sense the 

magnitude and direction of your acceleration even with your eyes closed! 

 

 

Using Newton’s Second Law 

 

At least four aspects of Newton’s second law deserve special attention. First, Eq. (4.6) is avector 

equation. Usually we’ll use it in component form, with a separate equation for eachcomponent of force 

and the corresponding component of acceleration: 
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This set of component equations is equivalent to the single vector Eq. (4.6).  

Second, the statement of Newton’s second law refers to external forces. As an example, how a 

kicked football moves isn’t affected by the internal forces that hold the pieces of the ball together. That’s 

why only external forces are included in the sum F


  in Eqs. (4.6) and (4.7). 

Third, Eqs. (4.6) and (4.7) are valid only when the mass m is constant. It’s easy to think of 

systems whose masses change, such as a leaking tank truck or a moving railroad car being loaded with 

coal. Such systems are better handled by using the concept of momentum; we’ll get to that in Chapter 8. 

Finally, Newton’s second law is valid in inertial frames of reference only, just like the first law. 

It’s not valid in the reference frame of any of the accelerating vehicles in Fig. 4.6; relative to any of these 

frames, the passenger accelerates even though the net external force on the passenger is zero. We’ll 

usually treat the earth as an adequate approximation to an inertial frame, although because of its rotation 

and orbital motion it is not precisely inertial. 

CAUTION! am


 is not a force. Even though the vector am


 is equal to the vector sum F


  of all 

the forces acting on the object, the vector am


 is not a force. Acceleration is the result of the net external 

force; it is not a force itself. It’s “common sense” to think that a “force of acceleration” pushes you back 

into your seat when your car accelerates forward from rest. But there is no such force; instead, your 

inertia causes you to tend to stay at rest relative to the earth, and the car accelerates around you  

(see Fig. 4.6a). The “common sense” confusion arises from trying to apply Newton’s second law where it 

isn’t valid - in the noninertial reference frame of an accelerating car. We’ll always examine motion 

relative to inertial frames of reference only, and we strongly recommend that you do the same in solving 

problems.  

In learning how to use Newton’s second law, we’ll begin in this chapter with examples of straight-

line motion. Then in Chapter 5 we’ll consider more general kinds of motion and develop more detailed 

problem-solving strategies. 

 

 

4.4 Mass and Weight 
 

The weight of an object is the gravitational force that the earth exerts on the object. (If you are on 

another planet, your weight is the gravitational force that planet exerts on you). Unfortunately, the terms 

“mass” and “weight” are often misused and interchanged in everyday conversation. It’s absolutely 

essential for you to understand clearly the distinctions between these two physical quantities. 

Mass characterizes the inertial properties of an object. Mass is what keeps the table setting on the 

table when you yank the tablecloth out from under it. The greater the mass, the greater the force needed to 

cause a given acceleration; this is reflected in Newton’s second law, amF


= . 

Weight, on the other hand, is a force exerted on an object by the pull of the earth. Mass and weight 

are related: Objects that have large mass also have large weight. A large stone is hard to throw because of 

its large mass, and hard to lift off the ground because of its large weight. 

To understand the relationship between mass and weight, note that a freely falling object has an 

acceleration of magnitude g (see Section 2.5). Newton’s second law tells us that a force must act to 

produce this acceleration. If a 1 kg object falls with an acceleration of 9.8 m/s2, the required force has 

magnitude 

 

 F = ma = (1 kg)(9.8 m/s2) = 9.8 kg m/s2 = 9.8 N. 

 



66 

The force that makes the object accelerate downward is its weight. Any object near the surface of 

the earth that has a mass of 1 kg must have a weight of 9.8 N to give it the acceleration we observe when 

it is in free fall. More generally, 

 

 
 

Hence the magnitude w of an object’s weight is directly proportional to its mass m. The weight of 

an object is a force, a vector quantity, and we can write Eq. (4.8) as a vector equation: 

 

 .gmw


=  (4.9) 

 

Remember that g is the magnitude of g


, the acceleration due to gravity, so g is always a positive 

number, by definition. Thus w, given by Eq. (4.8), is the magnitude of the weight and is also always 

positive. 
 

CAUTION! An object’s weight acts at all times. When keeping track of the external forces on 

an object, remember that the weight is present all the time, whether the object is in free fall or not. If we 

suspend an object from a rope, it is in equilibrium and its acceleration is zero. But its weight, given by  

Eq. (4.9), is still pulling down on it. In this case the rope pulls up on the object, applying an upward force. 

The vector sum of the external forces is zero, but the weight still acts.  

 

 

Variation of g with Location 

 

We’ll use g = 9.80 m/s2 for problems set on the earth (or, if the other data in the problem are given 

to only two significant figures, g = 9.8 m/s2). In fact, the value of g varies somewhat from point to point 

on the earth’s surface - from about 9.78 to 9.82 m/s2 - because the earth is not perfectly spherical and 

because of effects due to its rotation. At a point where g = 9.80 m/s2, the weight of a standard kilogram is 

w = 9.80 N.At a different point, where g = 9.78 m/s2, the weight is w = 9.78 N but the mass is still 1 kg. 

The weight of an object varies from one location to another; the mass does not. 

 

 

Measuring Mass and Weight 

 

In Section 4.3 we described a way to compare masses by comparing their accelerations when they 

are subjected to the same net external force. Usually, however, the easiest way to measure the mass of an 

object is to measure its weight, often by comparing with a standard. Equation (4.8) says that two objects 

that have the same weight at a particular location also have the same mass. We can compare weights very 

precisely; the familiar equal-arm balance can determine with great precision (up to 1 part in 106) when the 

weights of two objects are equal and hence when their masses are equal. 

The concept of mass plays two rather different roles in mechanics. The weight of an object (the 

gravitational force acting on it) is proportional to its mass as stated in the equation w = mg; we call the 

property related to gravitational interactions gravitational mass. On the other hand, we call the inertial 

property that appears in Newton’s second law ( amF


= ) the inertial mass. If these two quantities were 

different, the acceleration due to gravity might well be different for different objects. However, 

extraordinarily precise experiments have established that in fact the two are the same to a precision of 

better than one part in 1012. 

CAUTION! Don’t confuse mass and weight! The SI units for mass and weight are often misused 

in everyday life. For example, it’s incorrect to say “This box weighs 6 kg.” What this really means is that 
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the mass of the box, probably determined indirectly by weighing, is 6 kg. Avoid this sloppy usage in your 

own work! In SI units, weight (a force) is measured in newtons, while mass is measured in kilograms. ❙ 
 

 

4.5 Newton’s Third Law 
 

A force acting on an object is always the result of its 

interaction with another object, so forces always come in 

pairs. You can’t pull on a doorknob without the doorknob 

pulling back on you. When you kick a football, your foot 

exerts a forward force on the ball, but you also feel the force 

the ball exerts back on your foot. 

In each of these cases, the force that you exert on the 

other object is in the opposite direction to the force that 

object exerts on you. Experiments show that whenever two 

objects interact, the two forces that they exert on each other 

are always equal in magnitude and opposite in direction. 

This fact is called Newton’s third law of motion: 
 

NEWTON’S THIRD LAW OF MOTION: If object A exerts a force on object B (an 

“action”), then object B exerts a force on object A (a “reaction”). These two forces have the same 

magnitude but are opposite in direction. These two forces act on different objects. 
 

For example, in Fig. 4.11 BonAF


 
is the force applied by object A (first subscript) on object B 

(second subscript), and AonBF


 
is the force applied by object B (first subscript) on object A (second 

subscript). In equation form, 

 
It doesn’t matter whether one object is inanimate (like the football in Fig. 4.11) and the other is 

not (like the kicker’s foot): They necessarily exert forces on each other that obey Eq. (4.10). 

In the statement of Newton’s third law, “action” and “reaction” are the two opposite forces  

(in Fig. 4.11, BonAF


 
and AonBF


); we sometimes refer to them as an action-reaction pair. This is not 

meant to imply any cause-and-effect relationship; we can consider either force as the “action” and the 

other as the “reaction”. We often say simply that the forces are “equal and opposite,” meaning that they 

have equal magnitudes and opposite directions. 

CAUTION! The two forces in an action-reaction pair act on different objects. We stress that 

the two forces described in Newton’s third law act on different objects. This is important when you solve 

problems involving Newton’s first or second law, which involve the forces that act on an object. For 

instance, the net external force on the football in Fig. 4.11 is the vector sum of the weight of the ball and 

the force BonAF


 
exerted by kicker A on the ball B. You wouldn’t include the force AonBF



 
because this 

force acts on the kicker A, not on the ball.  

In Fig. 4.23 the action and reaction forces are contact forces that are present only when the two 

objects are touching. But Newton’s third law also applies to long-range forces that do not require physical 

contact, such as the force of gravitational attraction. A table-tennis ball exerts an upward gravitational 

force on the earth that’s equal in magnitude to the downward gravitational force the earth exerts on the 

ball. When you drop the ball, both the ball and the earth accelerate toward each other. The net force on 

each object has the same magnitude, but the earth’s acceleration is microscopically small because its mass 

is so great. Nevertheless, it does move! 

 

Figure 4.11 - Newton’s third law of motion 
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CAUTION! Contact forces need contact. If your fingers push on an object, the force you exert 

acts only when your fingers and the object are in contact. Once contact is broken, the force is no longer 

present even if the object is still moving.  

 

 

4.6 Free-Body Diagrams 
 

Newton’s three laws of motion contain all the basic principles we need to solve a wide variety of 

problems in mechanics. These laws are very simple in form, but the process of applying them to specific 

situations can pose real challenges. In this brief section we’ll point out three key ideas and techniques to 

use in any problems involving Newton’s laws. You’ll learn others in Chapter 5, which also extends the 

use of Newton’s laws to cover more complex situations. 

1. Newton’s first and second laws apply to a specific object. Whenever you use Newton’s 

first law, 0=F


, for an equilibrium situation or Newton’s second law, amF


= , for a nonequilibrium 

situation, you must decide at the beginning to which object you are referring. This decision may sound 

trivial, but it isn’t. 

2. Only forces acting on the object matter. The sum F


  includes all the forces that act on the 

object in question. Hence, once you’ve chosen the object to analyze, you have to identify all the forces 

acting on it. Don’t confuse the forces acting on a object with the forces exerted by that object on some 

other object. For example, to analyze a person walking, you would include in F


  the force that the 

ground exerts on the person as he walks, but not the force that the person exerts on the ground. These 

forces form an action–reaction pair and are related by Newton’s third law, but only the member of the 

pair that acts on the object you’re working with goes into F


 . 

 

 
Figure 4.12 - Examples of free-body diagrams. Each free-body diagram shows all of the external forces  

that act on the object in question 

 

3. Free-body diagrams are essential to help identify the relevant forces. A free-body 

diagram shows the chosen object by itself, “free” of its surroundings, with vectors drawn to show the 
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magnitudes and directions of all the forces that act on the object. (Here “body” is another word for 

“object”). Be careful to include all the forces acting on the object, but be equally careful not to include 

any forces that the object exerts on any other object. In particular, the two forces in an action–reaction 

pair must never appear in the same free-body diagram because they never act on the same object. 

Furthermore, never include forces that a object exerts on itself, since these can’t affect the object’s 

motion. 

When a problem involves more than one object, you have to take the problem apart and draw a 

separate free-body diagram for each object. In Fig. 4.12 we present three real-life situations and the 

corresponding complete free-body diagrams. Note that in each situation a person exerts a force on 

something in his or her surroundings, but the force that shows up in the person’s free-body diagram is the 

surroundings pushing back on the person.CAUTION! Forces in free-body diagrams. For a free-body 

diagram to be complete, you must be able to answer this question for each force: What other object is 

applying this force? If you can’t answer that question, you may be dealing with a nonexistent force. 

Avoid nonexistent forces such as “the force of acceleration” or “the am


 force”, discussed in Section 4.3.  

 

CHAPTER 4: SUMMARY 

 Force as a vector: Force is a 

quantitative measure of the interaction 

between two objects. It is a vector quantity. 

When several external forces act on an 

object, the effect on its motion is the same 

as if a single force, equal to the vector sum 

(resultant) of the forces, acts on the object 

1 2 3R F F F F= = + + +
 

 

 The net external force on an 

object and Newton’s first law: Newton’s 

first law states that when the vector sum of 

all external forces acting on a object (the net 

external force) is zero, the object is in 

equilibrium and has zero acceleration. If the 

object is initially at rest, it remains at rest; if 

it is initially in motion, it continues to move 

with constant velocity. This law is valid in 

inertial frames of reference only 

0F = . 

 

 Mass, acceleration, and Newton’s 

second law: The inertial properties of an 

object are characterized by its mass. 

Newton’s second law states that the 

acceleration of an object under the action of 

a given set of external forces is directly 

proportional to the vector sum of the forces 

(the net force) and inversely proportional to 

the mass of the object. Like Newton’s first 

law, this law is valid in inertial frames of 

reference only. In SI units, the unit of force 

is the newton (N), equal to 
21 kg m/s  

x x

y y

z z

F ma

F ma

F ma

F ma

=

=

=

=









 

 

 Weight: The weight w of an object 

is the gravitational force exerted on it by the 

earth. Weight is a vector quantity. The 

magnitude of the weight of an object at any 

specific location is equal to the product of 

its mass m and the magnitude of the 

acceleration due to gravity g at that location. 

The weight of an object depends on its 

w mg= . 
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location; its mass does not 

 Newton’s third law and action–

reaction pairs: Newton’s third law states 

that when two objects interact, they exert 

forces on each other that are equal in 

magnitude and opposite in direction. These 

forces are called action and reaction forces. 

Each of these two forces acts on only one of 

the two objects; they never act on the same 

object 

 on  on AA B BF F= − . 
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5 APPLYING NEWTON’S LAWS 
 

We saw in Chapter 4 that Newton’s three laws of motion, the foundation of classicalmechanics, 

can be stated very simply. But applying these laws to situationssuch as an iceboat skating across a frozen 

lake, a toboggan sliding down a hill, oran airplane making a steep turn requires analytical skills and 

problem-solving technique.In this chapter we’ll help you extend the problem-solving skills you began to 

develop inChapter 4. 

We’ll begin with equilibrium problems, in which we analyze the forces that act on anobject that is 

at rest or moving with constant velocity. We’ll then consider objects that arenot in equilibrium. For these 

we’ll have to take account of the relationship between forcesand acceleration. We’ll learn how to describe 

and analyze the contact force that acts on anobject when it rests on or slides over a surface. We’ll also 

analyze the forces that act on anobject that moves in a circle with constant speed. We close the chapter 

with a brief look atthe fundamental nature of force and the classes of forces found in our physical 

universe. 

 

 

5.1 Using Newton’s First Law: Particles in Equilibrium 
 

We learned in Chapter 4 that an object is in equilibrium when it is at rest or moving with constant 

velocity in an inertial frame of reference. A hanging lamp, a kitchen table, an airplane flying straight and 

level at a constant speed  − all are examples of objects in equilibrium. In this section we consider only the 

equilibrium of an object that can be modelled as a particle. (In Chapter 11 we’ll see how to analyze an 

object in equilibrium that can’t be represented adequately as a particle, such as a bridge that’s supported 

at various points along its span). The essential physical principle is Newton’s first law: 

 

  

(5.1)

 
 

This section is about using Newton’s first law to solve problems dealing with objects in 

equilibrium. Some of these problems may seem complicated, but remember that all problems involving 

particles in equilibrium are done in the same way. Problem-Solving Strategy 5.1 details the steps you 

need to follow for any and all such problems. Study this strategy carefully, look at how it’s applied in the 

worked-out examples, and try to apply it when you solve assigned problems. 

 

 

PROBLEM-SOLVING STRATEGY  

5.1  Newton’s First Law: Equilibrium of a Particle 

 

 

IDENTIFY the relevant concepts: 

• Use Newton’s first law,Eqs. (5.1), for any problem that involves forces acting on an object 

inequilibrium—that is, either at rest or moving with constant velocity.A car is in equilibrium when it’s 

parked, but also when it’s travelingdown a straight road at a steady speed. 

• If the problem involves more than one object and the objectsinteract with each other, you’ll 

also need to use Newton’s third law.This law allows you to relate the force that one object exerts on 

asecond object to the force that the second object exerts on the first one. 

• Identify the target variable(s). Common target variables inequilibrium problems include 

the magnitude and direction (angle) ofone of the forces, or the components of a force. 

 

 

SET UP the problem: 
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• Draw a very simple sketch of the physical situation, showingdimensions and angles. You 

don’t have to be an artist! 

• Draw a free-body diagram for each object that is in equilibrium.For now, we consider the 

object as a particle, so you can representit as a large dot. In your free-body diagram, do not include 

theother objects that interact with it, such as a surface it may be restingon or a rope pulling on it. 

• Ask yourself what is interacting with the object by contact or inany other way. On your 

free-body diagram, draw a force vectorfor each interaction. Label each force with a symbol for 

themagnitude of the force. If you know the angle at which a forceis directed, draw the angle accurately 

and label it. Include theobject’s weight, unless the object has negligible mass. If themass is given, use w = 

mg to find the weight. A surface in contactwith the object exerts a normal force perpendicular to the 

surface and possibly a friction force parallel to the surface. A rope or chain exerts a pull (never a push) in 

a direction along itslength. 

• Do not show in the free-body diagram any forces exerted by the object on any other object. 

The sums in Eqs. (5.1) include only forces that act on the object. For each force on the object, ask 

yourself “What other object causes that force?” If you can’t answer thatquestion, you may be imagining a 

force that isn’t there. 

• Choose a set of coordinate axes and include them in your freebody diagram. (If there is 

more than one object in the problem, choose axes for each object separately). Label the positive direction 

for each axis. If an object rests or slides on a plane surface, for simplicity choose axes that are parallel and 

perpendicular to this surface, even when the plane is tilted. 

 

 

EXECUTE the solution: 

• Find the components of each force along each of the object’s coordinate axes. Draw a 

wiggly line through each force vector that has been replaced by its components, so you don’t count it 

twice. The magnitude of a force is always positive, but its componentsmay be positive or negative. 

• Set the sum of all x-components of force equal to zero. In a separate equation, set the sum 

of all y-components equal to zero.(Never add x- and y-components in a single equation). 

• If there are two or more objects, repeat all of the above steps for each object. If the objects 

interact with each other, use Newton’sthird law to relate the forces they exert on each other. 

• Make sure that you have as many independent equations as the number of unknown 

quantities. Then solve these equations to obtain thetarget variables. 

 

 

EVALUATE your answer: 

• Look at your results and ask whether they make sense. When the result is a symbolic 

expression or formula, check to see that your formula works for any special cases (particular values or 

extreme cases for the various quantities) for which you can guess what the results ought to be.  

 

 

EXAMPLE 5.1 

A gymnast with mass mG = 50.0 kg suspends herself from the lower end of a hanging rope of 

negligible mass. The upper end of the rope is attached to the gymnasium ceiling. (a) What is the 

gymnast’s weight? (b) What force (magnitude and direction) does the rope exert on her? (c) What is the 

tension at the top of the rope? 

 

 

IDENTIFY and SET UP 

The gymnast and the rope are in equilibrium,so we can apply Newton’s first law to both objects. 

We’ll use Newton’sthird law to relate the forces that they exert on each other. The targetvariables are the 

gymnast’s weight, wG; the force that the bottom of the rope exerts on the gymnast (call itTR on G); and the 

force that theceiling exerts on the top of the rope (call it TCon R). Figure 5.1 shows our sketch of the 

situation and free-body diagrams for the gymnastand for the rope. We take the positive y-axis to be 

upward in each diagram. Each force acts in the vertical direction and so has only a y-component. 
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The forces TR on G (the 

upward force of the rope on the 

gymnast, Fig. 5.1b) and TG on R (the 

downward force of the gymnast on 

the rope, Fig. 5.1c) form an action–

reaction pair. By Newton’s third 

law, theymust have the same 

magnitude. 

Note that Fig. 5.1c includes 

only the forces that act on the rope. 

Inparticular, it doesn’t include the 

force that the rope exerts on the 

ceiling. 

      Figure 5.1 - Free-body diagrams for the gymnastand for the rope 

 

 

EXECUTE  

(a) The magnitude of the gymnast’s weight is the product of her mass and the acceleration due 

to gravity, g: 

 

( )( )250.0 kg 9.80 m/s 490 NG Gw m g= = = . 

 

(b) The gravitational force on the gymnast (her weight) points in the negative y-direction, so its y-

component is –wG. The upward force of the rope on the gymnast has unknown magnitude TR on G and 

positive y-component +TR on G. We find this by using Newton’s first law from Eqs. (5.1): 

 

( )R on G G

R on G G

Gymnast:     0  so

490 N

yF T w

T w

= + − =

= =



 
 

The rope pulls up on the gymnast with a force TR on G of magnitude 490 N. (By Newton’s third 

law, the gymnast pulls down on the rope with a force of the same magnitude, TG on R = 490 N). (c) We 

have assumed that the rope is weightless, so the only forces on it are those exerted by the ceiling (upward 

force of unknown magnitude TC on R) and by the gymnast (downward force of magnitude TG on R = 490 N). 

From Newton’s first law, the net vertical force on the rope in equilibrium must be zero: 

 

( )C on G G on R

C on G G on R

Rope:     0  so

490 N

yF T T

T T

= + − =

= =


 

 

 

EVALUATE 

The tension at any point in the rope is the magnitude of theforce that acts at that point. For this 

weightless rope, the tension TG on Rat the lower end has the same value as the tension TC on R at the 

upperend. For such an ideal weightless rope, the tension has the same valueat any point along the rope’s 

length.  

 

 

KEYCONCEPT. The sum of all the external forces on an object inequilibrium is zero. The 

tension has the same value at either end of arope or string of negligible mass. 
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5.2 Using Newton’s Second Law: Dynamics of Particles 
 

We are now ready to discuss dynamics problems. In these problems, we apply Newton’s second 

law to objects on which the net force is not zero. These objects are not in equilibrium and hence are 

accelerating: 

 

           

(5.2)

 

 

CAUTION! ma  doesn’t belong in free-body diagrams. Remember that the quantity ma  is the 

result of forces acting on an object, not a force itself. When you draw the free-body diagram for an 

accelerating object (like the fruit in Fig. 5.2a), never include the “ ma  force” because there is no such 

force (Fig. 5.2c). Sometimes we draw the acceleration vector a alongside a free-body diagram,  

as in Fig. 5.2b. But we never draw the acceleration vector with its tail touching the object (a position 

reserved exclusively for forces that act on the object).  

 

Figure 5.2 - Correct and incorrect free-body diagrams for a falling object 

 

The following problem-solving strategy is very similar to Problem-Solving Strategy 5.1 for 

equilibrium problems in Section 5.1. Study it carefully, watch how we apply it in our examples, and use it 

when you tackle the end-of-chapter problems. You can use this strategy to solve any dynamics problem. 
 

 

PROBLEM-SOLVING STRATEGY  

5.2 Newton’s Second Law: Dynamics of Particles 
 

 

IDENTIFY the relevant concepts: 

• Use Newton’s second law, Eqs. (5.2), for any problem that involves forces acting on an 

acceleratingobject. 

• Identify the target variable – usually an acceleration or a force. If the target variable is 

something else, you’ll need to select another concept to use. For example, suppose the target variable is 

how fast a sled is moving when it reaches the bottom of a hill. Newton’s second law will let you find the 

sled’s acceleration; you’ll then use the constant-acceleration relationshipsto find velocity from 

acceleration. 
 

 

SET UP the problem: 

• Draw a simple sketch of the situation that shows each moving object. For each object, 

draw a free-body diagram that shows all the forces acting on the object. [The sums in Eqs. (5.2) include 

the forces that act on the object, not the forces that it exerts on anything else.] Make sure you can answer 
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the question “What other object is applying this force?” for each force in your diagram. Never include the 

quantity ma  in your free-body diagram;it’s not a force! 

• Label each force with an algebraic symbol for the force’s magnitude. Usually, one of the 

forces will be the object’s weight; it’susually best to label this as w = mg. 

• Choose your x- and y-coordinate axes for each object, and show them in its free-body 

diagram. Indicate the positive direction for each axis. If you know the direction of the acceleration, it 

usually simplifies things to take one positive axis along that direction. If your problem involves two or 

more objects that accelerate in different directions, you can use a different set of axes for eachobject.  

• In addition to Newton’s second law, F ma= , identify any other equations you might 

need. For example, you might need one or more of the equations for motion with constant acceleration. If 

more than one object is involved, there may be relationships among their motions; for example, they may 

be connected by a rope. Express any such relationships as equations relating the accelerations of the 

various objects. 
 

 

EXECUTE the solution: 

• For each object, determine the components of the forces along each of the object’s 

coordinate axes. When you represent a force in terms of its components, draw a wiggly line through the 

originalforce vector to remind you not to include it twice. 

• List all of the known and unknown quantities. In your list, identifythe target variable or 

variables. 

• For each object, write a separate equation for each component of Newton’s second law, as 

in Eqs. (5.2). Write any additional equations that you identified in step 4 of “Set Up.” (You need as 

manyequations as there are target variables). 

• Do the easy part—the math! Solve the equations to find the targetvariable(s). 
 

EVALUATEyour answer: 

Does your answer have the correct units? (When appropriate, use the conversion  
21 N = 1 kg m/s ). Does it have the correct algebraic sign? When possible, consider particular values or 

extreme cases of quantities and compare the results with your intuitive expectations. Ask, “Does this 

result make sense?” 
 

EXAMPLE 5.2 

An iceboat is at rest on a frictionless horizontal surface. Due to the blowing wind, 4.0 s after the 

iceboat is released, it is moving to the right at 6.0 m/s (about 22 km/h). What constant horizontal force FW 

does the wind exert on the iceboat? The combined mass of iceboat and rider is 200 kg. 

 

 

IDENTIFY and SET UP 

Our target variable is one of the 

forces (FW) acting on the accelerating 

iceboat, so we need to use Newton’s 

second law (Fig.5.3). The forces acting on 

the iceboat and rider (considered as a unit) 

are the weight w, the normal force n 

exerted by the surface, and the horizontal 

force FW. Figure 5.3b shows the free-body 

diagram. The net force and hence the 

acceleration are to the right, so we chose 

the positive  

x-axis in this direction. The acceleration 

isn’t given; we’ll need to find it. Since the 

wind is assumed to exert a constant force, 

 
Figure 5.3 
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the resulting acceleration is constant and we can use one of the constant-acceleration formulas from 

Section 2.4. 

The iceboat starts at rest (its initial x-velocity is υ0x = 0) and it attains an x-velocity υx = 6.0 m/s 

after an elapsed time t = 4.0 s. To relate the x-acceleration ax to these quantities we use υx = υ0x + axt. 

There is no vertical acceleration, so we expect that the normal force on the iceboat is equal in magnitude 

to the iceboat’s weight. 
 

 

EXECUTE  

The known quantities are the mass m = 200 kg, the initial and final x-velocities υ0x = 0 and 

υx = 6.0 m/s, and the elapsed time t = 4.0 s. There are three unknown quantities: the acceleration ax,  

the normal force n, and the horizontal force FW. Hence we need three equations. 

The first two equations are the x- and y-equations for Newton’s second law, Eqs. (5.2).  

The force FW is in the positive x-direction, while the forces n and w = mg are in the positive and negative 

y-directions, respectively. Hence we have 

( )

W

0   so   

x x

y

F F ma

F n mg n mg

= =

= + − = =



 . 

The third equation is equation for constant acceleration: 

 

0x x xa t = + .
 

 

To find FW, we first solve this third equation for ax and then substitute the result into the  

xF  equation: 

 

( )( )

20

2 2

W

6.0 m/s 0
1.5 m/s

4.0 s

200 kg 1.5 m/s 300 kg m/s

x x
x

x

a
t

F ma

 − −
= = =

= = =  .

 

 

Since 
21 kg m/s 1 N = , the final answer is 

 

W 300 NF = . 

 

 

EVALUATE 

Our answers for FW and n have the correct units for a force, and (as expected) the magnitude n of 

the normal force is equal to mg. Does it seem reasonable that the force FW is substantially less than the 

weight of the boat, mg? 

 

 

KEYCONCEPT. For problems in which an object is accelerating, it’s usually best to choose one 

positive axis to be in the direction of the acceleration. 

 

 

5.3 Friction Forces 
 

We’ve seen several problems in which an object rests or slides on a surface that exerts forces on 

the object. Whenever two objects interact by direct contact (touching) of their surfaces, we describe the 

interaction in terms of contact forces. The normal force is one example of a contact force; in this section 

we’ll look in detail at another contact force, the force of friction.  
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Friction is important in many aspects of everyday life. The oil in a car engine minimizes friction 

between moving parts, but without friction between the 

tires and the road we couldn’t drive or turn the car. Air 

drag—the friction force exerted by the air on an object 

moving through it—decreases automotive fuel economy 

but makes parachutes work. Without friction, nails 

would pull out and most forms of animal locomotion 

would be impossible (Fig. 5.4). 

 

 

Kinetic and Static Friction 

 

When you try to slide a heavy box of books 

across the floor, the box doesn’t move at all unless you 

push with a certain minimum force. Once the box starts 

moving, you can usually keep it moving with less force 

than you needed to get it started. If you take some of the 

books out, you need less force to get it started or keep it 

moving. What can we say in general about this behavior?  

First, when an object rests or slides on a surface, we can think of the surface as exerting a single 

contact force on the object, with force components perpendicular and parallel to the surface (Fig. 5.5). 

The perpendicular component vector is the normal force, 

denoted by n . The component vector parallel to  

the surface (and perpendicular to n ) is the friction 

force, denoted by f . If the surface is frictionless, then f  is 

zero but there is still a normal force. (Frictionless surfaces 

are an unattainable idealization, like a massless rope. But we 

can approximate a surface as frictionless if the effects of 

friction are negligibly small). The direction of the friction 

force is always such as to oppose relative motion of the two 

surfaces. 

The kind of friction that acts when an object slides 

over a surface is called a kinetic friction force kf . The 

adjective “kinetic” and the subscript “k” remind us that the 

two surfaces are moving relative to each other. The 

magnitude of the kinetic friction force usually increases 

when the normal force increases. This is why it takes more 

force to slide a full box of books across the floor than an 

empty one. Automotive brakes use the same principle: The harder the brake pads are squeezed against the 

rotating brake discs, the greater the braking effect. In many cases the magnitude of the kinetic friction 

force kf  is found experimentally to be approximately proportional to the magnitude n of the normal 

force: 

 

  
(5.3) 

 

Here k  (pronounced “mu-sub-k”) is a constant called the coefficient of kinetic friction. The more 

slippery the surface, the smaller this coefficient. Because it is a quotient of two force magnitudes, k  is a 

pure number without units. 

 

 
 

Figure 5.4 - There is friction between the feet of 

this caterpillar (the larval stage of a butterfly of 

the family Papilionidae) and the surfaces over 

which it walks. Without friction, the caterpillar 

could not move forward or climb over obstacles 

 

 

Figure 5.5 - When a block is pushed or pulled 

over a surface, the surface exerts a contact 

force on it 
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CAUTION! Friction and normal forces are always 

perpendicular. Remember that Eq. (5.3) is not a vector equation 

because kf  and n  are always perpendicular. Rather, it is a scalar 

relationship between the magnitudes of the two forces. 

Equation (5.3) is only an approximate representation of a 

complex phenomenon. On a microscopic level, friction and 

normal forces result from the intermolecular forces (electrical in 

nature) between two rough surfaces at points where they come 

into contact (Fig. 5.6). As a box slides over the floor, bonds 

between the two surfaces form and break, and the total number of 

such bonds varies. Hence the kinetic friction force is not perfectly 

constant. Smoothing the surfaces can actually increase friction, 

since more molecules can interact and bond; bringing two smooth 

surfaces of the same metal together can cause a “cold weld.” 

Lubricating oils work because an oil film between two surfaces 

(such as the pistons and cylinder walls in a car engine) prevents 

them from coming into actual contact. 

Table 5.1 lists some representative values of 

k . Although these values are givenwith two 

significant figures, they are only approximate, since 

friction forces can alsodepend on the speed of the 

object relative to the surface. For now we’ll ignore 

this effectand assume that k  and kf  are independent 

of speed, in order to concentrate onthe simplest cases. 

Table 5.1 also lists coefficients of static friction; 

we’ll define theseshortly. 

Friction forces may also act when there is no 

relative motion. If you try to slide a boxacross the 

floor, the box may not move at all because the floor 

exerts an equal and oppositefriction force on the box. 

This is called a static friction force Sf . 

In Fig. 5.7a, the box is at rest, in equilibrium, 

under the action of its weight w  and the upward 

normal force n . The normal force is equal in 

magnitude to the weight (n = w) and is exerted on the 

box by the floor. Now we tie a rope to the box (Fig. 5.7b) and gradually increase the tension T in the rope. 

At first the box remains at rest because the force of static friction Sf fs also increases and stays equal in 

magnitude to T.  

At some point T becomes greater than the maximum static friction force Sf  the surface can exert. 

Then the box “breaks loose” and starts to slide. Figure 5.7c shows the forces when T is at this critical 

value. For a given pair of surfaces the maximum value of Sf  depends on the normal force. Experiment 

shows that in many cases this maximum value, called ( )S max
f , is approximately proportional to n; we call 

the proportionality factor S the coefficient of static friction. Table 5.1 lists some representative values 

of S . In a particular situation, the actual force of static friction can have any magnitude between zero 

(when there is no other force parallel to the surface) and a maximum value given by Sn : 

  

(5.4) 

 
 

Figure 5.6 - A microscopic view of the 

friction and normal forces 

 

Table 5.1 - Approximate Coefficients of Friction 

Materials Coefficient 

of Static 

Friction, 

S  

Coefficient 

of Kinetic 

Friction, 

k  

Steel on steel 0.74 0.57 

Aluminum on steel 0.61 0.47 

Copper on steel 0.53 0.36 

Brass on steel 0.51 0.44 

Zinc on cast iron 0.85 0.21 

Copper on cast iron 1.05 0.29 

Glass on glass 0.94 0.40 

Copper on glass 0.68 0.53 

Teflon on Teflon 0.04 0.04 

Teflon on steel 0.04 0.04 

Rubber on concrete 

(dry) 

1.0 0.8 

Rubber on concrete 

(wet) 

0.30 0.25 
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Like Eq. (5.3), this is a relationship between magnitudes, not a vector relationship. The equality 

sign holds only when the applied force T has reached the critical value at which motion is about to start 

(Fig. 5.7c). When T is less than this value (Fig. 5.6b), the inequality sign holds. In that case we have to 

use the equilibrium conditions ( 0F = ) to find Sf . If there is no applied force (T = 0) as in Fig. 5.7a, 

then there is no static friction force either ( S 0f = ).  

 

 
Figure 5.7 - When there is no relative motion, the magnitude of the static friction force Sf  is less than or 

equal to Sn . When there is relative motion, the magnitude of the kinetic friction force kf  equals kn
 

 

As soon as the box starts to slide (Fig. 5.6d), the 

friction force usually decreases (Fig. 5.7e); it’s easier to keep 

the box moving than to start it moving. Hence the coefficient 

of kinetic friction is usually less than the coefficient of static 

friction for any given pair of surfaces, as Table 5.1 shows.  

In some situations the surfaces will alternately stick 

(static friction) and slip (kinetic friction). This is what causes 

the horrible sound made by chalk held at the wrong angle on a 

blackboard and the shriek of tires sliding on asphalt pavement. 

A more positive example is the motion of a violin bow against 

the string.  

In the linear air tracks used in physics laboratories, 

gliders move with very little friction because they are 

supported on a layer of air. The friction force is velocity 

dependent, but at typical speeds the effective coefficient of 

friction is of the order of 0.001. 

 

 

Rolling Friction 

 

It’s a lot easier to move a loaded filing cabinet across a 

horizontal floor by using a cartwith wheels than by sliding it. 

APPLICATION. Static Friction and 

Windshield Wipers 

The squeak of windshield wipers on 

dry glass is a stick-slip phenomenon. 

The moving wiper blade sticks to the 

glass momentarily, then slides when 

the force applied to the blade by the 

wiper motor overcomes the maximum 

force of static friction. When the glass 

is wet from rain or windshield cleaning 

solution, friction is reduced and the 

wiper blade doesn’t stick. 
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How much easier? We can define a coefficient of rollingfriction r , which is the horizontal force needed 

for constant speed on a flat surface dividedby the upward normal force exerted by the surface. 

Transportation engineers call r  the tractive resistance. Typical values of r are 0.002 to 0.003 for steel 

wheels on steelrails and 0.01 to 0.02 for rubber tires on concrete. These values show one reason trains 

aregenerally much more fuel efficient than trucks. 

 

 

Fluid Resistance and Terminal Speed 

 

Sticking your hand out the window of a fast-moving car will convince you of the existence of 

fluid resistance, the force that a fluid (a gas or liquid) exerts on an object moving through it. The moving 

object exerts a force on the fluid to push it out of the way. By Newton’s third law, the fluid pushes back 

on the object with an equal and opposite force. 

The direction of the fluid resistance force acting on an object is always opposite the direction of 

the object’s velocity relative to the fluid. The magnitude of the fluid resistance force usually increases 

with the speed of the object through the fluid. This is very different from the kinetic friction force 

between two surfaces in contact, which we can usually regard as independent of speed. 

 

For small objects moving at very low speeds, the magnitude f of the fluid resistance force is 

approximately proportional to the object’s speed  : 

 

     (fluid resistance at low speed)f k= ,         (5.5) 

 

where k is a proportionality constant that depends on the 

shape and size of the object and the properties of the fluid. 

Equation (5.5) is appropriate for dust particles falling in air 

or a ball bearing falling in oil. For larger objects moving 

through air at the speed of a tossed tennis ball or faster, the 

resisting force is approximately proportional to 2  rather 

than to  . 

It is then called air drag or simply drag. Airplanes, 

falling raindrops, and bicyclists all experience air drag. In 

this case we replace Eq. (5.5) by 

 
2      (fluid resistance at high speed)f D= .      (5.6)

 

 

Because of the 2 dependence, air drag increases rapidly with increasing speed. The air drag on a typical 

car is negligible at low speeds but comparable to or greater than rolling resistance at highway speeds. The 

value of D depends on the shape and size of the object and on the density of the air. You should verify 

that the units of the constant k in Eq. (5.5) are N s/m or kg/s, and that the units of the constant D in  

Eq. (5.6) are 2 2N s /m  or kg/m. 

Because of the effects of fluid resistance, an object falling in a fluid does not have a constant 

acceleration. To describe its motion, we can’t use the constant-acceleration relationships; instead, we 

have to start over with Newton’s second law. As an example, suppose you drop a metal ball at the surface 

of a bucket of oil and let it fall to the bottom (Fig. 5.8). The fluid resistance force in this situation is given 

by Eq. (5.5). What are the acceleration, velocity, and position of the metal ball as functions of time? 

Figure 5.8b shows the free-body diagram. We take the positive y-direction to be downward and 

neglect any force associated with buoyancy in the oil. Since the ball is moving downward, its speed   is 

equal to its y-velocity y  and the fluid resistance force is in the –y-direction. There are no x-components, 

so Newton’s second law gives 

 

 
Figure 5.8 - Motion with fluid resistance 
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 ( )y y yF mg k ma= + − = . (5.7) 

 

When the ball first starts to move, 0y =  , the resisting force is zero and the initial acceleration is ya g= . 

As the speed increases, the resisting force also increases, until finally it is equal in magnitude to the 

weight. At this time 0ymg k− = , the acceleration is zero, and there is no further increase in speed.  

The final speed t , called the terminal speed, is given by t 0mg k− = , or 

 

 t      (terminal speed, fluid resistance )
mg

f k
k

 = = . (5.8) 

 

Figure 5.9 shows how the acceleration, velocity, and position vary with time. As time goes by, the 

acceleration approaches zero and the velocity approaches t  (remember that we chose the positive  

y-direction to be down). The slope of the graph of y versus t becomes constant as the velocity becomes 

constant. 

 
Figure 5.9 - Graphs of the motion of an object falling without fluid resistance and with fluid resistance 

proportional to the speed 
 

To see how the graphs in Fig. 5.9 are derived, we must find the relationship between velocity and 

time during the interval before the terminal speed is reached. We go back to Newton’s second law for the 

falling ball, Eq. (5.7), which we rewrite with y ya d dt= : 

 

 
y

y

d
m mg k

dt


= − .  

 

After rearranging terms and replacing /mg k  by t , we integrate both sides, noting that 0y =  

when 0t = : 
 

 
0 0

t

ty

y

d k
dt

m

 

 
= −

−  ,  

 

which integrates to 

 

( )t /

t t

ln     or    1
y y k m tk

t e
m

  

 

−−
= − − = ,

  
 

and finally 

 
( )/

t 1
k m t

y e 
− = −

  . (5.9) 

 

Note that y becomes equal to the terminal speed t  only in the limit that t → ; the ball cannot attain 

terminal speed in any finite length of time.  
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 The derivative of y  in Eq. (5.9) gives ya  as a 

function of time, and the integral of y  gives y as a 

function of time. We leave the derivations for you to 

complete; the results are 
 

 
( )/k m t

ya ge
−

= . (5.10) 

 

 ( )( )/

t 1
k m tm

y t e
k


− 

= − − 
 

. (5.11) 

 

Now look again at Fig. 5.9, which shows graphs of these 

three relationships.  

In deriving the terminal speed in Eq. (5.8), we 

assumed that the fluid resistance force is proportional to 

the speed. For an object falling through the air at high 

speeds, so that the fluid resistance is equal to 2D  as in 

Eq. (5.6), the terminal speed is reached when 2D  equals 

the weight mg (Fig. 5.10a).  

You can show that the terminal speed t  is given by 

 

 
2

t      (terminal speed, fluid resistance )
mg

f D
D

 = = .

 (5.12) 

This expression for terminal speed explains why 

heavy objects in air tend to fall fasterthan light objects. 

Two objects that have the same physical size but different 

mass (say,a table-tennis ball and a lead ball with the same 

radius) have the same value of D butdifferent values of m. 

The more massive object has a higher terminal speed and 

fallsfaster. The same idea explains why a sheet of paper 

falls faster if you first crumple itinto a ball; the mass m is the same, but the smaller  size makes D smaller 

(less air dragfor a given speed) and t larger. Skydivers use the same principle to control their 

descent(Fig. 5.10b). 

Figure 5.11 shows the trajectories of a baseball 

with and without air drag, assuming a coefficient 
31.3 10  kg/mD −=   (appropriate for a batted ball at sea 

level). Both the range of the baseball and the maximum 

height reached are substantially smaller than the zero-

drag calculation would lead you to believe. Air drag is 

an important part of the game of baseball! 

 

 

EXAMPLE 5.3 Terminal speed of a skydiver 

 For a human body falling through air in a spread-

eagle position (Fig. 5.10b), the numerical value of the 

constant D in Eq. (5.6) is about 0.25 kg/m. Find the 

terminal speed for a 50 kg skydiver. 
 

IDENTIFY and SET UP 

 This example uses the relationship among 

terminal speed, mass, and drag coefficient. We use Eq. (5.12) to find the target variable t . 

 
Figure 5.10 - (a) Air drag and terminalspeed.  

(b) By changing the positions of theirarms and 

legs while falling, skydivers canchange the 

value of the constant D in Eq.(5.6) and hence 

adjust the terminal speed oftheir fall  

[Eq. (5.12)] 

 

 
 

Figure 5.11 - Computer-generated trajectoriesof a 

baseball launched at 50 m/s at35º above the 

horizontal. Note that thescales are different on the 

horizontaland vertical axes 
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 EXECUTE  

 We find for 50 kgm = : 
 

( )( )2

t

50 kg 9.8 m/s
44 m/s (about 160 km/h)

0.25 kg/m

mg

D
 = = = . 

 

 

EVALUATE 

 The terminal speed is proportional to the square root of the skydiver’s mass. A skydiver with the 

same drag coefficient D but twice the mass would have a terminal speed 2 1.41= times greater, or  

63 m/s. (A more massive skydiver would also have more frontal area and hence a larger drag coefficient, 

so his terminal speed would be a bit less than 63 m/s). Even the 50 kg skydiver’s terminal speed is quite 

high, so skydives don’t last very long. A drop from 2800 m to the surface at the terminal speed takes only

( ) ( )2800 m / 44 m/s 64 s= . 

When the skydiver deploys the parachute, the value of D increases greatly. Hence the terminal 

speed of the skydiver with parachute decreases dramatically to a much lower value. 

 

 

KEYCONCEPT. A falling object reaches its terminal speed when the upward force of fluid 

resistance equals the downward force of gravity. Depending on the object’s speed, use either Eq. (5.8) or 

Eq. (5.12) to find the terminal speed. 
 

 

5.4 Dynamics of Circular Motion 

In case of uniform circular motion, when a particle moves in a circular path with constant speed, 

the particle’s acceleration has a constant magnitude rada  given by 

 

 

 
 

 

 
 

Figure 5.12 - Net force, acceleration, and velocity 

in uniform circular motion 

 
Figure 5.13 - What happens if the inward 

radial force suddenly ceases to act on an 

object in circular motion? 
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(5.13) 

 

  

The subscript “rad” is a reminder that at each point the acceleration points radially inward toward the 

center of the circle, perpendicular to the instantaneous velocity. This acceleration is often called 

centripetal acceleration or radial acceleration. We can also express the centripetal acceleration rada  in 

terms of the period T, the time for one revolution: 

 
2 R

T



= . (5.14) 

In terms of the period, rada  is  

 

  (5.15) 

 

Uniform circular motion, like all other motion of a particle, is governed by Newton’s second law. 

To make the particle accelerate toward the center of the circle, the net force F  on the particle must 

always be directed toward the center (Fig. 5.12). The magnitude of the acceleration is constant, so the 

magnitude Fnet of the net force must also be constant. If the inward net force stops acting, the particle flies 

off in a straight line tangent to the circle (Fig. 5.13). 

 The magnitude of the radial acceleration is given 

by
2

rad /a R= , so the magnitude Fnet of the net force on 

a particle with mass m in uniform circular motion must 

be 

 

 

2

net rad  

(uniform circular motion)

F ma m
R


= =

.

 (5.16) 

 

Uniform circular motion can result from any 

combination of forces, just so the net force F  is 

always directed toward the center of the circle and has a 

constant magnitude. Notethat the object need not move 

around a complete circle: Equation (5.16) is valid for 

anypath that can be regarded as part of a circular arc. 

CAUTION! Avoid using “centrifugal force”.  

Figure 5.14 shows a correct free-body diagram 

foruniform circular motion (Fig. 5.14a) and an incorrect 

diagram (Fig. 5.14b). Figure 5.14b is incorrectbecause it 

includes an extra outward force of magnitude ( )2m R  

to “keep the object out there”or to “keep it in 

equilibrium”. There are three reasons not to include such 

an outward force, calledcentrifugal force (“centrifugal” means “fleeing from the center”). First, the object 

does not “stayout there”: It is in constant motion around its circular path. Because its velocity is 

constantly changingin direction, the object accelerates and is not in equilibrium. Second, if there were an 

outwardforce that balanced the inward force, the net force would be zero and the object would move in 

 
 

Figure 5.14 - Right and wrong ways to 

depictuniform circular motion 
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astraight line, not a circle (Fig. 5.13). Third, the quantity ( )2m R  is not a force; it corresponds tothe ma

side of F ma= and does not appear in F  (Fig. 5.14a). It’s true that when you ride in acar that goes 

around a circular path, you tend to slide to the outside of the turn as though there was a “centrifugal 

force”. But what happens is that you tend to keep movingin a straight line, and the outer side of the car 

“runs into” you as the car turns. In an inertialframe of reference there is no such thing as “centrifugal 

force”. We won’t mention this termagain, and we strongly advise you to avoid it. 

 

Banked Curves and the Flight of Airplanes 

 

When an airplane is flying in a straight line at a constant 

speed and at a steady altitude, the airplane’s weight is exactly 

balanced by the lift force L  exerted by the air. (The upward lift 

force that the air exerts on the wings is a reaction to the 

downward push the wings exert on the air as they move 

through it). To make the airplane turn, the pilot banks the 

airplane to one side so that the lift force has a horizontal 

component, as Fig. 5.15 shows. (The pilot also changes the 

angle at which the wings “bite” into the air so that the vertical 

component of lift continues to balance the weight). The bank 

angle is related to the airplane’s speed  and the radius R of the 

turn by the expression:
2tan gR = . For an airplane to make 

a tight turn (small R) at high speed (large  ), tan  must be 

large and the required bank angle  must approach 90º.  

 

 

EXAMPLE 5.4 Uniform circular motion in a vertical circle 

A passenger on a funfair Ferris wheel moves in a vertical circle of radius R with constant speed  . 

The seat remains upright during the motion. Find expressions for the force the seat exerts on the 

passenger when at the top of the circle and when at the bottom. 

 

 

IDENTIFY and SET UP 

The target variables are Tn , the 

upward normal force the seat applies to the 

passenger at the top of the circle, and Bn , the 

normal force at the bottom. We’ll find these 

by using Newton’s second law and the 

uniform circular motion equations.  

Figure 5.16 shows the passenger’s 

velocity and acceleration at the two positions. 

The acceleration always points toward the 

center of the circle - downward at the top of 

the circle and upward at the bottom of the 

circle. At each position the only forces acting 

are vertical: the upward normal force and the 

downward force of gravity. Hence we need 

only the vertical component of Newton’s second law. Figures 5.16b and 5.16c show free-body diagrams 

for the two positions. We take the positive y-direction as upward in both cases (that is, opposite the 

direction of the acceleration at the top of the circle). 

 

 

 

 
Figure 5.15 - An airplane banks to one 

side in order to turn in that direction. 

Thevertical component of the lift force L  
balancesthe force of gravity; the 

horizontal component of L  causes  

the acceleration 
2 R  

 
 

Figure 5.16 - Sketch for this problem 
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EXECUTE  

At the top the acceleration has magnitude 2 R , but its verticalcomponent is negative because its 

direction is downward. Hence 2

ya R= − and Newton’s second law tells us that 

 

( )
2

T

2

T

Top:    or

1

yF n mg m
R

n mg
gR





= + − = −

 
= − 

 


 

 

At the bottom the acceleration is upward, so 2

ya R= +  and Newton’ssecond law says 

 

( )
2

B

2

B

Bottom:    or

1

yF n mg m
R

n mg
gR





= + − = +

 
= + 

 


 

 

 

EVALUATE 

Our result for Tn tells us that at the top of the Ferris wheel, the upward force the seat applies to the 

passenger is smaller in magnitude than the passenger’s weight w mg= . If the ride goes fast enough that
2g R− becomes zero, the seat applies no force, and the passenger is about to become airborne. If   

becomes still larger, Tn becomes negative; this means that a downward force (such as from a seat belt) is 

needed to keep the passenger in the seat. By contrast, the normal force Bn at the bottom is always greater 

than the passenger’s weight. You feel the seat pushing up on you more firmly than when you are at rest. 

You can see that Tn  and Bn are the values of the passenger’s apparent weight at the top and bottom of the 

circle. 

 

 

KEYCONCEPT. Even when an object moves with varying speed along a circular path, at any 

point along the path the net force component toward the center of the circle equals the object’s mass times 

its radial acceleration. 

When we tie a string to an object and whirl it in a 

vertical circle, the analysis in Example 5.4 isn’t directly 

applicable. The reason is that   is not constant in this case; 

except at the top and bottom of the circle, the net force (and 

hence the acceleration) does not point toward the center of the 

circle (Fig. 5.17). So both F  and a  have a component 

tangent to the circle, which means that the speed changes. 

Hence this is a case of nonuniformcircular motion. Even 

worse, we can’t use the constant-acceleration formulas to 

relate the speeds at various points because neither the 

magnitude nor the direction of the acceleration is constant. The 

speed relationships we need are best obtained by using the 

concept of energy.  

 

 

 

 

 
 

Figure 5.17 - A ball moving in a vertical 

circle 
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5.5 The Fundamental Forces of Nature 
 

We have discussed several kinds of forces - including weight, tension, friction, fluid resistance, 

and the normal force - and we’ll encounter others as we continue our study of physics. How many kinds 

of forces are there? Our best understanding is that all forces are expressions of just four distinct classes of 

fundamental forces, or interactions between particles (Fig. 5.18). Two are familiar in everyday 

experience. The other two involve interactions between subatomic particles that we cannot observe with 

the unaided senses.  

Gravitational interactions include the familiar force of your weight, which results from the 

earth’s gravitational attraction acting on you. The mutual gravitational attraction of various parts of the 

earth for each other holds our planet together, and likewise for the other planets (Fig. 5.18a). Newton 

recognized that the sun’s gravitational attraction for the earth keeps our planet in its nearly circular orbit 

around the sun.  

 

 
 

Figure 5.18 - Graphs of the motion of an object falling without fluid resistance and with fluid resistance 

proportional to the speed 

 

The second familiar class of forces, electromagnetic interactions, includes electric and magnetic 

forces. If you run a comb through your hair, the comb ends up with an electric charge; you can use the 

electric force exerted by this charge to pick up bits of paper. All atoms contain positive and negative 

electric charge, so atoms and molecules can exert electric forces on one another. Contact forces, including 
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the normal force, friction, and fluid resistance, are the result of electrical interactions between atoms on 

the surface of an object and atoms in its surroundings (Fig. 5.18b). Magnetic forces, such as those 

between magnets or between a magnet and a piece of iron, are actually the result of electric charges in 

motion. For example, an electromagnet causes magnetic interactions because electric charges move 

through its wires.  

On the atomic or molecular scale, gravitational forces play no role because electric forces are 

enormously stronger: The electrical repulsion between two protons is stronger than their gravitational 

attraction by a factor of about 1035. But in objects of astronomical size, positive and negative charges are 

usually present in nearly equal amounts, and the resulting electrical interactions nearly cancel out. 

Gravitational interactions are thus the dominant influence in the motion of planets and in the internal 

structure of stars. 

The other two classes of interactions are less familiar. One, the strong interaction, is responsible 

for holding the nucleus of an atom together (Fig. 5.18c). Nuclei contain electrically neutral neutrons and 

positively charged protons. The electric force between charged protons tries to push them apart; the 

strong attractive force between nuclear particles counteracts this repulsion and makes the nucleus stable. 

In this context the strong interaction is also called the strong nuclear force. It has much shorter range than 

electrical interactions, but within its range it is much stronger.  

Without the strong interaction, the nuclei of atoms essential to life, such as carbon (six protons, six 

neutrons) and oxygen (eight protons, eight neutrons), would not exist and you would not be reading these 

words! 

Finally, there is the weak interaction. Its range is so short that it plays a role only on the scale of 

the nucleus or smaller. The weak interaction is responsible for a common form of radioactivity called beta 

decay, in which a neutron in a radioactive nucleus is transformed into a proton while ejecting an electron 

and a nearly massless particle called an antineutrino. The weak interaction between the antineutrino and 

ordinary matter is so feeble that an antineutrino could easily penetrate a wall of lead a million kilometers 

thick! 

An important application of the weak interaction is radiocarbon dating, a technique that enables 

scientists to determine the ages of many biological specimens (Fig. 5.18d). Naturally occurring carbon 

includes atoms of both carbon-12 (with six protons and six neutrons in the nucleus) and carbon-14 (with 

two additional neutrons). Living organisms take in carbon atoms of both kinds from their environment but 

stop doing so when they die. The weak interaction makes carbon-14 nuclei unstable—one of the neutrons 

changes to a proton, an electron, and an antineutrino—and these nuclei decay at a known rate. 

Bymeasuring the fraction of carbon-14 that is left in an organism’s remains, scientists candetermine how 

long ago the organism died. 

In the 1960s physicists developed a theory that described the electromagnetic andweak 

interactions as aspects of a single electroweak interaction. This theory has passedevery experimental test 

to which it has been put. Encouraged by this success, physicistshave made similar attempts to describe the 

strong, electromagnetic, and weak interactionsin terms of a single grand unified theory (GUT) and have 

taken steps toward apossible unification of all interactions into a theory of everything (TOE). Such 

theoriesare still speculative, and there are many unanswered questions in this very active field ofcurrent 

research. 
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CHAPTER 5: SUMMARY 

 Using Newton’s first law: When 

an object is in equilibrium in an inertial 

frame of reference—that is, either at rest 

or moving with constant velocity—the 

vector sum of forces acting on it must be 

zero (Newton’s first law). Freebody 

diagrams are essential in identifying the 

forces that act on the object being 

considered. 

Newton’s third law (action and 

reaction) is also frequently needed in 

equilibrium problems. The two forces in 

an action–reaction pair never act on the 

same object.  

The normal force exerted on an 

object by a surface is not always equal to 

the object’s weight  

Vector form: 

 

0F =  

 

Component form: 

 

0  0x yF F= =   

  

Using Newton’s second law: If 

the vector sum of forceson an object is not 

zero, the object accelerates. The 

accelerationis related to the net force by 

Newton’s second law. 

Just as for equilibrium problems, 

free-body diagramsare essential for 

solving problems involving Newton’s 

secondlaw, and the normal force exerted 

on an object is notalways equal to its 

weight  

Vector form: 

 

F ma=  

 

Component form: 

 

  x x y yF ma F ma= =   

 

Friction and fluid resistance: 

The contact force betweentwo objects can 

always be represented in terms of a 

normalforce n perpendicular to the 

surface of contact and a frictionforce f  

parallel to the surface. 

When an object is sliding over the 

surface, the frictionforce is called kinetic 

friction. Its magnitude kf is 

approximatelyequal to the normal force 

magnitude n multiplied bythe coefficient 

of kinetic friction k . 

When an object is not moving 

relative to a surface, the friction force is 

called static friction. The 

maximumpossible static friction force is 

approximately equal to the magnitude n of 

the normal force multiplied by 

thecoefficient of static friction S . The 

actual static friction force may be 

anything from zero to this maximum 

value,depending on the situation. Usually 

S  is greater than k  for a given pair of 

Magnitude of kinetic 

friction force: 

 

k kf n=  

 

Magnitude of static friction 

force: 

 

( )s s smax
f f n =  
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surfaces in contact.  

Rolling friction is similar to 

kinetic friction, but the force of fluid 

resistance depends on the speed of 

anobject through a fluid.  

 Forces in circular motion: In 

uniform circular motion,the acceleration 

vector is directed toward the center of 

thecircle. The motion is governed by 

Newton’s second law, F ma=   

Acceleration in uniform 

circular motion: 

 
2 2

rad 2

4 R
a

R T

 
= =  
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6 WORK AND KINETIC ENERGY 
 

Suppose you try to find the speed of an arrow that has been shot from a bow. You apply Newton’s 

laws and all the problem-solving techniques that we’ve learned, but you run across a major stumbling 

block: After the archer releases the arrow, the bow string exerts a varying force that depends on the 

arrow’s position. As a result, the simple methods that we’ve learned aren’t enough to calculate the speed. 

Never fear; we aren’t by any means finished with mechanics, and there are other methods for dealing with 

such problems. 

The new method that we’re about to introduce uses the ideas of work and energy. The importance 

of the energy idea stems from the principle of conservation of energy: Energy is a quantity that can be 

converted from one form to another but cannot be created or destroyed. In an automobile engine, 

chemical energy stored in the fuel is converted partially to the energy of the automobile’s motion and 

partially to thermal energy. In a microwave oven, electromagnetic energy obtained from your power 

company is converted to thermal energy of the food being cooked. In these and all other processes, the 

total energy - the sum of all energy present in all different forms - remains the same. No exception has 

ever been found. 

We’ll use the energy idea throughout the rest of this book to study a tremendous range of physical 

phenomena. This idea will help you understand how automotive engines work, how a camera’s flash unit 

can produce a short burst of light, and the meaning of Einstein’s famous equation 2E mc= .  

In this chapter, though, our concentration will be on mechanics. We’ll learn about one important 

form of energy called kinetic energy, or energy of motion, and how it relates to the concept of work. 

We’ll also consider power, which is the time rate of doing work. In Chapter 7 we’ll expand these ideas 

into a deeper understanding of the concepts of energy and the conservation of energy. 

 

 

6.1 Work 
 

You’d probably agree that it’s hard work to pull a 

heavy sofa across the room, to lift a stack of encyclopedias 

from the floor to a high shelf, or to push a stalled car off the 

road. Indeed, all of these examples agree with the everyday 

meaning of “work” - any activity that requires muscular or 

mental effort. 

In physics, work has a much more precise definition. 

By making use of this definition we’ll find that in any 

motion, no matter how complicated, the total work done on 

a particle by all forces that act on it equals the change in its 

kinetic energy - a quantity that’s related to the particle’s 

mass and speed. This relationship holds even when the 

forces acting on the particle aren’t constant. The ideas of 

work and kinetic energy enable us to solve problems in 

mechanics that we could not have attempted before.  

In this section we’ll see how work is defined and how to calculate work in a variety of situations 

involving constant forces. Later in this chapter we’ll relate work and kinetic energy, and then apply these 

ideas to problems in which the forces are not constant.  

The three examples of work described above - pulling a sofa, lifting encyclopedias, and pushing a 

car - have something in common. In each case you do work by exerting a force on an object while that 

object moves from one place to another - that is, undergoes a displacement (Fig. 6.1). 

You do more work if the force is greater (you push harder on the car) or if the displacement is 

greater (you push the car farther down the road). 

The physicist’s definition of work is based on these observations. Consider an object that 

undergoes a displacement of magnitude s along a straight line. (For now, we’ll assume that any object we 

discuss can be treated as a particle so that we can ignore any rotation or changes in shape of the object). 

While the object moves, a constant force F  acts on it in the same direction as the displacement s   

 
 

Figure 6.1 - These people are doing work as 

they push on the car because they exert a 

force on the car as it moves 
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(Fig. 6.2). We define the workWdone by this constant force under these circumstances as the product of 

the force magnitude F and the displacement magnitude s: 

 

    (constant force in direction of straight-line displacement)W Fs= .                        (6.1) 

 

The work done on the object is greater if either the force F or the displacement s is greater, in 

agreement with our observations above. 

CAUTION! Work = W, weight = w. Don’t confuse uppercase W (work) with lowercase w 

(weight). Though the symbols are similar, work and weight are different quantities. 

The SI unit of work is the joule (abbreviated J, pronounced “jool,” and named in honor of the 

19th-century English physicist James Prescott Joule). From Eq. (6.1) we see that in any system of units, 

the unit of work is the unit of force multiplied by the unit of distance. In SI units the unit of force is the 

newton and the unit of distance is the meter, so 1 joule is equivalent to 1 newton-meter ( )N m : 

        ( )( )1 joule = 1 newton 1 meter   or  1 J = 1 N m .  

If you lift an object with a weight of 1 N (about the weight of a 

medium-sized apple) a distance of 1 m at a constant speed, you 

exert a 1 N force on the object in the same direction as its 1 m 

displacement and so do 1 J of work on it. 

As an illustration of Eq. (6.1), think of a person pushing a 

stalled car. If he pushes the car through a displacement s  with a 

constant force F  in the direction of motion, the amount of work 

he does on the car is given by Eq. (6.1): W Fs= . But what if the 

person pushes at an angle   to the car’s displacement (Fig. 6.3)? 

Then F has a component cosF F =  in the direction of the 

displacement s  and a component sinF F ⊥ =  that acts 

perpendicular to s . (Other forces must act on the car so that it 

moves along s , notin the direction of F . We’re interested in 

only the work that the person does, however, so we’ll consider only the force he exerts). Only the parallel 

component F  is effective in moving the car, so we define the work as the product of this force 

component and the magnitude of the displacement. Hence ( )cosW F s F s= = , or 

  

(6.2)

 

If 0 = , so that F  and s  are in the same direction, then cos 1 =  and we are back to Eq. (6.1). 

Equation (6.2) has the form of the scalar product of two vectors: cosA B AB  = . You may want 

to review that definition. Hence we can write Equation (6.2) more compactly as 

  

(6.3)

 

CAUTION! Work is a scalar. An essential point: Work is a scalar quantity, even though it’s 

calculated from two vector quantities (force and displacement). A 5 N force toward the east acting on an 

 
Figure 6.2 - The work done by a 

constant force acting in the same 

direction as the displacement 
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object that moves 6 m to the east does the same amount of work as a 5 N force toward the north acting on 

an object that moves 6 m to the north. 
 

Bio APPLICATION. Work and Muscle Fibers 

Our ability to do work with our bodies comes from our skeletal muscles. The fiberlike cells of 

skeletal muscle, shown in this micrograph, can shorten, causing the muscle as a whole to 

contract and to exert force on the tendons to which it attaches. Muscle can exert a force of about 

0.3 N per square millimeter of cross-sectional area: The greater the cross-sectional area, the more 

fibers the muscle has and the more force it can exert when it contracts 

 
 

 

 

EXAMPLE 6.1 Work done by a constant force  

(a) Steve exerts a steady force of magnitude 210 N on the stalled car in Fig. 6.3 as he pushes it a 

distance of 18 m. The car also has a flat tire, so to make the car track straight Steve must push at an angle 

of 30° to the direction of motion. How much work does Steve do? (b) In a helpful mood, Steve pushes a 

second stalled car with a steady force ( ) ( )ˆ ˆ160 N 40 NF i j= − . The displacement of the car is 

( ) ( )ˆ ˆ14 m 11 ms i j= + . How much work does Steve do in this case? 

 

 

IDENTIFY and SET UP 

In both parts (a) and (b), the target variable is the work W done by Steve. In each case the force is 

constant and the displacement is along a straight line, so we can use Eq. (6.2) or (6.3). The angle between 

F  and s  is given in part (a), so we can apply Eq. (6.2) directly. In part (b) both F  and s  are given in 

terms of components, so it’s best to calculate the scalar product as follows:  
 

x x y y z zA B A B A B A B = + + . 

 

 

EXECUTE  

 

(a) From Eq. (6.2), 

( )( ) 3cos 210 N 18 m cos30 3.3 10  JW Fs = = =  . 

(b) The components of F  are 160 NxF = and 40 NxF = − , and the components of s  are 

14 mx =  and 11 my = . (There are no z-components for either vector). Hence, using Eq. (6.3), we have 

 

( )( ) ( )( ) 3160 N 14 m 40 N 11 m 1.8 10  Jx yW F s F x F y=  = + = + − =  . 
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EVALUATE  

In each case the work that Steve does is more than 1000 J. This shows that 1 joule is a rather small 

amount of work. 

 

 

KEYCONCEPT. To find the work W done by a constant force F  acting on an object that 

undergoes a straight-line displacement s , calculate the scalar product of these two vectors: W F s=  . 

 

 

Work: Positive, Negative, or Zero 

 

In Example 6.1 the work done in pushing the cars was positive. But it’s important to understand 

that work can also be negative or zero. This is the essential way in which work as defined in physics 

differs from the “everyday” definition of work. When the force has a component in the same direction as 

the displacement (  between 0° and 90°), cos in Eq. (6.2) is positive and the work W is positive  

(Fig. 6.4a). When the force has a component opposite to the displacement (  between 90° and 180°), 

cos  is negative and the work is negative (Fig. 6.4b). When the force is perpendicular to the 

displacement,   = 90° and the work done by the force is zero(Fig. 6.4c). The cases of zero work and 

negative work bear closer examination, so let’s look at some examples. 

 

There are many situations in which forces act but do zero work. You might think it’s “hard work” 

to hold a barbell motionless in the air for 5 minutes (Fig. 6.5). But in 

fact, you aren’t doing any work on the barbell because there is no 

displacement. (Holding the barbell requires you to keep the muscles 

of your arms contracted, and this consumes energy stored in 

carbohydrates and fat within your body. As these energy stores are 

used up, your muscles feel fatigued even though you do no work on 

the barbell). Even when you carry a book while you walk with 

constant velocity on a level floor, you do no work on the book. It has 

a displacement, but the (vertical) supporting force that you exert on 

the book has no  

component in the direction of the (horizontal) motion. Then   = 90° 

in Eq. (6.2), and cos  = 0. When an object slides along a surface, the 

 
 

Figure 6.3 - The work done by a constant force acting at an angle to the displacement 

 

Figure 6.4 - A constant force F  can do positive, negative, or zero work depending on the angle between F   

and the displacement s  

 

 
 

Figure 6.5 - A weightlifter does no 

work on a barbell as long as he 

holds it stationary 
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work done on the object by the normal force is zero; and when a ball on a string moves in uniform 

circular motion, the work done on the ball by the tension in the string is also zero. In both cases the work 

is zero because the force has no component in the direction of motion.  

What does it mean to do negative work? The answer comes from Newton’s third law of motion. 

When a weightlifter lowers a barbell as in Fig. 6.6a, his hands and the barbell move together with the 

same displacement s . The barbell exerts a force barbell on handsF on hands on his hands in the same direction 

as the hands’ displacement, so the work done by the barbell on his hands is positive (Fig. 6.6b). But by 

Newton’s third law the weightlifter’s hands exert an equal and opposite force hands on barbell barbell on handsF F= −  

on the barbell (Fig. 6.6c). This force, which keeps the barbell from crashing to the floor, acts opposite to 

the barbell’s displacement. Thus the work done by his hands on the barbell is negative. 

Because the weightlifter’s hands and the barbell have the same displacement, the work that his 

hands do on the barbell is just the negative of the work that the barbell does on his hands. In general, 

when one object does negative work on a second object, the second object does an equal amount of 

positive work on the first object.  

As a final note, you should review Fig. 6.4 to help remember when work is positive, when it is 

zero, and when it is negative.  

CAUTION! Keep track of who’s doing the work. We always speak of work done on a particular 

object by a specific force. Always specify exactly what force is doing the work. When you lift a book, 

you exert an upward force on it and the book’s displacement is upward, so the work done by the lifting 

force on the book is positive. But the work done by the gravitational force (weight) on a book being lifted 

is negative because the downward gravitational force is opposite to the upward displacement. 

 

 

Total Work 

 

How do we calculate work when several forces act on an object? One way is to use Eq. (6.2) or 

(6.3) to compute the work done by each separate force. Then, because work is a scalar quantity, the total 

work Wtot done on the object by all the forces is the algebraic sum of the quantities of work done by the 

individual forces. An alternative way to find the total work Wtot is to compute the vector sum of the forces 

(that is, the net force) and then use this vector sum as F in Eq. (6.2) or (6.3).  

 

 

6.2 Kinetic Energy and the Work-Energy Theorem 
 

The total work done on an object by external forces is related to the object’s displacement - that is, 

to changes in its position. But the total work is also related to changes in the speed of the object. To see 

this, consider Fig. 6.7, which shows a block sliding on a frictionless table. The forces acting on the block 

are its weight w , the normal force n , and the force F exerted on it by the hand. 

 

 
Figure 6.6 - This weightlifter’s hands do negative work on a barbell as the barbell does  

positive work on his hands 
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In Fig. 6.7a the net force on the block is in the direction of its motion. From Newton’s second law, 

this means that the block speeds up; from Eq. (6.1), this also means that the total work Wtot done on the 

block is positive. The total work is negative in Fig. 6.7b because the net force opposes the displacement; 

in this case the block slows down. The net force is zero in Fig. 6.7c, so the speed of the block stays the 

same and the total work done on the block is zero. We can conclude that when a particle undergoes a 

displacement, it speeds up if Wtot> 0, slows down if Wtot< 0, and maintains the same speed if Wtot = 0. 

 

Let’s make this more quantitative. In Fig. 6.8 a particle with mass m moves along the x-axis under 

the action of a constant net force with magnitude F that points in the positive x-direction. The particle’s 

acceleration is constant and given by Newton’s second law: xF ma= . As the particle moves from point x1 

to x2, it undergoes a displacement 2 1s x x= −  and its speed changes from 1 to 2 . Using a constant-

acceleration equation and replacing 0 x by 1 , x  by 2 , and ( )0x x− by s, we have 

 
2 2

2 1 2 xa s = + ,
 

 
2 2

2 1

2
xa

s

 −
= .

 
 

When we multiply this equation by m and equate max to the net 

force F, we find 

 
2 2

2 1    and
2

xF ma m
s

 −
= =

 
 

                    
2 2

2 1

1 1

2 2
Fs m m = − . (6.4) 

 

In Eq. (6.4) the product Fs is the work done by the net 

force F and thus is equal 

to the total work Wtot 

done  

 

by all the forces acting 

on the particle. The 

 
Figure 6.7 - The relationship between the total work done on an object and the change  

in velocity of the object 

 
Figure 6.9 - Comparing the kinetic 

energy 21

2
K m=  of different objects 

 

Figure 6.8 - A constant net force F   

does work on a moving object 
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quantity 
21

2
m  is called the kinetic energy K of the particle: 

 

  

(6.5)

 
 

Like work, the kinetic energy of a particle is a scalar quantity; it depends on only the particle’s mass and 

speed, not its direction of motion (Fig. 6.9). Kinetic energy can never be negative, and it is zero only 

when the particle is at rest.  

We can now interpret Eq. (6.4) in terms of work and kinetic energy. The first term on the right 

side of Eq. (6.4) is
21

2 22
K m= , the final kinetic energy of the particle (that is, after the displacement). The 

second term is the initial kinetic energy, 
21

1 12
K m= , and the difference between these terms is the 

change in kinetic energy. So Eq. (6.4) says: 
 

  

(6.6)

 
 

This work–energy theorem agrees with our observations about the block in Fig. 6.7. When Wtot is 

positive, the kinetic energy increases (the final kinetic energy K2 is greater than the initial kinetic energy 

K1) and the particle is going faster at the end of the displacement than at the beginning. When Wtot is 

negative, the kinetic energy decreases (K2 is less than K1) and the speed is less after the displacement. 

When Wtot = 0, the kinetic energy stays the same (K1 = K2) and the speed is unchanged. Note that the 

work–energy theorem by itself tells us only about changes in speed, not velocity, since the kinetic energy 

doesn’t depend on the direction of motion. 

From Eq. (6.4) or Eq. (6.6), kinetic energy and work must have the same units. Hence the joule is 

the SI unit of both work and kinetic energy (and, as we’ll see later, of all kinds of energy). To verify this, 

note that in SI the quantity 
21

2
K m=  has units ( )

2
kg m/s  or 

2 2kg m / s ; we recall that 

21 N = 1 kg  m/s , so 

 

 
2 2 21 J = 1 N m = 1 (kg m/s ) m = 1 kg m / s    . 

  

Because we used Newton’s laws in deriving the work–energy theorem, we can use this theorem 

only in an inertial frame of reference. Note that the work–energy theorem is valid in any inertial frame, 

but the values of Wtot and 2 1K K−  may  differ from one inertial frame to another (because the 

displacement and speed of an object may be different in different frames).  

We’ve derived the work–energy theorem for the special case of straight-line motion with constant 

forces, and in the following examples we’ll apply it to this special case only. We’ll find in the next 

section that the theorem is valid even when the forces are not constant and the particle’s trajectory is 

curved. 

 

 

The Meaning of Kinetic Energy 
 

To accelerate a particle of mass m from rest (zero kinetic energy) up to a speed  , the total work 

done on it must equal the change in kinetic energy from zero to 
21

2
K m= : 

 

 tot 0W K K= − = .  



98 

So the kinetic energy of a particle is equal to the total work that was done to accelerate it from rest to its 

present speed (Fig. 6.13). The definition 
21

2
K m=  , Eq. (6.5), wasn’t chosen at random; it’s the only 

definition that agrees with this interpretation of kinetic energy. 

Another interpretation of kinetic energy: The kinetic energy of a particle is equal to the total work 

that particle can do in the process of being brought to rest. This is why you pull your hand and arm 

backward when you catch a ball. As the ball comes to rest, it does an amount of work (force times 

distance) on your hand equal to the ball’s initial kinetic energy. By pulling your hand back, you maximize 

the distance over which the force acts and so minimize the force on your hand. 

 

 

PROBLEM-SOLVING STRATEGY  

6.1 Work and Kinetic Energy 

 

 

IDENTIFY the relevant concepts: 

The work–energy theorem, tot 2 1W K K= − , is extremely useful when you want to relate an object’s 

speed 1  at one point in its motion to its speed 2  at a different point. (It’s less useful for problems that 

involve the time it takes an object to go from point 1 to point 2 because the work–energy theorem doesn’t 

involve time at all. For such problems it’s usually best to use the relationships among time, position, 

velocity, and acceleration. 

 

 

SET UP the problem: 

• Identify the initial and final positions of the object, and draw afree-body diagram showing 

all the forces that act on the object. 

• Choose a coordinate system. (If the motion is along a straight line, it’s usually easiest to 

have both the initial and final positions lie along one of the axes). 

• List the unknown and known quantities, and decide which unknowns are your target 

variables. The target variable may be the object’s initial or final speed, the magnitude of one of the forces 

acting on the object, or the object’s displacement. 

 

 

EXECUTE the solution: 

• Calculate the work W done by each force. If the force is constant and the displacement is a 

straight line, you can use Eq. (6.2) or Eq. (6.3).Be sure to check signs; W must be positive if the force has 

a component in the direction of the displacement, negative if the force has a component opposite to the 

displacement, andzero if the force and displacement are perpendicular.  

• Add the amounts of work done by each force to find the total work Wtot. Sometimes it’s 

easier to calculate the vector sum of the forces (the net force) and then find the work done by the net 

force; this value is also equal to Wtot.  

• Write expressions for the initial and final kinetic energies, K1 and K2. Note that kinetic 

energy involves mass, not weight; if you are given the object’s weight, use w = mg to find the mass.  

• Finally, use Eq. (6.6), tot 2 1W K K= − , and Eq. (6.5), 
21

2
K m= , to solve for the target 

variable. Remember that the right-hand side of Eq. (6.6) represents the change of the object’s kinetic 

energy between points 1 and 2; that is, it is the final kinetic energy minus the initial kinetic energy, never 

the other way around. (If you can predict the sign of Wtot, you can predict whether the object speeds up 

or slows down). 
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EVALUATE your answer: 

Check whether your answer makes sense. Remember that kinetic energy 
21

2
K m=  can never be 

negative. If you come up with a negative value of K, perhaps you interchanged the initial and final kinetic 

energies in tot 2 1W K K= −  or made a sign error in one of the work calculations.  

 

 

Work and Kinetic Energy in Composite Systems 

 

In this section we’ve been careful to apply the work–energy 

theorem only to objects that we can represent as particles - that is, as 

moving point masses. New subtleties appear for more complex systems 

that have to be represented as many particles with different motions. We 

can’t go into these subtleties in detail in this chapter, but here’s an 

example. 

Suppose a boy stands on frictionless roller skates on a level 

surface, facing a rigid wall (Fig. 6.10). He pushes against the wall, which 

makes him move to the right. The forces acting on him are his weight w , 

the upward normal forces 1n  and 2n  exerted by the ground on his skates, 

and the horizontal force F  exerted on him by the wall. There is no 

vertical displacement, so w , 1n , and 2n  

do no work. Force F  accelerates him to the right, but the parts of his 

body where that force is applied (the boy’s hands) do not move while the 

force acts. Thus the force F  also does no work. Where, then, does the 

boy’s kinetic energy come from?  

The explanation is that it’s not adequate to represent the boy as a single 

point mass. Different parts of the boy’s body have different motions; his 

hands remain stationary against the wall while his torso is moving away from the wall. The various parts 

of his body interact with each other, and one part can exert forces and do work on another part.  

Therefore the total kinetic energy of this composite system of body parts can change, even though 

no work is done by forces applied by objects (such as the wall) that are outside the system. In Chapter 8 

we’ll consider further the motion of a collection of particles that interact with each other. We’ll discover 

that just as for the boy in this example, the total kinetic energy of such a system can change even when no 

work is done on any part of the system by anything outside it. 

 

 

6.3 Work And Energy with Varying Forces 
 

So far we’ve considered work done by constant forces only. But what happens when you stretch a 

spring? The more you stretch it, the harder you have to pull, so the force you exert is not constant as the 

spring is stretched. We’ve also restricted our discussion to straight-line motion. There are many situations 

in which an object moves along a curved path and is acted on by a force that varies in magnitude, 

direction, or both. We need to be able to compute the work done by the force in these more general cases. 

Fortunately, the work–energy theorem holds true even when forces are varying and when the object’s 

path is not straight. 

 

Work Done by a Varying Force, Straight-Line Motion 

 

To add only one complication at a time, let’s consider straight-line motion along the x-axis with a 

force whose x-component xF  may change as the object moves. (A real-life example is driving a car along 

a straight road with stop signs, so the driver has to alternately step on the gas and apply the brakes). 

Suppose a particle moves along the x-axis from point x1 to x2 (Fig. 6.11a). Figure 6.11b is a graph of the 

x-component of force as a function of the particle’s coordinate x. To find the work done by this force, we 

 
 

Figure 6.10 - The external 

forces acting on a skater 

pushing off a wall. The work 

done by these forces is zero, 

but the skater’s kinetic energy 

changes nonetheless 
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divide the total displacement into narrow segments ∆xa, ∆xb, and so on (Fig. 6.11c). We approximate the 

work done by the force during segment ∆xa as the average x-component of force axF in that segment 

multiplied by the x-displacement ∆xa. We do this for each segment and then add the results for all the 

segments. The work done by the force in the total displacement from x1 to x2 is approximately 

 

ax a bx bW F x F x=  +  +
 

 

In the limit that the number of segments becomes very large and the width of each becomes very small, 

this sum becomes the integral of Fx from x1 to x2: 

 

  

(6.7)

 

 Note that Fax∆xa represents the area of the first vertical strip in 

Fig. 6.11c and that the integral in Eq. (6.7) represents the area under the 

curve of Fig. 6.11b between x1 and x2. On such a graph of force as a 

function of position, the total work done by the force is represented by 

the area under the curve between the initial and final positions. 

Alternatively, the work W equals the average force that acts over the 

entire displacement, multiplied by the displacement.  

In the special case that Fx , the x-component of the force, is 

constant, we can take it outside the integral in Eq. (6.7): 

( )
2 2

1 1

2 1     (constant force)

x x

x x x

x x

W F dx F dx F x x= = = −  . 

But 2 1x x s− = , the total displacement of the particle. So in the case of a 

constant force F, Eq. (6.7) says that W = Fs, in agreement with  

Eq. (6.1). The interpretation of work as the area under the curve of Fx as 

a function of x also holds for a constant force: W = Fs is the area of a 

rectangle of height F and width s (Fig. 6.12).  

Now let’s apply these ideas to the stretched spring. To keep a spring stretched beyond its 

unstretched length by an amount x, we have to apply a force of equal magnitude at each end (Fig. 6.13). If 

the elongation x is not too great, the force we apply to the right-hand end has an x-component directly 

proportional to x: 

 

 
( )     force required to stretch a springxF kx=

, (6.8) 

 

 where k is a constant called the force constant (or spring constant) of 

the spring. The units of k are force divided by distance: N/m in SI units. 

A floppy toy spring such as a Slinky™ has a force constant of about 

1 N/m; for the much stiffer springs in an automobile’s suspension, k is 

about 105 N/m. The observation that force is directly proportional to 

elongation for elongations that are not too great was made by 

Robert Hooke in 1678 and is known as Hooke’s law. It really shouldn’t 

be called a “law”, since it’s a statement about a specific device and not 

a fundamental law of nature. Real springs don’t always obey Eq. (6.8) 

precisely, but it’s still a useful idealized model.  

 To stretch a spring, we must do work. We apply equal and 

 

 
 

Figure 6.12 - The work done by a 

constant force F in the x-

direction as a particle moves 

from x1 to x2 

 

 

 
 

Figure 6.13 - The force needed to 

stretch an ideal spring is 

proportional to the spring’s 

elongation: Fx = kx 
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opposite forces to the ends of the spring and gradually increase the forces. We hold the left end stationary, 

so the force we apply at this end does no work. The force at the moving end does do work. Figure 6.14 is 

a graph of Fx as a function of x, the elongation of the spring. The work done by this force when the 

elongation goes from zero to a maximum value X is 

 

21
2

0 0

X X

xW F dx kxdx kX= = =  .                          (6.9) 

We can also obtain this result graphically. The area of the shaded 

triangle in Fig. 6.14, representing the total work done by the force, is 

equal to half the product of the base and altitude, or 

 

( )( ) 21 1
2 2

W X kX kX= = .
 

 

This equation also says that the work is the average force kX/2 

multiplied by the total displacement X. We see that the total work is 

proportional to the square of the finalelongation X. To stretch an ideal 

spring by 2 cm, you must do four times as much work as is needed to 

stretch it by 1 cm.  

Equation (6.9) assumes that the spring was originally unstretched. If initially the spring is already 

stretched a distance x1, the work we must do to stretch it to a greater 

elongation x2 (Fig. 6.15a) is 

 
2 2

1 1

2 21 1
2 12 2

x x

x

x x

W F dx kxdx kx kx= = = −  .              (6.10) 

 

Use your knowledge of geometry to convince yourself that the 

trapezoidal area under the graph in Fig. 6.15b is given by the 

expression in Eq. (6.10). 

If the spring has spaces between the coils when it is 

unstretched, then it can also be compressed, and Hooke’s law holds 

for compression as well as stretching. In this case the force and 

displacement are in the opposite directions from those shown in Fig. 

6.13, so both Fx and x in Eq. (6.8) are negative. Since both Fx and x 

are reversed, the force again is in the same direction as the 

displacement, and the work done by Fx is again positive. So the total 

work is still given by Eq. (6.9) or (6.10), even when X is negative or 

either or both of x1 and x2 are negative. 

CAUTION! Work done on a spring vs. work done by a 

spring. Equation (6.10) gives the work that you must do on a spring 

to change its length. If you stretch a spring that’s originally relaxed, then x1 = 0, x2> 0, and W > 0:  

The force you apply to one end of the spring is in the same direction as the displacement, and the work 

you do is positive. By contrast, the work that the spring does on whatever it’s attached to is given by the 

negative of Eq. (6.10). Thus, as you pull on the spring, the spring does negative work on you. 
 

 

Work–Energy Theorem for Straight-Line Motion, Varying Forces 
 

In Section 6.2 we derived the work–energy theorem, Wtot = K2 – K1, for the special case of 

straight-line motion with a constant net force. We can now prove that this theorem is true even when the 

force varies with position. As in Section 6.2, let’s consider a particle that undergoes a displacement x 

while being acted on by a net force with x-component Fx, which we now allow to vary. Just as in Fig. 

 
Figure 6.14 - Calculating the 

work done to stretch a spring 

 by a length X 

 

 
 

Figure 6.15 - Calculating the work 

done to stretch a spring from one 

elongation to a greater one 



102 

6.11, we divide the total displacement x into a large number of small segments ∆x. We can apply the 

work–energy theorem, Eq. (6.6), to each segment because the value of Fx in each small segment is 

approximately constant. The change in kinetic energy in segment ∆xa is equal to the work Fax∆xa, and so 

on. The total change of kinetic energy is the sum of the changes in the individual segments, and thus is 

equal to the total work done on the particle during the entire displacement. So Wtot = ∆K holds for varying 

forces as well as for constant ones.  

Here’s an alternative derivation of the work–energy theorem for a force that may vary with 

position. It involves making a change of variable from x to x in the work integral. Note first that the 

acceleration a of the particle can be expressed in various ways, using x xa d dt= , x dx dt = , and the 

chain rule for derivatives: 
 

 x x x
x x

d d ddx
a

dt dx dt dx

  
= = = . (6.11) 

 

From this result, Eq. (6.7) tells us that the total work done by the net force Fx is 

 

 
2 2 2

1 1 1

tot

x x x

x
x x x

x x x

d
W F dx ma dx m dx

dx


= = =   . (6.12) 

 

Now ( )xd dx dx  is the change in velocity xd  during the displacement dx, so we can make that 

substitution in Eq. (6.12). This changes the integration variable from x to x , so we change the limits 

from x1 and x2 to the corresponding x-velocities 1  and 2 : 

 

 
2

1

tot x xW m d





 =  .  

 

The integral of x xd   is just 
2 2x . Substituting the upper and lower limits, we finally find 

 

 
2 21 1

tot 2 12 2
W m m = − . (6.13) 

 

This is the same as Eq. (6.6), so the work–energy theorem is valid even without the assumption that the 

net force is constant. 

 

 

Work–Energy Theorem for Motion Along a Curve 

 

We can generalize our definition of work further to include a force that varies in direction as well 

as magnitude, and a displacement that lies along a curved path. Figure 6.16a shows a particle moving 

from P1 to P2 along a curve. We divide the curve between these points into many infinitesimal vector 

displacements, and we call a typical one of these dl . Each dl  is tangent to the path at its position. Let F  

be the force at a typical point along the path, and let   be the angle between F  and dl  at this point. 

Then the small element of work dW done on the particle during the displacement dl  may be written as 

 

cosdW F dl F dl F dl=  = = , 

 

where cosF F =  is the component of F  in the direction parallel to dl  (Fig. 6.16b). The work done by 

F  on the particle as it moves from P1 to P2 is 
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(6.14)

 
 

The integral in Eq. (6.14) (shown in three versions) is called a 

line integral. We’ll see shortly how to evaluate an integral of this kind. 

We can now show that the work–energy theorem, Eq. (6.6), holds true 

even with varying forces and a displacement along a curved path. The 

force F  is essentially constant over any given infinitesimal segment 

dl  of the path, so we can apply the work–energy theorem for straight-

line motion to that segment. Thus the change in the particle’s kinetic 

energy K over that segment equals the work dW F dl F dl= =   done 

on the particle. Adding up these infinitesimal quantities of work from 

all the segments along the whole path gives the total work done, Eq. 

(6.14), which equals the total change in kinetic energy over the whole 

path. So tot 2 1W K K K=  = −  is true in general, no matter what the 

path and no matter what the character of the forces. This can be proved 

more rigorously by using steps like those in Eq. (6.11) through (6.13).  

Note that only the component of the net force parallel to the 

path, F , does work on the particle, so only this component can change 

the speed and kinetic energy of the particle. The component 

perpendicular to the path, sinF F ⊥ = , has no effect on the particle’s 

speed; it acts only to change the particle’s direction.  

To evaluate the line integral in Eq. (6.14) in a specific problem, 

we need some sort of detailed description of the path and of the way in 

which F  varies along the path. We usually express the line integral in 

terms of some scalar variable, as in the following example. 

 

 

6.4 Power 
 

The definition of work makes no reference to the passage of time. If you lift a barbell weighing 

100 N through a vertical distance of 1.0 m at constant velocity, you do ( )( )100 N 1.0 m 100 J=  of work 

whether it takes you 1 second, 1 hour, or 1 year to do it. But often we need to know how quickly work is 

done. We describe this in terms of power. In ordinary conversation the word “power” is often 

synonymous with “energy” or “force”. In physics we use a much more precise definition: Power is the 

time rate at which work is done. Like work and energy, power is a scalar quantity. 

The average work done per unit time, or average powerPav, is defined to be 

 

 (6.15) 
  

The rate at which work is done might not be constant. We define instantaneous power P as the quotient 

in Eq. (6.15) as ∆t approaches zero: 
 

 (6.16) 

 
 

Figure 6.16 - A particle moves 

along a curved path from point P1 

to P2, acted on by a force F  that 

varies in magnitude and direction 
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The SI unit of power is the watt (W), named for the English inventor James Watt. One watt equals 

1 joule per second: 1 W = 1 J/s (Fig. 6.17). The kilowatt (1 kW = 103 W) and the megawatt  

(1 MW = 106 W) are also commonly used.  

 The watt is a familiar unit of electrical power; a 100 W light bulb converts 100 J of electrical 

energy into light and heat each second.  

  

The kilowatt-hour ( kW h ) is the usual commercial unit of electrical energy. One kilowatt-hour is 

the total work done in 1 hour (3600 s) when the power is 1 kilowatt (103 J/s), so 
 

( )( )3 61 kW h = 10  J/s 3600 s  = 3.6  10  J = 3.6 MJ  . 

The kilowatt-hour is a unit of work or energy, not power. 

 In mechanics we can also express power in terms of force and velocity. Suppose that a force F  

acts on an object while it undergoes a vector displacement s . If F  is the component of F  tangent to the 

path (parallel to s ), then the work done by the force is W F s =  . The average power is 

 

 
av av

F s s
P F F

t t


 
= = =

 
. (6.17) 

 

Instantaneous power P is the limit of this expression as 0t → : 
 

 P F= , (6.18) 

 

where   is the magnitude of the instantaneous velocity. We can also express Eq. (6.18) in terms of the 

scalar product:  

 

(6.19) 

 

CHAPTER 6: SUMMARY 

 Work done by a force: 

When a constant force F  acts on a 

particle that undergoes a straight-line 

displacement s , the work done by 

the force on the particle is defined to 

be the scalar product of F  and s . 

The unit of work in SI units is  

1 joule = 1 newton-meter (1 J =  

= 1 N m ). Work is a scalar quantity; 

it can be positive or negative, but it 

has no direction in space 

cos

angle between  and 

W F s Fs

F s





=  =

=
 

 

 
Figure 6.17 - The same amount of work is done in both of these situations, but the power (the rate at which work 

is done) is different 
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 Kinetic energy: The kinetic 

energy K of a particle equals the 

amount of work required to 

accelerate the particle from rest to 

speed  . It is also equal to the 

amount of work the particle can do 

in the process of being brought to 

rest. Kinetic energy is a scalar that 

has no direction in space; it is always 

positive or zero. Its units are the 

same as the units of work: 
2 21 J = 1 N m = 1 kg m s   

21
2

K m=  

 

 The work–energy theorem:  

When forces act on a particle while it 

undergoes a displacement, the 

particle’s kinetic energy changes by 

an amount equal to the total work 

done on the particle by all the forces. 

This relationship, called the work–

energy theorem, is valid whether the 

forces are constant or varying and 

whether the particle moves along a 

straight or curved path. It is 

applicable only to objects that can be 

treated as particles  

tot 2 1W K K K= − =   

 

 Work done by a varying 

force or on a curved path: When a 

force varies during a straight-line 

displacement, the work done by the 

force is given by an integral,  

Eq. (6.7). When a particle follows a 

curved path, the work done on it by a 

force F  is given by an integral that 

involves the angle   between the 

force and the displacement. This 

expression is valid even if the force 

magnitude and the angle   vary 

during the displacement 

2

1

2

1

2 2

1 1

    = cos

x

x

x

P

P

P P

P P

W F dx

W F dl

F dl F dl

=

= 

=





 

 

 

 

 Power: Power is the time rate 

of doing work. The average power 

Pav is the amount of work ∆W done 

in time ∆t divided by that time. The 

instantaneous power is the limit of 

the average power as ∆t goes to zero. 

When a force F  acts on a particle 

moving with velocity  , the 

instantaneous power (the rate at 

which the force does work) is the 

scalar product of F  and  . Like 

work and kinetic energy, power is a 

scalar quantity. The SI unit of  

power is 1 watt = 1 joule/second  

av

0
lim
t

W
P

t

W dW
P

t dt

P F 

 →


=




= =



= 
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7 POTENTIAL ENERGY AND ENERGY CONSERVATION 
 

When a diver jumps off a high board into a swimming pool, she hits the water moving pretty fast, 

with a lot of kinetic energy - energy of motion. Where does that energy come from? The answer we 

learned in Chapter 6 was that the gravitational force does work on the diver as she falls, and her kinetic 

energy increases by an amount equal to the work done.  

However, there’s a useful alternative way to think about work and kinetic energy. This new 

approach uses the idea of potential energy, which is associated with the position of a system rather than 

with its motion. In this approach, there is gravitational potential energy even when the diver is at rest on 

the high board. As she falls, this potential energy is transformed into her kinetic energy.  

If the diver bounces on the end of the board before she jumps, the bent board stores a second kind 

of potential energy called elastic potential energy. We’ll discuss elastic potential energy of simple 

systems such as a stretched or compressed spring. (An important third kind of potential energy is 

associated with the forces between electrically charged objects).  

We’ll prove that in some cases the sum of a system’s kinetic and potential energies, called the 

total mechanical energy of the system, is constant during the motion of the system. This will lead us to 

the general statement of the law of conservation of energy, one of the most fundamental principles in all 

of science. 

 

 

7.1 Gravitational Potential Energy 
 

In many situations it seems as though energy has been stored in a system, to be recovered later. 

For example, you must do work to lift a heavy stone over your head. It seems reasonable that in hoisting 

the stone into the air you are storing energy in the system, energy that is later converted into kinetic 

energy when you let the stone fall. 

This example points to the idea of an energy associated with the position of objects in a system. 

This kind of energy is a measure of the potential or possibility for work to be done; if you raise a stone 

into the air, there is a potential for the gravitational force to do work on it, but only if you allow the stone 

to fall to the ground. For this reason, energy associated with position is called potential energy. The 

potential energy associated with an object’s weight and its height above the ground is called gravitational 

potential energy. 

We now have two ways to describe what happens when an object falls without air resistance. One 

way, which we learned in Chapter 6, is to say that a falling object’s kinetic energy increases because the 

force of the earth’s gravity does work on the object. The other way is to say that the kinetic energy 

increases as the gravitational potential energy decreases. Later in this section we’ll use the work–energy 

theorem to show that these two descriptions are equivalent. 

Let’s derive the expression for gravitational potential energy. Suppose an object with mass m 

moves along the (vertical) y-axis, as in Fig. 7.1. The forces acting on it are its weight, with magnitude  

w = mg, and possibly some other forces; we call the vector sum (resultant) of all the other forces otherF . 

We’ll assume that the object stays close enough to the earth’s surface that the weight is constant. We want 

to find the work done by the weight when the object moves downward from a height y1 above the origin 

to a lower height y2 (Fig. 7.1a). The weight and displacement are in the same direction, so the work Wgrav 

done on the object by its weight is positive: 

 

 ( )grav 1 2 1 2W Fs w y y mgy mgy= = − = − . (7.1) 

 

This expression also gives the correct work when the object moves upward and y2 is greater than 

y1 (Fig. 7.1b). In that case the quantity (y1–y2) is negative, and Wgrav is negative because the weight and 

displacement are opposite in direction.  
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Figure 7.1 - When an object moves vertically from an initial height y1 to a final height y2, the gravitational 

force w  does work and the gravitational potential energy changes 

 

Equation (7.1) shows that we can express Wgrav in terms of the values of the quantity mgy at the 

beginning and end of the displacement. This quantity is called the gravitational potential energy, Ugrav: 

 

  

(7.2)

 
 

Its initial value is Ugrav, 1 = mgy1 and its final value is Ugrav, 2 = mgy2. The change in Ugrav is the final value 

minus the initial value, or ∆Ugrav = Ugrav, 2 – Ugrav, 1. Using Eq. (7.2), we can rewrite Eq. (7.1) for the work 

done by the gravitational force during the displacement from y1 to y2: 

 

 ( )grav grav, 1 grav, 2 grav, 2 grav, 1 gravW U U U U U= − = − − = −   

 

or 

  

(7.3)

 
 

The negative sign in front of ∆Ugrav is essential. When the object moves up, y increases, the work 

done by the gravitational force is negative, and the gravitational potential energy increases (∆Ugrav> 0). 

When the object moves down, y decreases, the gravitational force does positive work, and the 

gravitational potential energy decreases (∆Ugrav< 0). It’s like drawing money out of the bank  

(decreasing Ugrav) and spending it (doing positive work). The unit of potential energy is the joule (J),  

the same unit as is used for work. 

CAUTION! To what object does gravitational potential energy “belong”? It is not correct to 

call Ugrav = mgy the “gravitational potential energy of the object”. The reason is that Ugrav is a shared 

property of the object and the earth. The value of Ugrav increases if the earth stays fixed and the object 

moves upward, away from the earth; it also increases if the object stays fixed and the earth is moved away 
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from it. Notice that the formula Ugrav = mgy involves characteristics of both the object (its mass m) and 

the earth (the value of g). 

 

 

Conservation of Total Mechanical Energy (Gravitational Forces Only) 

 

To see what gravitational potential energy is good for, suppose an object’s weight is the only force 

acting on it, so other 0F = . The object is then falling freely with no air resistance and can be moving either 

up or down. Let its speed at point y1 be 1  and let its speed at y2 be 2 . The work–energy theorem,  

Eq. (6.6), says that the total work done on the object equals the change in the object’s kinetic energy: 

tot 2 1W K K K=  = − . If gravity is the only force that acts, then from Eq. (7.3), 

tot grav grav grav,1 grav,2W W U U U= = − = − . Putting these together, we get 

 

 grav 2 1 grav,1 grav,2   or   K U K K U U = − − = − ,  

 

which we can rewrite as 

  

(7.4)

 
 

The sum gravK U+  of kinetic and potential energies is called E, the total mechanical energy of 

the system. By “system” we mean the object of mass m and the earth considered together, because 

gravitational potential energy U is a shared property of both objects. Then 1 1 grav,1E K U= +  is the total 

mechanical energy at y1 and 2 2 grav,2E K U= +  is the total mechanical energy at y2. Equation (7.4) says that 

when the object’s weight is the only force doing work on it, E1 = E2. That is, E is constant; it has the same 

value at y1 and y2. But since positions y1 and y2 are arbitrary points in the motion of the object, the total 

mechanical energy E has the same value at all points during the motion: 

 

 ( )constant    if only gravity does workgravE K U= + = .  

A quantity that always has the same value is called a conserved quantity. When only the force of 

gravity does work, the total mechanical energy is constant  − that is, it is conserved (Fig. 7.2). This is our 

first example of the conservation of total mechanical energy. 

 

 
Figure 7.2  − While this athlete is in midair, only gravity does work on him (if we neglect the minor effects 

of air resistance). Total mechanical energy E − the sum of kinetic and gravitational potential energies −  

is conserved  
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When we throw a ball into the air, its speed decreases on the way up as kinetic energy is converted 

to potential energy: ∆K< 0 and ∆Ugrav> 0. On the way back down, potential energy is converted back to 

kinetic energy and the ball’s speed increases: ∆K > 0 and ∆Ugrav< 0. But the total mechanical energy 

(kinetic plus potential) is the same at every point in the motion, provided that no force other than gravity 

does work on the ball (that is, air resistance must be negligible). It’s still true that the gravitational force 

does work on the object as it moves up or down, but we no longer have to calculate work directly; 

keeping track of changes in the value of Ugrav takes care of this completely. Equation (7.4) is also valid if 

forces other than gravity are present but do not do work.  

CAUTION! Choose “zero height” to be wherever you like. When working with gravitational 

potential energy, we may choose any height to be y = 0. If we shift the origin for y, the values of y1 and y2 

change, as do the values of Ugrav,1 and Ugrav,2. But this shift has no effect on the difference in height y2 – y1 

or on the difference in gravitational potential energy ( )grav,2 grav,1 2 1U U mg y y− = − . The physically 

significant quantity is not the value of Ugrav at a particular point but the difference in Ugrav between two 

points. We can define Ugrav to be zero at whatever point we choose. 

 

 

EXAMPLE 7.1 Height of a baseball from energy conservation 

You throw a 0.145 kg baseball straight up, giving it an initial velocity of magnitude 20.0 m/s. Find 

how high it goes, ignoring air resistance. 

 

 

IDENTIFY and SET UP 

After the ball leaves your hand, only gravity 

does work on it. Hence total mechanical energy is 

conserved, and we can use Eq. (7.4). We take point 1 

to be where the ball leaves your hand and point 2 to 

be where it reaches its maximum height. As in 

Fig. 7.1, we take the positive y-direction to be 

upward. The ball’s speed at point 1 is 1 20.0 m/s = ; 

at its maximum height it is instantaneously at rest, so 

2 0 = . We take the origin at point 1, so y1 = 0 

(Fig.7.3). Our target variable, the distance the ball 

moves vertically between the two points, is the 

displacement 2 1 2 20y y y y− = − = . 

 

EXECUTE  

We have y1 = 0, grav,1 1 0U mgy= = , and 
21

2 22
0K m= = . Then Eq. (7.4), 1 grav,1 2 grav,2K U K U+ = + , 

becomes 

 

1 grav,2K U= . 

 

As the energy bar graphs in Fig. 7.3 show, this equation says that the kinetic energy of the ball at point 1 

is completely converted to gravitational potential energy at point 2. We substitute 
21

1 12
K m=  and 

grav,2 2U mgy=  and solve for y2: 

( )

( )

22
2 11
1 2 22 2

20.0 m/s
;     20.4 m

2 2 9.80 m/s
m mgy y

g


 = = = = . 

 

 

 

Figure 7.3 - After a baseball leaves your hand, total 

mechanical energy E = K + U is conserved 
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EVALUATE 

As a check, use the given value of 1  and our result for y2 to calculate the kinetic energy at point 1 

and the gravitational potential energy at point 2. You should find that these are equal: 
21

1 12
29.0 JK m= =  and grav,2 2 29.0 JU mgy= = . Note that we could have found the result 

2

2 1 2y g=  by 

using Eq. (2.13) in the form ( )2 2

2 1 2 12y y g y y = − − .  

What if we put the origin somewhere else—for example, 5.0 m below point 1, so that 1 5.0 my = ? 

Then the total mechanical energy at point 1 is part kinetic and part potential; at point 2 it’s still purely 

potential because 2 0 = . You’ll find that this choice of origin yields 2 25.4 my = , but again

2 1 20.4 my y− = . In problems like this, you are free to choose the height at which grav 0U = . The physics 

doesn’t depend on your choice. 

 

 

KEYCONCEPT: Total mechanical energy (the sum of kinetic energy and gravitational potential 

energy) is conserved when only the force of gravity does work. 

 

 

When Forces Other Than Gravity Do Work 

 

If other forces act on the object in addition to its 

weight, then otherF  other in Fig. 7.2 is not zero. For the 

example of pile driver, the force applied by the hoisting cable 

and the friction with the vertical guide rails are examples of 

forces that might be included in otherF . The gravitational work 

Wgrav is still given by Eq. (7.3), but the total work Wtot is then 

the sum of Wgrav and the work done by otherF . We’ll call this 

additional work Wother, so the total work done by all forces is

tot grav otherW W W= + . Equating this to the change in kinetic 

energy, we have 

 

 other grav 2 1W W K K+ = − . (7.5) 

 

Also, from Eq. (7.3), grav grav,1 grav,2W U U= − ,  

so Eq. (7.5) becomes 

 

 other grav,1 grav,2 2 1W U U K K+ − = − ,
   

  

 

which we can rearrange in the form 

 

 
1 grav,1 other 2 grav,2    

 (if forces other than gravity do work)

K U W K U+ + = +

.
   (7.6) 

 

We can use the expressions for the various energy terms to rewrite Eq. (7.6): 

 

 
2 21 1
1 1 other 2 22 2

   (if forces other than gravity do work)m mgy W m mgy + + = + . (7.7) 

 

 
Figure 7.4 - As this parachutist moves 

downward at a constant speed, the upward 

force of air resistance does negative work 

Wother on him. Hence the total mechanical 

energy E = K + U decreases 
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The meaning of Eqs. (7.6) and (7.7) is this: The work done by all forces other than the 

gravitational force equals the change in the total mechanical energy gravE K U= + of the system, 

whereUgravis the gravitational potential energy. When Wother is positive, E increases 2 grav,2K U+ and is 

greater than 1 grav,1K U+ . When Wother is negative, E decreases (Fig. 7.4). In the special case in which no 

forces other than the object’s weight do work, Wother = 0. The total mechanical energy is then constant, 

and we are back to Eq. (7.4). 

 

 

PROBLEM-SOLVING STRATEGY  

7.1 Problems Using Total Mechanical Energy I 

 

 

IDENTIFYthe relevant concepts: 

Decide whether the problem should be solved by energy methods, by using F ma=  directly, or 

by a combination of these. The energy approach is best when the problem involves varying forces or 

motion along a curved path (discussed later in this section). If the problem involves elapsed time, the 

energy approach is usually not the best choice because it doesn’t involve time directly. 

 

 

SET UPthe problem: 

• When using the energy approach, first identify the initial and final states (the positions and 

velocities) of the objects in question. Use the subscript 1 for the initial state and the subscript 2 for the 

final state. Draw sketches showing these states. 

• Define a coordinate system, and choose the level at which y = 0. Choose the positive y-

direction to be upward. (The equations in this section require this). 

• Identify any forces that do work on each object and that cannot be described in terms of 

potential energy. (So far, this means any forces other than gravity. Work done by an ideal spring can also 

be expressed as a change in potential energy). Sketch a free-body diagram for each object. 

• List the unknown and known quantities, including the coordinates and velocities at each 

point. Identify the target variables. 

 

 

EXECUTEthe solution: 

Write expressions for the initial and final kinetic and potential energies K1, K2, Ugrav,1, and Ugrav,2. 

If no other forces do work, use Eq. (7.4). If there are other forces that do work, use Eq. (7.6). Draw bar 

graphs showing the initial and final values of K, Ugrav,1, and gravE K U= + . Then solve to find your target 

variables 

 

 

EVALUATEyour answer: 

Check whether your answer makes physical sense. Remember that the gravitational work is 

included in ∆Ugrav, so do not include it in Wother.  

 

 

Gravitational Potential Energy for Motion Along a Curved Path 

 

In our first two examples the object moved along a straight vertical line. What happens when the 

path is slanted or curved (Fig. 7.5a)? The object is acted on by the gravitational force w mg=  and 

possibly by other forces whose resultant we call otherF . To find the work Wgrav done by the gravitational 

force during this displacement, we divide the path into small segments s ; Fig. 7.5b shows a typical 

segment. The work done by the gravitational force over this segment is the scalar product of the force and 
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the displacement. In terms of unit vectors, the force is ˆw mg mgj= = − and the displacement is 

ˆ ˆs xi yj =  + , so 

 

 
( )grav

ˆ ˆ ˆW w s mgj xi yj mg y=  = −   + = −  .
  

 

The work done by gravity is the same as though the object had been displaced vertically a distance 

y , with no horizontal displacement. This is true for every segment, so the total work done by the 

gravitational force is mg−  multiplied by the total vertical displacement ( )2 1y y− : 

 

 ( )grav 2 1 1 2 grav,1 grav,2W mg y y mgy mgy U U= − − = − = − .  

 

This is the same as Eq. (7.1) or (7.3), in which we assumed a purely vertical path. So even if the path an 

object follows between two points is curved, the total work done by the gravitational force depends on 

only the difference in height between the two points of the path. This work is unaffected by any 

horizontal motion that may occur. So we can use the same expression for gravitational potential energy 

whether the object’s path is curved or straight. 

CAUTION! With gravitational potential energy, only the change in height matters. The 

change in gravitational potential energy along a curved path depends only on the difference between the 

final and initial heights, not on the shape of the path. If gravity is the only force that does work along a 

curved path, then the total mechanical energy is conserved. 
 

           

Figure 7.5 - Calculating the change in gravitational potential energy for a displacement along a curved path 

 

 

7.2 Elastic Potential energy 
 

In many situations we encounter potential energy that is not gravitational in nature. One example 

is a rubber-band slingshot. Work is done on the rubber band by the force that stretches it, and that work is 

stored in the rubber band until you let it go. Then the rubber band gives kinetic energy to the projectile.  

Do work on the system to store energy, which can later be converted to kinetic energy. We’ll 

describe the process of storing energy in a deformable object such as a spring or rubber band in terms of 

elastic potential energy. An object is called elastic if it returns to its original shape and size after being 

deformed. 

To be specific, we’ll consider storing energy in an ideal spring, like the ones we discussed in 

Section 6.3. To keep such an ideal spring stretched by a distance x, we must exert a force F kx= , where  

k is the force constant of the spring. Many elastic objects show this same direct proportionality between 

force F and displacement x, provided that x is sufficiently small.  

Let’s proceed just as we did for gravitational potential energy. We begin with the work done by 

the elastic (spring) force and then combine this with the work–energy theorem. The difference is that 

gravitational potential energy is a shared property of an object and the earth, but elastic potential energy is 

stored in just the spring (or other deformable object).  
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Figure 7.6 shows the ideal spring with its left end held stationary and its right end attached to a 

block with mass m that can move along the x-axis. In Fig. 7.6a the block is at 0x = when the spring is 

neither stretched nor compressed. We move the block to one side, thereby stretching or compressing the 

spring, then let it go. As the block moves from a different position x1 to a different position x2, how much 

work does the elastic (spring) force do on the block?  

We found in Section 6.3 that the work we must do on the spring to move one end from an 

elongation x1 to a different elongation x2 is 

 

 
2 21 1
2 12 2

    (work done  a spring)W kx kx on= − , (7.8) 

 

where k is the force constant of the spring. If we stretch the spring farther, we do positive work on the 

spring; if we let the spring relax while holding one end, we do negative work on it. This expression for 

work is also correct when the spring is compressed such that x1, x2, or both are negative. Now, from 

Newton’s third law the work done by the spring is just the negative of the work done on the spring. So by 

changing the signs in Eq. (7.8), we find that in a displacement from x1 to x2 the spring does an amount of 

work Wel given by 

 

 
2 21 1

el 1 22 2
    (work done  a spring)W kx kx by= − . (7.9) 

 

                       
Figure 7.6 - Calculating the work done by a spring attached to a block on a horizontal surface.  

The quantity x is the extension or compression of the spring 

 

The subscript “el” stands for elastic. When both x1 and x2 are positive and x2 > x1 (Fig. 7.6b), the spring 

does negative work on the block, which moves in the +x-direction while the spring pulls on it  

in the –x-direction. The spring stretches farther, and the block slows down. When both x1 and x2 are 

positive and x2<x1 (Fig. 7.6c), the spring does positive work as it relaxes and the block speeds up. If the 

spring can be compressed as well as stretched, x1, x2, or both may be negative, but the expression for Wel 

is still valid. In Fig. 7.6d, both x1 and x2 are negative, but x2 is less negative than x1; the compressed 

spring does positive work as it relaxes, speeding the block up.  

Just as for gravitational work, we can express Eq. (7.9) for the work done by the spring in terms of 

a quantity at the beginning and end of the displacement. This quantity is 
21

2
kx , and we define it to be the 

elastic potential energy: 

 

  

     (7.10) 
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Figure 7.7 is a graph of Eq. (7.10). As for all other energy and work quantities, the unit of Uel  

is the joule (J); to see this from Eq. (7.10), recall that the units of k are N/m and that 1 N m = 1 J . We can 

now use Eq. (7.10) to rewrite Eq. (7.9) for the work Wel done by the spring: 

 

  

(7.11) 

 

When a stretched spring is stretched farther, as in Fig. 7.6b, 

Wel is negative and Uel increases; more elastic potential energy is 

stored in the spring. When a stretched spring relaxes, as in Fig. 

7.6c, x decreases, Wel is positive, and Uel decreases; the spring loses 

elastic potential energy. Figure 7.7 shows that Uel is positive for 

both positive and negative x values; Eqs. (7.10) and (7.11) are valid 

for both cases. The more a spring is compressed or stretched, the 

greater its elastic potential energy. 

CAUTION! Gravitational potential energy vs. elastic 

potential energy. An important difference between gravitational 

potential energy gravU mgy=  and elastic potential energy 

21
el 2

U kx=  is that we cannot choose x = 0 to be wherever we wish. 

In Eq. (7.10), x = 0 must be the position at which the spring is 

neither stretched nor compressed. At that position, both its elastic 

potential energy and the force that it exerts are zero. 

The work–energy theorem says that tot 2 1W K K= − , no 

matter what kind of forces are acting on an object. If the elastic 

force is the only force that does work on the object, then 

 

tot el ,1 el,2elW W U U= = −  

 

and so 

 

  

(7.12)

 
 

In this case the total mechanical energy elE K U= +  − the sum of kinetic and elastic potential energies − 

is conserved. An example of this is the motion of the block in Fig. 7.6, provided the horizontal surface is 

frictionless so no force does work other than that exerted by the spring.  

For Eq. (7.12) to be strictly correct, the ideal spring that we’ve been discussing must also be 

massless. If the spring has mass, it also has kinetic energy as the coils of the spring move back and forth. 

We can ignore the kinetic energy of the spring if its mass is much less than the mass m of the object 

attached to the spring. For instance, a typical automobile has a mass of 1200 kg or more. The springs in 

its suspension have masses of only a few kilograms, so their mass can be ignored if we want to study how 

a car bounces on its suspension. 

 

 

 
 

Figure 7.7 - The graph of elastic 

potential energy for an ideal spring is 

a parabola: 
21

el 2
U kx= , where x is 

the extension or compression of the 

spring. Elastic potential energy Uel is 

never negative 
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Situations with Both Gravitational and Elastic Potential Energy 

 

Equation (7.12) is valid when the only potential energy in the system is elastic potential energy. 

What happens when we have both gravitational and elastic forces, such as a block attached to the lower 

end of a vertically hanging spring? And what if work is also done by other forces that cannot be described 

in terms of potential energy, such as the force of air resistance on a moving block? Then the total work is 

the sum of the work done by the gravitational force (Wgrav), the work done by the elastic force (Wel), and 

the work done by other forces (Wother): tot grav el otherW W W W= + + . The work–energy theorem then gives 

 

 grav el other 2 1W W W K K+ + = − .  

 

The work done by the gravitational force is grav grav,1 grav,2W U U= −  and the work done by the spring is 

el el,1 el,2W U U= − . Hence we can rewrite the work–energy theorem for this most general case as 

 

 1 grav,1 el,1 other 2 grav,2 el,2K U U W K U U+ + + = + +  (valid in general) (7.13) 

 

or, equivalently, 

 

  

(7.14)

 

 

where 21
grav el 2

U U U mgy kx= + = +  is the sum of gravitational potential energy and elastic potential 

energy. We call U simply “the potential energy”.  

Equation (7.14) is the most general statementof the relationship among kinetic energy, potential 

energy, and work done by other forces. It says: 

The work done by all forces other than the gravitational force or elastic force equals the 

change in the total mechanical energy E = K + U of the system. 

The “system” is made up of the object of mass m, the earth with which it interacts through the 

gravitational force, and the spring of force constant k.  

If Wother is positive, E = K + U increases; if Wother is negative, E decreases. If the gravitational and 

elastic forces are the only forces that do work on the object, then Wother = 0 and the total mechanical 

energy E = K + U is conserved. [Compare Eq.  (7.14) to Eqs. (7.6) and (7.7), which include gravitational 

potential energy but not elastic potential energy.]  

Trampoline jumping involves transformations among kinetic energy, elastic potential energy, and 

gravitational potential energy. As the jumper descends through the air from the high point of the bounce, 

gravitational potential energy Ugrav decreases and kinetic energy K increases. Once the jumper touches the 

trampoline, some of the total mechanical energy goes into elastic potential energy Uel stored in the 

trampoline’s springs. At the lowest point of the trajectory (Ugrav is minimum), the jumper comes to a 

momentary halt (K = 0) and the springs are maximally stretched (Uel is maximum). The springs then 

convert their energy back into K and Ugrav, propelling the jumper upward. 

 

 

PROBLEM-SOLVING STRATEGY 

7.2 Problems Using Total Mechanical Energy II 
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Problem-Solving Strategy 7.1 (Section 7.1) is useful in solving problems that involve elastic 

forces as well as gravitational forces. The only new wrinkle is that the potential energy U now includes 

the elastic potential energy 
21

el 2
U kx= , where x is the displacement of the spring from its unstretched 

length. The work done by the gravitational and elastic forces is accounted for by their potential energies; 

the work done by other forces, Wother, must still be included separately.  

 

 

7.3 Conservative and Nonconservative Forces 
 

In our discussions of potential energy we have talked about “storing” kinetic energy by converting 

it to potential energy, with the idea that we can retrieve it again as kinetic energy. For example, when you 

throw a ball up in the air, it slows down as kinetic energy is converted to gravitational potential energy. 

But on the way down the ball speeds up as potential energy is converted back to kinetic energy. If there is 

no air resistance, the ball is moving just as fast when you catch it as when you threw it.  

Another example is a glider moving on a frictionless horizontal air track that runs into a spring 

bumper. The glider compresses the spring and then bounces back. If there is no friction, the glider ends up 

with the same speed and kinetic energy it had before the collision. Again, there is a two-way conversion 

from kinetic to potential energy and back. In both cases the total mechanical energy, kinetic plus 

potential, is constant or conserved during the motion. 

 

 

Conservative Forces 

 

A force that offers this opportunity of two-way conversion between kinetic and potential energies 

is called a conservative force. We have seen two examples of conservative forces: the gravitational force 

and the spring force. (Later in this book we’ll study another conservative force, the electric force between 

charged objects). An essential feature of conservative forces is that their work is always reversible. 

Anything that we deposit in the energy “bank” can later be withdrawn without loss. Another important 

aspect of conservative forces is that if an object follows different paths from point 1 to point 2, the work 

done by a conservative force is the same for all of these paths (Fig. 7.8). For example, if an object stays 

close to the surface of the earth, the gravitational force mg  is independent of height, and the work done 

by this force depends on only the change in height. If the object moves around a closed path, ending at the 

same height where it started, the total work done by the 

gravitational force is always zero. 

In summary, the work done by a conservative 

force has four properties:  

1. It can be expressed as the difference between 

the initial and final values of a potential-energy function.  

2. It is reversible.  

3. It is independent of the path of the object and 

depends on only the starting and ending points.  

4. When the starting and ending points are the 

same, the total work is zero.  

When the only forces that do work are conservative 

forces, the total mechanical energy E = K + U is constant. 
 

 

Nonconservative Forces 

 

Not all forces are conservative. Consider the 

friction force acting on the crate sliding on a ramp. When the crate slides up and then back down to the 

starting point, the total work done on it by the friction force is not zero. When the direction of motion 

reverses, so does the friction force, and friction does negative work in both directions. Friction also acts 

when a car with its brakes locked skids with decreasing speed (and decreasing kinetic energy). The lost 

 
Figure 7.8 The work done by a conservative 

force such as gravity depends on only the 

endpoints of a path, not the specific path 

taken between those points 
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kinetic energy can’t be recovered by reversing the motion or in any other way, and total mechanical 

energy is not conserved. So there is no potential-energy function for the friction force.  

In the same way, the force of fluid resistance (see Section 5.3) is not conservative. If you throw a 

ball up in the air, air resistance does negative work on the ball while it’s rising and while it’s descending. 

The ball returns to your hand with less speed and less kinetic energy than when it left, and there is no way 

to get back the lost mechanical energy.  

A force that is not conservative is called a nonconservative force. The work done by a 

nonconservative force cannot be represented by a potential-energy function. Some nonconservative 

forces, like kinetic friction or fluid resistance, cause mechanical energy to be lost or dissipated; a force of 

this kind is called a dissipative force. There are also nonconservative forces that increase mechanical 

energy. The fragments of an exploding firecracker fly off with very large kinetic energy, thanks to a 

chemical reaction of gunpowder with oxygen. The forces unleashed by this reaction are nonconservative 

because the process is not reversible. (The fragments never spontaneously reassemble themselves into a 

complete firecracker!) 
 

 

The Law of Conservation of Energy 

 

Nonconservative forces cannot be represented in terms of 

potential energy. But we can describe the effects of these forces in 

terms of kinds of energy other than kinetic or potential energy. 

When a car with locked brakes skids to a stop, both the tires and the 

road surface become hotter. The energy associated with this change 

in the state of the materials is called internal energy. Raising the 

temperature of an object increases its internal energy; lowering the 

object’s temperature decreases its internal energy.  

To see the significance of internal energy, let’s consider a 

block sliding on a rough surface. Friction does negative work on 

the block as it slides, and the change in internal energy of the block 

and surface (both of which get hotter) is positive. Careful 

experiments show that the increase in the internal energy is exactly 

equal to the absolute value of the work done by friction. In other 

words, 
 

                               int otherU W = − , 

 

where intU  is the change in internal energy. We substitute this 

into Eq. (7.14) 
 

 1 1 int 2 2K U U K U+ − = + .  

Writing 2 1K K K = −  and 2 1U U U = − , we can finally express this as 

 

  

(7.15) 

 

This remarkable statement is the general form of the law of conservation of energy. In a given process, 

the kinetic energy, potential energy, and internal energy of a system may all change. But the sum of those 

changes is always zero. If there is a decrease in one form of energy, it is made up for by an increase in the 

other forms (Fig. 7.9). When we expand our definition of energy to include internal energy, Eq. (7.15) 

says: Energy is never created or destroyed; it only changes form. No exception to this rule has ever been 

found. 

 
 

Figure 7.9 - The battery pack in this 

radiocontrolled helicopter contains 
42.4  10  J  of electric energy. 

When this energy is used up, the 

internal energy of the battery pack 

decreases by this amount, so 
4

int 2.4  10  JU = −  . This energy 

can be converted to kinetic energy to 

make the rotor blades and helicopter 

go faster, or to gravitational potential 

energy to make the helicopter climb 
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The concept of work has been banished from Eq. (7.15); instead, it suggests that we think purely 

in terms of the conversion of energy from one form to another. For example, when you throw a baseball 

straight up, you convert a portion of the internal energy of your molecules to kinetic energy of the 

baseball. This is converted to gravitational potential energy as the ball climbs and back to kinetic energy 

as the ball falls. If there is air resistance, part of the energy is used to heat up the air and the ball and 

increase their internal energy. Energy is converted back to the kinetic form as the ball falls. If you catch 

the ball in your hand, whatever energy was not lost to the air once again becomes internal energy; the ball 

and your hand are now warmer than they were at the beginning.  

 

 

7.4 Force and Potential Energy 
 

For the two kinds of conservative forces (gravitational and elastic) we have studied, we started 

with a description of the behavior of the force and derived from that an expression for the potential 

energy. For example, for an object with mass m in a uniform gravitational field, the gravitational force is 

yF mg= − . We found that the corresponding potential energy is ( )U y mgy= . The force that an ideal 

spring exerts on an object is xF kx= − , and the corresponding potential-energy function is ( ) 21
2

U x kx= .  

In studying physics, however, you’ll encounter situations in which you are given an expression for 

the potential energy as a function of position and have to find the corresponding force. We’ll see several 

examples of this kind when we study electric forces later in this book: It’s often far easier to calculate the 

electric potential energy first and then determine the corresponding electric force afterward.  

Here’s how we find the force that corresponds to a given potential-energy expression. First let’s 

consider motion along a straight line, with coordinate x. We denote the x-component of force, a function 

of x, by ( )xF x  and the potential energy as ( )U x . This notation reminds us that both Fx and U are 

functions of x. Now we recall that in any displacement, the work W done by a conservative force equals 

the negative of the change ∆U in potential energy: 

 

 W U= − . 
  

Let’s apply this to a small displacement ∆x. The work done by the force ( )xF x  during this displacement 

is approximately equal to ( )xF x x . We have to say “approximately” because ( )xF x  may vary a little 

over the interval ∆x.  

So 

 ( ) ( )    and    x x

U
F x x U F x

x


 = − = −


.  

 

You can probably see what’s coming. We take the limit as 0x → ; in this limit, the variation of Fx 

becomes negligible, and we have the exact relationship 

  
(7.16)

 

 

This result makes sense; in regions where U(x) changes most rapidly with x (that is, where ( )dU x dx  is 

large), the greatest amount of work is done during a given displacement, and this corresponds to a large 

force magnitude. Also, when ( )xF x  is in the positive x-direction, U(x) decreases with increasing x. So 

( )xF x  and ( )dU x dx  should indeed have opposite signs. The physical meaning of Eq. (7.16) is that  

a conservative force always acts to push the system toward lower potential energy.  

As a check, let’s consider the function for elastic potential energy, ( ) 21
2

U x kx= . Substituting this 

into Eq. (7.16) yields 
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 ( ) ( )21
2x

d
F x kx kx

dx
= − = − .  

 

which is the correct expression for the force exerted by an ideal spring (Fig. 7.10a). Similarly, for 

gravitational potential energy we have ( )U y mgy= ; taking care to change x to y for the choice of axis, 

we get ( )yF dU dy d mgy dy mg= − = − = − , which is the correct expression for gravitational force (Fig. 

7.10b). 

 

 
Figure 7.10 - A conservative force is the negative derivative of the corresponding potential energy 

 

 

EXAMPLE 7.2 An electric force and its potential energy 

An electrically charged particle is held at rest at the point x = 0; a second particle with equal 

charge is free to move along the positive x-axis. The potential energy of the system is ( )U x C x= , where 

C is a positive constant that depends on the magnitude of the charges. Derive an expression for the x-

component of force acting on the movable particle as a function of its position. 

 

 

IDENTIFY and SET UP 

We are given the potential-energy function U(x). We’ll find the corresponding force function by 

using Eq. (7.16), ( ) ( )xF x dU x dx= − . 

 

 

EXECUTE  

The derivative of 1/x with respect to x is 
21 x− . So for x> 0 the force on the movable charged 

particle is 

( )
( )

2 2

1
x

dU x C
F x C

dx x x

 
= − = − − = 

 
. 

 

 

EVALUATE 

The x-component of force is positive, corresponding to a repulsion between like electric charges. 

Both the potential energy and the force are very large when the particles are close together (small x), and 

both get smaller as the particles move farther apart (large x). The force pushes the movable particle 

toward large positive values of x, where the potential energy is lower.  

 

 

KEYCONCEPT 

For motion in one dimension, the force associated with a potential-energy function equals the 

negative derivative of that function with respect to position. 
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Force and Potential Energy in Three Dimensions 

 

We can extend this analysis to three dimensions for a particle that may move in the x-, y-, or  

z-direction, or all at once, under the action of a conservative force that has components Fx, Fy, and Fz. 

Each component of force may be a function of the coordinates x, y, and z. The potential-energy function 

U is also a function of all three space coordinates. The potential-energy change ∆U when the particle 

moves a small distance ∆x in the x-direction is again given by xF x−  ; it doesn’t depend on Fy and Fz, 

which represent force components that are perpendicular to the displacement and do no work. So we 

again have the approximate relationship 
 

 x

U
F

x


= −


.  

 

We determine the y- and z-components in exactly the same way: 
 

      y z

U U
F F

y z

 
= − = −

 
.  

 

To make these relationships exact, we take the limits 0x → , 0y → , and 0z →  so that these 

ratios become derivatives. Because U may be a function of all three coordinates, we need to remember 

that when we calculate each of these derivatives, only one coordinate changes at a time. We compute the 

derivative of U with respect to x by assuming that y and z are constant and only x varies, and so on. Such 

a derivative is called a partial derivative. The usual notation for a partial derivative is U x   and so on; 

the symbol   is a modified d. So we write 
 

                                 

(7.17)

 
 

We can use unit vectors to write a single compact vector expression for the force F : 
 

                               

(7.18)

 
In Eq. (7.18) we take the partial derivative of U with respect to each coordinate, multiply by the 

corresponding unit vector, and then take the vector sum. This operation is called the gradient of U and is 

often abbreviated as U .  

As a check, let’s substitute into Eq. (7.18) the function U = mgy for gravitational potential energy: 

 

 

( )
( ) ( ) ( )

( )ˆˆ ˆ ˆ
mgy mgy mgy

F mgy i j k mg j
x y z

   
= − = − + + = − 

   
.

  
 

This is just the familiar expression for the gravitational force. 
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7.5 Energy Diagrams 
 

When a particle moves along a straight line under the action of a conservative force, we can get a 

lot of insight into its possible motions by looking at the graph of the potential-energy function U(x). 

Figure 7.11a shows a glider with mass m that moves along the x-axis on an air track. The spring exerts on 

the glider a force with x-component xF kx= − . Figure 7.11b is a graph of the corresponding potential-

energy function ( ) 21
2

U x kx= . If the elastic force of the spring is the only horizontal force acting on 

the glider, the total mechanical energy E = K + U is constant, 

independent of x. A graph of E as a function of x is thus a 

straight horizontal line. We use the term energy diagram for a 

graph like this, which shows both the potential-energy function 

U(x) and the energy of the particle subjected to the force that 

corresponds to U(x).  

The vertical distance between the U and E graphs at 

each point represents the difference E U− , equal to the kinetic 

energy K at that point. We see that K is greatest at 0x = . It is 

zero at the values of x where the two graphs cross, labeled A 

and –A in Fig. 7.11b. Thus the speed  is greatest at 0x = , and 

it is zero at x A=  , the points of maximum possible 

displacement from x = 0 for a given value of the total energy E. 

The potential energy U can never be greater than the total 

energy E; if it were, K would be negative, and that’s impossible. 

The motion is a back-and-forth oscillation between the points  

x = A and x = –A.  

From Eq. (7.16), at each point the force Fx on the glider 

is equal to the negative of the slope of the U(x) curve: 

xF dU dx= − (see Fig. 7.10a). When the particle is at x = 0, 

the slope and the force are zero, so this is an equilibrium 

position. When x is positive, the slope of the U(x) curve is 

positive and the force Fx is negative, directed toward the origin. 

When x is negative, the slope is negative and Fx is positive, 

again directed toward the origin. Such a force is called a restoring force; when the glider is displaced to 

either side of x = 0, the force tends to “restore” it back to x = 0. An analogous situation is a marble rolling 

around in a round-bottomed bowl. We say that x = 0 is a point of stable equilibrium. More generally, 

any minimum in a potential-energy curve is a stable equilibrium position.  

Figure 7.12a shows a hypothetical but more general potential-energy function U(x). Figure 7.12b 

shows the corresponding force xF dU dx= − . Points x1 and x3 are stable equilibrium points. At both 

points, Fx is zero because the slope of the U(x) curve is zero. When the particle is displaced to either side, 

the force pushes back toward the equilibrium point. The slope of the U(x) curve is also zero at points x2 

and x4, and these are also equilibrium points. But when the particle is displaced a little to the right of 

either point, the slope of the U(x) curve becomes negative, corresponding to a positive Fx that tends to 

push the particle still farther from the point. When the particle is displaced a little to the left, Fx is 

negative, again pushing away from equilibrium. This is analogous to a marble rolling on the top of a 

bowling ball. Points x2 and x4 are called unstable equilibrium points; any maximum in a potential-energy 

curve is an unstable equilibrium position. 

CAUTION! Potential energy and the direction of a conservative force. The direction of the 

force on an object is not determined by the sign of the potential energy U. Rather, it’s the sign of 

xF dU dx= −  that matters. The physically significant quantity is the difference in the values of U between 

two points (Section 7.1), which is what the derivative xF dU dx= −  measures. You can always add a 

constant to the potential-energy function without changing the physics. 

 

 
Figure 7.11 − (a) A glider on an air track. 

The spring exerts a force xF kx= − . 

(b) The potential-energy function 
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Figure 7.12The maxima and minima of a potential-energy function U(x) correspond to points where 0xF =  
 

If the total energy is E1 and the particle is initially near x1, it can move only in the region between 

xa and xb determined by the intersection of the E1 and U graphs (Fig. 7.12a). Again, U cannot be greater 

than E1 because K can’t be negative. We speak of the particle as moving in a potential well, and xa and xb 

are the turning points of the particle’s motion (since at these points, the particle stops and reverses 

direction). If we increase the total energy to the level E2, the particle can move over a wider range, from 

xc to xd. If the total energy is greater than E3, the particle can “escape” and move to indefinitely large 

values of x. At the other extreme, E0 represents the minimum total energy the system can have. 

 

CHAPTER 7: SUMMARY 

 Gravitational potential energy 

and elastic potential energy:The work 

done on a particle by a constant 

gravitational force can be represented 

as a change in the gravitational 

potential energy, gravU mgy= . This 

energy is a shared property of the 

particle and the earth. A potential 

energy is also associated with the 

elastic force xF kx= −  exerted by an 

ideal spring, where x is the amount of 

stretch or compression. The work done 

by this force can be represented as a 

change in the elastic potential energy of 

the spring, 
21

el 2
U kx=  

grav 1 2

grav,1 grav,2

grav

        = 

        = 

W mgy mgy

U U

U

= −

−

−

 

2 21 1
el 1 22 2

el,1 el,2 el     = 

W kx kx

U U U

= −

− = −
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 When total mechanical energy 

is conserved: The total potential energy 

U is the sum of the gravitational and 

elastic potential energies: 

grav elU U U= + . If no forces other than 

the gravitational and elastic forces do 

work on a particle, the sum of kinetic 

and potential energies is conserved. 

This sum E = K + U is called the total 

mechanical energy 

1 1 2 2K U K U+ = + . 

 

 When total mechanical energy 

is not conserved:  

When forces other than the 

gravitational and elastic forces do work 

on a particle, the work Wother done by 

these other forces equals the change in 

total mechanical energy (kinetic energy 

plus total potential energy) 

1 1 other 2 2K U W K U+ + = + . 

 

 Conservative forces, 

nonconservative forces, and the 

law of conservation of energy: All 

forces are either conservative or 

nonconservative. A conservative force 

is one for which the work–kinetic 

energy relationship is completely 

reversible. The work of a conservative 

force can always be represented by a 

potential-energy function, but the work 

of a nonconservative force cannot. The 

work done by nonconservative forces 

manifests itself as changes in the 

internal energy of objects. The sum of 

kinetic, potential, and internal energies 

is always conserved 

int 0K U U + + = . 

 

 

 Determining force from 

potential energy:For motion along a 

straight line, a conservative force 

( )xF x  is the negative derivative of its 

associated potential-energy function U. 

In three dimensions, the components of 

a conservative force are negative partial 

derivatives of U 

( )
( )

ˆˆ ˆ

    = 

x

x

y

z

dU x
F x

dx

U
F

x

U
F

y

U
F

z

U U U
F i j k

x y z

U

= −


= −




= −




= −



   
= − + + 

   

−
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8 MOMENTUM, IMPULSE, AND COLLISIONS 
 

Many questions involving forces can’t be answered by directly applying Newton’s second law, 

F ma= . For example, when a truck collides head-on with a compact car, what determines which way 

the wreckage moves after the collision? In playing pool, how do you decide how to aim the cue ball in 

order to knock the eight ball into the pocket? And when a meteorite collides with the earth, how much of 

the meteorite’s kinetic energy is released in the impact?  

All of these questions involve forces about which we know very little: the forces between the car 

and the truck, between the two pool balls, or between the meteorite and the earth. Remarkably, we’ll find 

in this chapter that we don’t have to know anything about these forces to answer questions of this kind!  

Our approach uses two new concepts, momentum and impulse, and a new conservation law, 

conservation of momentum. This conservation law is every bit as important as the law of conservation of 

energy. The law of conservation of momentum is valid even in situations in which Newton’s laws are 

inadequate, such as objects moving at very high speeds (near the speed of light) or objects on a very small 

scale (such as the constituents of atoms). Within the domain of Newtonian mechanics, conservation of 

momentum enables us to analyze many situations that would be very difficult if we tried to use Newton’s 

laws directly. Among these are collision problems, in which two objects collide and can exert very large 

forces on each other for a short time. We’ll also use momentum ideas to solve problems in which an 

object’s mass changes as it moves, including the important special case of a rocket (which loses mass as it 

expends fuel). 

 

 

8.1 Momentum and Impulse 
 

In Section 6.2 we re-expressed Newton’s second law for a particle, F ma= , in terms of the 

work–energy theorem. This theorem helped us tackle a great number of problems and led us to the law of 

conservation of energy. Let’s return to F ma=  and see yet another useful way to restate this 

fundamental law. 

 

Newton’s Second Law in Terms of Momentum 

Consider a particle of constant mass m. Because a d dt= , we can write Newton’s second law 

for this particle as 

 

 ( )
d d

F m m
dt dt


= = . (8.1) 

We can move the mass m inside the derivative because it is constant. Thus Newton’s second law says that 

the net external force F  acting on a particle equals the time rate of change of the product of the 

particle’s mass and velocity. We’ll call this product the momentum, or linear momentum, of the 

particle: 
 

                              

(8.2)

 
 

The greater the mass m and speed   of a particle, the greater is its magnitude of momentum m . Keep in 

mind that momentum is a vector quantity with the same direction as the particle’s velocity (Fig. 8.1). A 

car driving north at 20 m/s and an identical car driving east at 20 m/s have the same magnitude of 

momentum ( m ) but different momentum vectors ( m ) because their directions are different.  
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We often express the momentum of a particle in terms of its 

components. If the particle has velocity components x , y , and z , then 

its momentum components px, py, and pz (which we also call the x-

momentum, y-momentum, and z-momentum) are 
 

             x x y y z zp m p m p m  = = = .                      (8.3) 

 

These three component equations are equivalent to Eq. (8.2). 

The units of the magnitude of momentum are units of mass times 

speed; the SI units of momentum are kg m/s . The plural of momentum is 

“momenta.” Let’s now substitute the definition of momentum, Eq. (8.2), 

into Eq. (8.1): 
 

  

(8.4)

 
 

The net external force (vector sum of all forces) acting on a particle equals the time rate of 

change of momentum of the particle. This, not F ma= , is the form in which Newton originally 

stated his second law (although he called momentum the “quantity of motion”). This law is valid only in 

inertial frames of reference (see Section 4.2). As Eq. (8.4) shows, a rapid change in momentum requires a 

large net external force, while a gradual change in momentum requires a smaller net external force. 

 

 

The Impulse–Momentum Theorem  
 

Both a particle’s momentum p m=  and its kinetic energy 
21

2
K m=  depend on the mass and 

velocity of the particle. What is the fundamental difference between these two quantities? A purely 

mathematical answer is that momentum is a vector whose magnitude is proportional to speed, while 

kinetic energy is a scalar proportional to the speed squared. But to see the physical difference between 

momentum and kinetic energy, we must first define a quantity closely related to momentum called 

impulse.  

Let’s first consider a particle acted on by a constant net external force F  during a time interval 

∆t from t1 to t2. The impulse of the net external force, denoted by J , is defined to be the product of the 

net external force and the time interval: 

                           

(8.5)

 

Impulse is a vector quantity; its direction is the same as the net external force F . The SI unit of 

impulse is the newton-second ( N s ). Because 
21 N = 1 kg m/s , an alternative set of units for impulse is 

kg m/s , the same as for momentum.  

To see what impulse is good for, let’s go back to Newton’s second law as restated in terms of 

momentum, Eq. (8.4). If the net external force F  is constant, then dp dt  is also constant. In that case, 

dp dt  is equal to the total change in momentum 2 1p p−  during the time interval 2 1t t− , divided by the 

interval: 

 2 1

2 1

p p
F

t t

−
=

−
 .  

 
 

Figure 8.1 - The velocity and 

momentum vectors of a 

particle 
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Multiplying this equation by ( 2 1t t− ), we have 

 

 ( )2 1 2 1F t t p p− = − .  

 

Comparing with Eq. (8.5), we end up with 

 

                            

(8.6)

 

 

The impulse–momentum theorem also holds when forces are not constant. To see this, we 

integrate both sides of Newton’s second law F dp dt=   over time between the limits t1 and t2: 

 

 
2 2 2

1 1 1

2 1

t t p

t t p

dp
F dt dt dp p p

dt
= = = −   .  

 

We see from Eq. (8.6) that the integral on the left is the impulse of the net external force: 

 

  

(8.7)

 

 

If the net external force F  is constant, the integral in Eq. (8.7) reduces 

to Eq. (8.5). We can define an average net external force avF  such that 

even when F  is not constant, the impulse J  is given by 

 

( )av 2 1J F t t= − . (8.8) 

 

When F  is constant, avF F=  and Eq. (8.8) reduces to Eq. (8.5).  

Figure 8.2a shows the x-component of net external force xF  as 

a function of time during a collision. This might represent the force on a 

football that is in contact with a player’s foot from time t1 to t2. The x-

component of impulse during this interval is represented by the red area 

under the curve between  

 t1 and t2. This area is equal to the green rectangular area bounded by t1, t2, 

and ( )av x
F , so ( ) ( )av 2 1x

F t t− is equal to the impulse of the actual time-

varying force during the same interval. Note that a large force  

acting for a short time can have the same impulse as a smaller force acting 

for a longer time if the areas  under the force–time curves are the same 

(Fig. 8.2b). A small force acting for a relatively long time (as when you 

land with your legs bent) has the same effect as a larger force acting for a 

short time (as when you land stiff-legged). Automotive air bags use the 

same principle. 

Both impulse and momentum are vector quantities, and Eqs. (8.5)–

 
Figure 8.2 - The meaning of 

the area under a graph of 

xF  versus t 
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(8.8) are vector equations. It’s often easiest to use them in component form: 

 

( ) ( )

( ) ( )

2

1

2

1

av 2 1 2 1 2 1

av 2 1 2 1 2 1

t

x x x x x xx

t

t

y y y y y yy

t

J F dt F t t p p m m

J F dt F t t p p m m

 

 

= = − = − = −

= = − = − = −




      

(8.9) 

 

and similarly for the z-component. 

 

 

Momentum and Kinetic Energy Compared  

 

We can now see the fundamental difference between momentum and kinetic energy. The impulse–

momentum theorem, 2 1J p p= − , says that changes in a particle’s momentum are due to impulse, which 

depends on the time over which the net external force acts. By contrast, the work–energy theorem, 

tot 2 1W K K= − , tells us that kinetic energy changes when work is done on a particle; the total work 

depends on the distance over which the net external force acts.  

Let’s consider a particle that starts from rest at t1 so that 1 0 = . Its initial momentum is 

1 1 0p m= = , and its initial kinetic energy is 
21

1 12
0K m= = . Now let a constant net external force equal 

to F  act on that particle from time t1 until time t2. During this interval, the particle moves a distance s in 

the direction of the force. From Eq. (8.6), the particle’s momentum at time t2 is 

 

 2 1p p J J= + = ,  

 

where ( )2 1J F t t= −  is the impulse that acts on the particle. So the momentum of a particle equals the 

impulse that accelerated it from rest to its present speed; impulse is the product of the net external force 

that accelerated the particle and the time required for the acceleration. By comparison, the kinetic energy 

of the particle at t2 is 2 totK W Fs= = , the total work done on the particle to accelerate it from rest. The 

total work is the product of the net external force and the distance required to accelerate the particle.  

Here’s an application of the distinction between momentum and kinetic energy. Which is easier to 

catch: a 0.50 kg ball moving at 4.0 m/s or a 0.10 kg ball moving at 20 m/s? Both balls have the same 

magnitude of momentum, ( ) ( ) ( )( )0.50 kg 4.0 m/s 0.10 kg 20 m/s 2.0 kg m/sp m= =  = =  . However, 

the two balls have different values of kinetic energy 
21

2
K m= : The large, slow-moving ball has  

K = 4.0 J, while the small, fast-moving ball has K = 20 J. Since the momentum is the same for both balls, 

both require the same impulse to be brought to rest. But stopping the 0.10 kg ball with your hand requires 

five times more work than stopping the 0.50 kg ball because the smaller ball has five times more kinetic 

energy. For a given force that you exert with your hand, it takes the same amount of time (the duration of 

the catch) to stop either ball, but your hand and arm will be pushed back five times farther if you choose 

to catch the small, fast-moving ball. To minimize arm strain, you should choose to catch the 0.50 kg ball 

with its lower kinetic energy. 

Both the impulse–momentum and work–energy theorems rest on the foundation of Newton’s 

laws. They are integral principles, relating the motion at two different times separated by a finite interval. 

By contrast, Newton’s second law itself (in either of the forms F ma=  or F dp dt= ) is a 

differential principle that concerns the rate of change of velocity or momentum at each instant. 
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8.2 Conservation of Momentum 
 

 The concept of momentum is particularly important in 

situations in which we have two or more objects that interact. To see 

why, let’s consider first an idealized system of two objects that interact 

with each other but not with anything else—for example, two astronauts 

who touch each other as they float freely in the zero-gravity 

environment of outer space (Fig. 8.3). Think of the astronauts as 

particles. Each particle exerts a force on the other; according to 

Newton’s third law, the two forces are always equal in magnitude and 

opposite in direction. Hence, the impulses that act on the two particles 

are equal in magnitude and opposite in direction, as are the changes in 

momentum of the two particles.  

Let’s go over that again with some new terminology. For any 

system, the forces that the particles of the system exert on each other are 

called internal forces. Forces exerted on any part of the system by 

some object outside it are called external forces. For the system shown 

in Fig. 8.3, the internal forces are  on B AF , exerted by particle B on 

particle A, and  on A BF , exerted by particle A on particle B. There are no 

external forces; when this is the case, we have an isolated system. 

The net external force on particle A is  on B AF  and the net 

external force on particle B is  on A BF , so from Eq. (8.4) the rates of 

change of the momenta of the two particles are 
 

  on  on       A B
B A A B

dp dp
F F

dt dt
= = . (8.10) 

 

The momentum of each particle changes, but these changes are related 

to each other by Newton’s third law: Forces  on B AF  and  on A BF  are 

always equal in magnitude and opposite in direction. That is, 

 on  on B A A BF F= − , so  on  on 0B A A BF F+ = . Adding together the two 

equations in Eq. (8.10), we have 
 

 
( )

 on  on 0
A BA B

B A A B

d p pdp dp
F F

dt dt dt

+
+ = + = = . (8.11) 

 

The rates of change of the two momenta are equal and opposite, 

so the rate of change of the vector sum A Bp p+  is zero. We define the 

total momentum P  of the system of two particles as the vector sum of the momenta of the individual 

particles; that is, 
 

 A BP p p= + . (8.12) 

 

Then Eq. (8.11) becomes 

 

 
 on  on 0B A A B

dP
F F

dt
+ = = . (8.13) 

 

 
 

Figure 8.3 - Two astronauts push 

each other as they float freely in 

the zero-gravity environment of 

space 

 

 

 
Figure 8.4 - Two ice skaters push 

each other as they skate on a 

frictionless, horizontal surface. 

(Compare to Fig. 8.3) 

 



129 

The time rate of change of the total momentum P S is zero. Hence the total momentum of the system is 

constant, even though the individual momenta of the particles that make up the system can change. 

If external forces are also present, they must be included on the left side of Eq. (8.13) along with 

the internal forces. Then the total momentum is, in general, not constant. But if the vector sum of the 

external forces is zero, as in Fig. 8.4, these forces have no effect on the left side of  

Eq. (8.13), and dP S >dt is again zero. Thus we have the following general result: 

CONSERVATION OF MOMENTUM: If the vector sum of the external forces on a system 

is zero, the total momentum of the system is constant. 

This is the simplest form of the principle of conservation of momentum. This principle is a 

direct consequence of Newton’s third law. What makes this principle useful is that it doesn’t depend on 

the detailed nature of the internal forces that act between members of the system. This means that we can 

apply conservation of momentum even if (as is often the case) we know very little about the internal 

forces. We have used Newton’s second law to derive this principle, so we have to be careful to use it only 

in inertial frames of reference.  

We can generalize this principle for a system that contains any number of particles A, B, C, … 

interacting only with one another, with total momentum 

 

                                  

(8.14)

 
 

We make the same argument as before: The total rate of change 

of momentum of the system due to each action–reaction pair of internal 

forces is zero. Thus the total rate of change of momentum of the entire 

system is zero whenever the vector sum of the external forces acting on 

it is zero. The internal forces can change the momenta of individual 

particles but not the total momentum of the system. 

CAUTION! Conservation of momentum means conservation 

of its components. When you apply the conservation of momentum to a 

system, remember that momentum is a vector quantity. Hence you must 

use vector addition to compute the total momentum of a system 

(Fig. 8.5). Using components is usually the simplest method. If pAx, pAy, 

and pAz are the components of momentum of particle A, and similarly 

for the other particles, then Eq. (8.14) is equivalent to the component 

equations  

 

,    ,     x Ax Bx y Ay By z Az BzP p p P p p P p p= + + = + + = + + (8.15) 

 

If the vector sum of the external forces on the system is zero, 

then Px, Py, and Pz are all constant. 

In some ways the principle of conservation of momentum is 

more general than the principle of conservation of total mechanical energy. For example, total mechanical 

energy is conserved only when the internal forces are conservative − that is, when the forces allow two-

way conversion between kinetic and potential energies. But conservation of momentum is valid even 

when the internal forces are not conservative. In this chapter we’ll analyze situations in which both 

momentum and total mechanical energy are conserved, and others in which only momentum is conserved. 

These two principles play a fundamental role in all areas of physics, and we’ll encounter them throughout 

our study of physics. 

 

 

PROBLEM-SOLVING STRATEGY  

8.1 Conservation of Momentum 

 
 

Figure 8.5 - When applying 

conservation of momentum, 

remember that momentum is a 

vector quantity! 
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IDENTIFY the relevant concepts: 

Confirm that the vector sum of the external forces acting on the system of particles is zero. If it 

isn’t zero, you can’t use conservation of momentum. 

 

 

SET UP the problem: 

• Treat each object as a particle. Draw “before” and “after” sketches, including velocity 

vectors. Assign algebraic symbols to each magnitude, angle, and component. Use letters to label each 

particle and subscripts 1 and 2 for “before” and “after” quantities. Include any given values. 

• Define a coordinate system and show it in your sketches; define the positive direction for 

each axis. 

• Identify the target variables. 

 

 

EXECUTE the solution: 

• Write an equation in symbols equating the total initial and final x-components of 

momentum, using x xp m=  for each particle. Write a corresponding equation for the y-components. 

Components can be positive or negative, so be careful with signs! 

• In some problems, energy considerations (discussed in Section 8.4) give additional 

equations relating the velocities. 

• Solve your equations to find the target variables. 

 

 

EVALUATE your answer: 

Does your answer make physical sense? If your target variable is a certain object’s momentum, 

check that the direction of the momentum is reasonable.  

 

 

8.3 Momentum Conservation and Collisions 
 

To most people the term “collision” is likely to mean some sort of automotive disaster. We’ll 

broaden the meaning to include any strong interaction between objects that lasts a relatively short time. 

So we include not only car accidents but also balls colliding on a billiard table, neutrons hitting atomic 

nuclei in a nuclear reactor, and a close encounter of a spacecraft with the planet Saturn.  

If the forces between the colliding objects are much larger than any external forces, as is the case 

in most collisions, we can ignore the external forces and treat the objects as an isolated system. Then 

momentum is conserved and the total momentum of the system has the same value before and after the 

collision. Two cars colliding at an icy intersection provide a good example. Even two cars colliding on 

dry pavement can be treated as an isolated system during the collision if the forces between the cars are 

much larger than the friction forces of pavement against tires. 

 

 

Elastic and Inelastic Collisions 

 

If the forces between the objects are also conservative, so no mechanical energy is lost or gained 

in the collision, the total kinetic energy of the system is the same after the collision as before. Such a 

collision is called an elastic collision. A collision between two marbles or two billiard balls is almost 

completely elastic. Figure 8.6 shows a model for an elastic collision. When the gliders collide, their 

springs are momentarily compressed and some of the original kinetic energy is momentarily converted to 

elastic potential energy. Then the gliders bounce apart, the springs expand, and this potential energy is 

converted back to kinetic energy.  
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A collision in which the total kinetic energy after the collision is 

less than before the collision is called an inelastic collision. A meatball 

landing on a plate of spaghetti and a bullet embedding itself in a block 

of wood are examples of inelastic collisions. An inelastic collision in 

which the colliding objects stick together and move as one object after 

the collision is called a completely inelastic collision.  

Figure 8.7 shows an example; we have replaced the spring bumpers in 

Fig. 8.6 with Velcro®, which sticks the two objects together. 

CAUTION! An inelastic collision doesn’t have to be 

completely inelastic. Inelastic collisions include many situations in 

which the objects do not stick. If two cars bounce off each other in a 

“fender bender,” the work done to deform the fenders cannot be 

recovered as kinetic energy of the cars, so the collision is inelastic. 

Remember this rule: In any collision in which external forces 

can be ignored, momentum is conserved and the total momentum 

before equals the total momentum after; in elastic collisions only, 

the total kinetic energy before equals the total kinetic energy after. 

 

 

Completely Inelastic Collisions 

 

Let’s look at what happens to momentum and kinetic energy in a 

completely inelastic collision of two objects (A and B), as in Fig. 8.7. 

Because the two objects stick together after the collision, they have the 

same final velocity 2 : 

 2 2 2A B  = = .  

Conservation of momentum gives the relationship 

 ( )1 1 2  (completely inelastic collision)A A B B A Bm m m m  + = + . (8.16) 

If we know the masses and initial velocities, we can compute the common final velocity 2 . 

 

 
 

Figure 8.7 − Two gliders undergoing a completely inelastic collision. The spring bumpers on the gliders are 

replaced by Velcro, so the gliders stick together after collision 

 

Suppose, for example, that an object with mass mA and initial x-component of velocity 1A x  

collides inelastically with an object with mass mB that is initially at rest ( 1 0B x = ). From Eq. (8.16) the 

common x-component of velocity 2 x  of both objects after the collision is 

 
2 1    (completely inelastic collision,  initially at rest)A

x A x

A B

m
B

m m
 =

+
. (8.17) 

 

 

Figure 8.6 - Two gliders 

undergoing an elastic collision 

on a frictionless surface. Each 

glider has a steel spring bumper 

that exerts a conservative force 

on the other glider 
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Let’s verify that the total kinetic energy after this completely inelastic collision is less than before 

the collision. The motion is purely along the x-axis, so the kinetic energies K1 and K2 before and after the 

collision, respectively, are 

 
( ) ( )

21
1 12

2

2 21 1
2 2 12 2

A A x

A
A B x A B A x

A B

K m

m
K m m m m

m m



 

=

 
= + = +  

+ 
.
  

The ratio of final to initial kinetic energy is 

 2

1

   (completely inelastic collision,  initially at rest)A

A B

K m
B

K m m
=

+
. (8.18) 

The right side is always less than unity because the denominator is always greater than the numerator. 

Even when the initial velocity of mB is not zero, the kinetic energy after a completely inelastic collision is 

always less than before. 

Please note: Don’t memorize Eq. (8.17) or (8.18)! We derived them only to prove that kinetic 

energy is always lost in a completely inelastic collision. 

 

 

Classifying Collisions 

 

It’s important to remember that we can classify collisions according to energy considerations  

(Fig. 8.8). A collision in which kinetic energy is conserved is called elastic. (We’ll explore this type in 

more depth in the next section). A collision in which the total kinetic energy decreases is called inelastic. 

When the two objects have a common final velocity, we say that the collision is completely inelastic. 

There are also cases in which the final kinetic energy is greater than the initial value. Rifle recoil is an 

example. 

 

 

Figure 8.8 - Collisions are classified according to energy considerations 

 

Finally, we emphasize again that we can typically use momentum conservation for collisions even 

when external forces are acting on the system. That’s because the net external force acting on the 

colliding objects is typically small in comparison with the internal forces during the collision. 

 

8.4 Elastic Collisions 
 

We saw in Section 8.3 that an elastic collision in an isolated system is one in which kinetic energy 

(as well as momentum) is conserved. Elastic collisions occur when the forces between the colliding 

objects are conservative. When two billiard balls collide, they squash a little near the surface of contact, 

but then they spring back. Some of the kinetic energy is stored temporarily as elastic potential energy, but 

at the end it is reconverted to kinetic energy. 

Let’s look at a one-dimensional elastic collision between two objects A and B, in which all the 

velocities lie along the same line. We call this line the x-axis, so each momentum and velocity has only  

an x-component. We call the x-velocities before the collision 1A x  and 1B x , and those after the collision 

2A x  and 2B x . From conservation of kinetic energy we have 
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2 2 2 21 1 1 1
1 1 2 22 2 2 2A A x B B x A A x B B xm m m m   + = + , 

and conservation of momentum gives 

1 1 2 2A A x B B x A A x B B xm m m m   + = + . 

If the masses mA and mB and the initial velocities 1A x  and 1B x  are known, we can solve these two 

equations to find the two final velocities 2A x  and 2B x . 

 

 

Elastic Collisions, One Object Initially at Rest  

 

The general solution to the above equations is a little complicated, so we’ll concentrate on the 

particular case in which object B is at rest before the collision (so 1 0B x = ). Think of object B as a target 

for object A to hit. Then the kinetic energy and momentum conservation equations are, respectively, 

 
2 2 21 1 1
1 2 22 2 2A A x A A x B B xm m m  = + , (8.19) 

 1 2 2A A x A A x B B xm m m  = + . (8.20) 

We can solve for 2A x  and 2B x  in terms of the masses and the initial velocity 1A x . This involves some 

fairly strenuous algebra, but it’s worth it. No pain, no gain! The simplest approach is somewhat indirect, 

but along the way it uncovers an additional interesting feature of elastic collisions. 

First we rearrange Eqs. (8.19) and (8.20) as follows: 

( ) ( )( )2 2 2

2 1 2 1 2 1 2B B x A A x A x A A x A x A x A xm m m      = − = − + , (8.21) 

 ( )2 1 2B B x A A x A xm m  = − . (8.22) 

Now we divide Eq. (8.21) by Eq. (8.22) to obtain 

 2 1 2B x A x A x  = + . (8.23) 

We substitute this expression back into Eq. (8.22) to eliminate 

2B x  and then solve for 2A x : 

 

( ) ( )1 2 1 2

2 1

B A x A x A A x A x

A B
A x A x

A B

m m

m m

m m

   

 

+ = −

−
=

+

 (8.24) 

Finally, we substitute this result back into Eq. (8.23) to obtain 

 
2 1

2 A
B x A x

A B

m

m m
 =

+
. (8.25) 

Now we can interpret the results. Suppose A is a Ping-Pong ball and B is a bowling ball. Then we 

expect A to bounce off after the collision with a velocity nearly equal to its original value but in the 

opposite direction (Fig. 8.9a), and we expect B’s velocity to be much less. That’s just what the equations 

predict. When mA is much smaller than mB, the fraction in Eq. (8.24) is approximately equal to (–1), so 

2A x  is approximately equal to 1A x− . The fraction in Eq. (8.25) is much smaller than unity, so 2B x  is 

 

 
 

Figure 8.9 - One-dimensional 

elastic collisions between objects 

with different masses 
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much less than 1A x . Figure 8.9b shows the opposite case, in which A is the bowling ball and B the 

PingPong ball and mA is much larger than mB. What do you expect to happen then? Check your 

predictions against Eqs. (8.24) and (8.25).  

Another interesting case occurs when the masses are 

equal (Fig. 8.10). If A Bm m= , then Eqs. (8.24) and (8.25) give 

2 0A x = and 2 1B x A x = . That is, the object that was moving 

stops dead; it gives all its momentum and kinetic energy to the 

object that was at rest. This behavior is familiar to all pool 

players. 

 

 

Elastic Collisions and Relative Velocity 

 

Let’s return to the more general case in which A and B 

have different masses. Equation (8.23) can be rewritten as 

 1 2 2A x B x A x  = − . (8.26) 

Here 2 2B x A x −  is the velocity of B relative to Aafter the collision; from Eq. (8.26), this equals 1A x , 

which is the negative of the velocity of B relative to Abefore the collision. The relative velocity has the 

same magnitude, but opposite sign, before and after the collision. The sign changes because A and B are 

approaching each other before the collision but moving apart after the collision. If we view this collision 

from a second coordinate system moving with constant velocity relative to the first, the velocities of the 

objects are different but the relative velocities are the same. Hence our statement about relative velocities 

holds for any straight-line elastic collision, even when neither object is at rest initially. In a straight-line 

elastic collision of two objects, the relative velocities before and after the collision have the same 

magnitude but opposite sign. This means that if B is moving before the collision, Eq. (8.26) becomes 

 ( )2 2 1 1B x A x B x A x   − = − − . (8.27) 

It turns out that a vector relationship similar to Eq. (8.27) is a general property of all elastic 

collisions, even when both objects are moving initially and the velocities do not all lie along the same 

line. This result provides an alternative and equivalent definition of an elastic collision: In an elastic 

collision, the relative velocity of the two objects has the same magnitude before and after the collision. 

Whenever this condition is satisfied, the total kinetic energy is also conserved. 

When an elastic two-object collision isn’t head-on, the velocities don’t all lie along a single line. If 

they all lie in a plane, then each final velocity has two unknown components, and there are four 

unknowns in all. Conservation of energy and conservation of the x- and y-components of momentum give 

only three equations. To determine the final velocities uniquely, we need additional information, such as 

the direction or magnitude of one of the final velocities. 

 

 

8.5 Center of Mass 
 

We can restate the principle of conservation of momentum in a useful way by using the concept of 

center of mass. Suppose we have several particles with masses m1, m2, and so on. Let the coordinates of 

m1 be ( )1 1,x y , those of m2 be ( )2 2,x y , and so on. We define the center of mass of the system as the point 

that has coordinates ( )cm cm,x y  given by 

 

 
 

Figure 8.10 - A one-dimensional elastic 

collision between objects of equal mass 
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1 1 2 2 3 3
cm

1 2 3

1 1 2 2 3 3
cm

1 2 3

i i

i

i

i

i i

i

i

i

m x
m x m x m x

x
m m m m

m y
m y m y m y

y
m m m m

+ + +
= =

+ + +

+ + +
= =

+ + +









 (center of mass).                              (8.28) 

We can express the position of the center of mass as a vector cmr : 

 (8.29)

 

We say that the center of mass is a mass-weighted average position of 

the particles. 

For solid objects, in which we have (at least on a macroscopic 

level) a continuous distribution of matter, the sums in Eqs. (8.28) have 

to be replaced by integrals. The calculations can get quite involved, but 

we can say three general things about such problems (Fig. 8.11). First, 

whenever a homogeneous object has a geometric center, such as a 

billiard ball, a sugar cube, or a can of frozen orange juice, the center of 

mass is at the geometric center. Second, whenever an object has an axis 

of symmetry, such as a wheel or a pulley, the center of mass always lies 

on that axis. Third, there is no law that says the center of mass has to be 

within the object. For example, the center of mass of a donut is in the middle of the hole. 

 

 

Motion of the Center of Mass 

 

To see the significance of the center of mass of a collection of particles, we must ask what 

happens to the center of mass when the particles move. The x- and y-components of velocity of the center 

of mass, cm-x  and cm-y , are the time derivatives of xcm and ycm. Also, 1dx dt  is the x-component of 

velocity of particle 1, so 1 1xdx dt = , and so on. Taking time derivatives of Eqs. (8.28), we get 

 

1 1 2 2 3 3
cm-

1 2 3

1 1 2 2 3 3

cm-

1 2 3

x x x
x

y y y

y

m m m

m m m

m m m

m m m

  


  


+ + +
=

+ + +

+ + +
=

+ + +
.

 (8.30) 

These equations are equivalent to the single vector equation obtained by taking the time derivative of Eq. 

(8.29): 

 1 1 2 2 3 3
cm

1 2 3

m m m

m m m

  


+ + +
=

+ + +
. (8.31) 

We denote the total mass 1 2m m+ + by M. We can then rewrite Eq. (8.31) as 

 
 

Figure 8.11 - Locating the center 

of mass of a symmetric object 
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.

 (8.32) 

So the total momentum P of a system equals the total mass times the velocity of the center of mass. 

When you catch a baseball, you are really catching a collection of a very large number of molecules of 

masses m1, m2, m3,…. The impulse you feel is due to the total momentum of this entire collection. But 

this impulse is the same as if you were catching a single particle of mass 1 2 3M m m m= + + +  moving 

with cm , the velocity of the collection’s center of mass. So Eq. (8.32) helps us justify representing an 

extended object as a particle.  

For a system of particles on which the net external force is zero, so that the total momentum P  is 

constant, the velocity of the center of mass cm P M =  is also constant.  

 

 

External Forces and Center-of-Mass Motion 

 

If the net external force on a system of particles is not zero, then total momentum is not conserved 

and the velocity of the center of mass changes. Let’s look at this situation in more detail.  

Equations (8.31) and (8.32) give the velocity of the center of mass in terms of the velocities of the 

individual particles. We take the time derivatives of these equations to show that the accelerations are 

related in the same way. Let cm cma d dt=  be the acceleration of the center of mass; then 

 cm 1 1 2 2 3 3Ma m a m a m a= + + +  (8.33) 

Now 1 1m a  is equal to the vector sum of forces on the first particle, and so on, so the right side of 

Eq. (8.33) is equal to the vector sum F  of all the forces on all the particles. Just as we did in Section 

8.2, we can classify each force as external or internal. The sum of all forces on all the particles is then 

 ext int cmF F F Ma= + =     

Because of Newton’s third law, all of the internal forces cancel in pairs, and int 0F = . What survives on 

the left side is the sum of only the external forces: 

  

(8.34)

 

When an object or a collection of particles is acted on by external forces, the center of mass 

moves as though all the mass were concentrated at that point and it were acted on by a net external 

force equal to the sum of the external forces on the system. 

This result is central to the whole subject of mechanics. In fact, we’ve been using this result all 

along; without it, we would not be able to represent an extended object as a point particle when we apply 

Newton’s laws. It explains why only external forces can affect the motion of an extended object. If you 

pull upward on your belt, your belt exerts an equal downward force on your hands; these are internal 

forces that cancel and have no effect on the overall motion of your body.  

As an example, suppose that a cannon shell traveling in a parabolic trajectory (ignoring air 

resistance) explodes in flight, splitting into two fragments with equal mass (Fig. 8.12). The fragments 

follow new parabolic paths, but the center of mass continues on the original parabolic trajectory, as 

though all the mass were still concentrated at that point. 
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Figure 8.12 - A shell explodes into two fragments in flight. If air resistance is ignored, the center of mass 

continues on the same trajectory as the shell’s path before the explosion 

 

This property of the center of mass is important when we analyze the motion of rigid objects. In 

Chapter 10 we’ll describe the motion of an extended object as a combination of translational motion of 

the center of mass and rotational motion about an axis through the center of mass. This property also 

plays an important role in the motion of astronomical objects. It’s not correct to say that the moon orbits 

the earth; rather, both the earth and the moon move in orbits around their common center of mass. 

There’s one more useful way to describe the motion of a system of particles. Using cm cma d dt= , 

we can rewrite Eq. (8.33) as 

 
( )cmcm

cm

d Md dP
Ma M

dt dt dt


= = = . (8.35) 

The total system mass M is constant, so we’re allowed to move it inside the derivative. Substituting Eq. 

(8.35) into Eq. (8.34), we find 

 
ext   (extended object or system of particles)

dP
F

dt
= . (8.36) 

This equation looks like Eq. (8.4). The difference is that Eq. (8.36) describes a system of particles, such as 

an extended object, while Eq. (8.4) describes a single particle. The interactions between the particles that 

make up the system can change the individual momenta of the particles, but the total momentum P  of the 

system can be changed only by external forces acting from outside the system.  

If the net external force is zero, Eqs. (8.34) and (8.36) show that the center-of-mass acceleration 

cma  is zero (so the center-of-mass velocity cm  is constant) and the total momentum P  is constant. This is 

just our statement from Section 8.3: If the net external force on a system is zero, momentum is conserved. 

 

 

8.6 Rocket Propulsion 
 

Momentum considerations are particularly useful for analyzing a system in which the masses of 

parts of the system change with time. In such cases we can’t use Newton’s second law F ma=  

directly because m changes. Rocket propulsion is an important example of this situation. A rocket is 

propelled forward by rearward ejection of burned fuel that initially was in the rocket (which is why rocket 

fuel is also called propellant). The forward force on the rocket is the reaction to the backward force on the 

ejected material. The total mass of the system is constant, but the mass of the rocket itself decreases as 

material is ejected. 

For simplicity, let’s consider a rocket in outer space, where there is no gravitational force and no 

air resistance. Let m denote the mass of the rocket, which will change as it expends fuel. We choose our 

x-axis to be along the rocket’s direction of motion. Figure 8.13a shows the rocket at a time t, when its 

mass is m and its x-velocity relative to our coordinate system is  . (To simplify, we’ll drop the subscript 
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x in this discussion). The x-component of total momentum at this instant is 1P m= . In a short time 

interval dt, the mass of the rocket changes by an amount dm. This is an inherently negative quantity 

because the rocket’s mass m decreases with time. During dt, a positive mass –dm of burned fuel is ejected 

from the rocket. Let ex  be the exhaust speed of this material relative to the rocket; the burned fuel is 

ejected opposite the direction of motion, so its x-component of velocity relative to the rocket is ex− . The 

x-velocity fuel  of the burned fuel relative to our coordinate system is then 

 ( )fuel ex ex    = + − = − ,  

and the x-component of momentum of the ejected mass ( )dm−  is 

 ( ) ( )( )fuel exdm dm  − = − − .  

Figure 8.13b shows that at the end of the time interval dt, the x-velocity of the rocket and unburned fuel 

has increased to d + , and its mass has decreased to m dm+  (remember that dm is negative). The 

rocket’s momentum at this time is 

 ( )( )m dm d + + .  

 

 
 

Figure 8.13 - A rocket moving in gravity-free outer space at (a) time t and (b) time t+dt 

 

Thus the totalx-component of momentum P2 of the rocket plus ejected fuel at time t dt+  is 

 ( )( ) ( )( )2 exP m dm d dm   = + + + − − .  

According to our initial assumption, the rocket and fuel are an isolated system. Thus momentum is 

conserved, and the total x-component of momentum of the system must be the same at time t and at time 

t dt+ : 1 2P P= . Hence 

 ( )( ) ( )( )exm m dm d dm    = + + + − − .  

This can be simplified to 

 exm d dm dm d  = − − .  

We can ignore the term ( )dm d−  because it is a product of two small quantities and thus is much 

smaller than the other terms. Dropping this term, dividing by dt, and rearranging, we find 
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 ex

d dm
m

dt dt


= − . (8.37) 

Now d dt  is the acceleration of the rocket, so the left side of Eq. (8.37) (mass times 

acceleration) equals the net external force F, or thrust, on the rocket: 

 ex

dm
F

dt
= − . (8.38) 

The thrust is proportional both to the relative speed ex of the ejected fuel and to the mass of fuel 

ejected per unit time, dm dt− . (Remember that dm dt  is negative because it is the rate of change of the 

rocket’s mass, so F is positive).  

The x-component of acceleration of the rocket is 

 exd dm
a

dt m dt


= = − . (8.39) 

This is positive because ex  is positive (remember, it’s the exhaust speed) and dm dt  is negative. 

The rocket’s mass m decreases continuously while the fuel is being consumed. If ex  and dm dt  are 

constant, the acceleration increases until all the fuel is gone.  

Equation (8.38) tells us that an effective rocket burns fuel at a rapid rate (large dm dt− ) and ejects 

the burned fuel at a high relative speed (large ex ). In the early days of rocket propulsion, people who 

didn’t understand conservation of momentum thought that a rocket couldn’t function in outer space 

because “it doesn’t have anything to push against.” In fact, rockets work best in outer space, where there 

is no air resistance! The launch vehicle is not “pushing against the ground” to ascend.  

If the exhaust speed ex  is constant, we can integrate Eq. (8.39) to relate the velocity   at any 

time to the remaining mass m. At time t = 0, let the mass be m0 and the velocity be 0 . Then we rewrite 

Eq. (8.39) as 

 ex

dm
d

m
 = − .  

We change the integration variables to   and m′, so we can use   and m as the upper limits (the final 

speed and mass). Then we integrate both sides, using limits 0  to   and m0 to m, and take the constant 

ex  outside the integral: 

 0 0 0

ex ex

0
0 ex ex

0

ln ln

m m

m m

dm dm
d

m m

mm

m m





  

   

 
 = − = −

 

− = − =

  
 (8.40) 

The ratio 0m m  is the original mass divided by the mass after the fuel has been exhausted. In practical 

spacecraft this ratio is made as large as possible to maximize the speed gain, which means that the initial 

mass of the rocket is almost all fuel. The final velocity of the rocket will be greater in magnitude (and is 

often much greater) than the relative speed ex  if ( )0ln 1m m  —that is, if 0 2.71828m m e =  .  

We’ve assumed throughout this analysis that the rocket is in gravity-free outer space. However, 

gravity must be taken into account when a rocket is launched from the surface of a planet. 
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CHAPTER 8: SUMMARY 

 Momentum of a particle: 

The momentum p  of a particle is a 

vector quantity equal to the product 

of the particle’s mass m and 

velocity  . Newton’s second law 

says that the net external force on a 

particle is equal to the rate of 

change of the particle’s momentum. 

p m= . 

dp
F

dt
= . 

 

 Impulse and momentum: 

If a constant net external force F
acts on a particle for a time interval 

∆t from t1 to t2, the impulse J  of 

the net external force is the product 

of the net external force and the 

time interval. If F  varies with 

time, J  is the integral of the net 

external force over the time interval. 

In any case, the change in a 

particle’s momentum during a time 

interval equals the impulse of the 

net external force that acted on the 

particle during that interval. The 

momentum of a particle equals the 

impulse that accelerated it from rest 

to its present speed. 

( )
2

1

2 1

2 1

t

t

J F t t F t

J Fdt

J p p

= − = 

=

= −

 

  

 

 Conservation of 

momentum: An internal force is a 

force exerted by one part of a 

system on another. An external 

force is a force exerted on any part 

of a system by something outside 

the system. If the net external force 

on a system is zero, the total 

momentum of the system P  (the 

vector sum of the momenta of the 

individual particles that make up the 

system) is constant, or conserved. 

Each component of total momentum 

is separately conserved. 

  

If 0,  then  = constant

A B

A A B B

P p p

m m

F P

 

= + +

= + +

=

 

 

 Collisions: In typical collisions, the initial and final total 

momenta are equal. In an elastic collision between two objects, the 

initial and final total kinetic energies are also equal, and the initial 

and final relative velocities have the same magnitude. In an inelastic 

two-object collision, the total kinetic energy is less after the collision 

than before. If the two objects have the same final velocity, the 

collision is completely inelastic. 
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 Center of mass: The 

position vector of the center of mass 

of a system of particles,  

cmr , is a weighted average of the 

positions 1 2, ,r r   of the individual 

particles. The total momentum P  of 

a system equals the system’s total 

mass M multiplied by the velocity 

of its center of mass, cm . The 

center of mass moves as though all 

the mass M were concentrated at 

that point. If the net external force 

on the system is zero, the center-of-

mass velocity cm  is constant. If the 

net external force is not zero, the 

center of mass accelerates as though 

it were a particle of mass M being 

acted on by the same net external 

force. 

1 1 2 2 3 3
cm

1 2 3

i i

i

i

i

m r m r m r
r

m m m

m r

m

+ + +
= =

+ + +

=




 

1 1 2 2 3 3

cm    = 

P m m m

M

  



= + + +=
 

ext cmF Ma=  

 

 Rocket propulsion:In rocket propulsion, the mass of a rocket 

changes as the fuel is used up and ejected from the rocket. Analysis 

of the motion of the rocket must include the momentum carried away 

by the spent fuel as well as the momentum of the rocket itself. 
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9 ROTATION OF RIGID BODIES 
 

What do the motions of an airplane propeller, a Blu-ray disc, a Ferris wheel, and a circular saw 

blade have in common? None of these can be represented adequately as a moving point; each involves an 

object that rotates about an axis that is stationary in some inertial frame of reference.  

Rotation occurs at all scales, from the motions of electrons in atoms to the motions of entire 

galaxies. We need to develop some general methods for analyzing the motion of a rotating object. In this 

chapter and the next we consider objects that have definite size and definite shape, and that in general can 

have rotational as well as translational motion.  

Real-world objects can be very complicated; the forces that act on them can deform them - 

stretching, twisting, and squeezing them. We’ll ignore these deformations for now and assume that the 

object has a perfectly definite and unchanging shape and size. We call this idealized model a rigid body. 

This chapter and the next are mostly about rotational motion of a rigid body.  

We begin with kinematic language for describing rotational motion. Next we look at the kinetic 

energy of rotation, the key to using energy methods for rotational motion. Then in Chapter 10 we’ll 

develop dynamic principles that relate the forces on a body to its rotational motion. 

 

 

9.1 Angular Velocity and Acceleration 
 

In analyzing rotational motion, let’s think first about a rigid body that rotates about a fixed axis - 

an axis that is at rest in some inertial frame of reference and does not change direction relative to that 

frame. The rotating rigid body might be a motor shaft, a chunk of beef on a barbecue skewer, or a merry-

go-round.  

Figure 9.1 shows a rigid body rotating about a fixed axis. The 

axis passes through point O and is perpendicular to the plane of the 

diagram, which we’ll call the xy-plane. One way to describe the rotation 

of this body would be to choose a particular point P on the body and to 

keep track of the x- and y-coordinates of P. This isn’t very convenient, 

since it takes two numbers (the two coordinates x and y) to specify the 

rotational position of the body. Instead, we notice that the line OP is 

fixed in the body and rotates with it. The angle   that OP makes with 

the +x-axis is a single angular cooordinate that completely describes 

the body’s rotational position.  

The angular coordinate   of a rigid body rotating around a fixed 

axis can be positive or negative. If we choose positive angles to be 

measured counterclockwise from the positive x-axis, then the angle   in 

Fig. 9.1 is positive. If we instead choose the positive rotation direction 

to be clockwise, then   in Fig. 9.1 is negative. When we considered the 

motion of a particle along a straight line, it was essential to specify the direction of positive displacement 

along that line; when we discuss rotation around a fixed axis, it’s just as essential to specify the direction 

of positive rotation.  

The most natural way to measure the angle   is not in degrees but in radians. As Fig. 9.2a shows, 

one radian (1 rad) is the angle subtended at the center of a circle by an arc with a length equal to the 

radius of the circle. In Fig. 9.2b an angle   is subtended by an arc of length s on a circle of radius r. The 

value of   (in radians) is equal to s divided by r: 

     or        (  in radians)
s

s r
r

  = = . (9.1) 

An angle in radians is the ratio of two lengths, so it is a pure number, without dimensions. If s = 3.0 m 

and r = 2.0 m, then   = 1.5, but we’ll often write this as 1.5 rad to distinguish it from an angle measured 

in degrees or revolutions.  

 
 

Figure 9.1 - A speedometer 

needle (an example of a rigid 

body) rotating counterclockwise 

about a fixed axis 
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The circumference of a circle (that is, the arc length all the way 

around the circle) is 2  times the radius, so there are 2  (about 6.283) 

radians in one complete revolution (360°). Therefore 

 
360

1 rad = 57.3
2


=  .

 

Similarly, 180  =  rad, 90 2 =  rad, and so on. If we had measured 

angle   in degrees, we would have needed an extra factor of ( )2 360  

on the right-hand side of s r=  in Eq. (9.1). By measuring angles in 

radians, we keep the relationship between angle and distance along an 

arc as simple as possible. 

 

 

Angular Velocity 

 

The coordinate   shown in Fig. 9.1 specifies the rotational 

position of a rigid body at a given instant. We can describe the 

rotational motion of such a rigid body in terms of the rate of change of 

 . In Fig. 9.3a, a reference line OP in a rotating body makes an angle 1  with the -axisx+  at time t1. At a 

later time t2 the angle has changed to 2 . We define the average angular velocity av-z  (the Greek letter 

omega) of the body in the time interval 2 1t t t = −  as the ratio of the angular displacement 2 1   = −  

to t : 

 2 1
av-

2 1

z
t t t

  


− 
= =

− 
. (9.2) 

 

 
 

Figure 9.3 - (a) Angular displacement   of a rotating body. (b) Every part of a rotating rigid body has the 

same average angular velocity t   

 

The subscript z indicates that the body in Fig. 9.3a is rotating about the z-axis, which is 

perpendicular to the plane of the diagram. The instantaneous angular velocity z  is the limit of az-z  as 

t  approaches zero: 

 

  

(9.3)

 
When we refer simply to “angular velocity,” we mean the instantaneous angular velocity, not the 

average angular velocity.  

 
 

Figure 9.2 - Measuring angles in 

radians 
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The angular velocity z  can be positive or negative, depending on the direction in which the rigid 

body is rotating (Fig. 9.4). The angular speed , which we’ll use in Sections 9.3 and 9.4, is the magnitude 

of angular velocity. Like linear speed  , the angular speed is never negative. 

CAUTION! Angular velocity vs. linear velocity. Keep in 

mind the distinction between angular velocity z  and linear velocity 

x . If an object has a linear velocity x , the object as a whole is 

moving along the x-axis. By contrast, if an object has an angular 

velocity z , then it is rotating around the z-axis. We do not mean that 

the object is moving along the z-axis. 

Different points on a rotating rigid body move different 

distances in a given time  interval, depending on how far each point 

lies from the rotation axis. But because  the  body is rigid, all points 

rotate through the same angle in the same time (Fig.  9.3b). Hence at 

any instant, every part of a rotating rigid body has the same angular 

velocity. 

If angle   is in radians, the unit of angular velocity is the 

radian per second (rad/s). Other units, such as the revolution per 

minute (rev/min or rpm), are often used. Since 1 rev = 2  rad , two 

useful conversions are 

2
1 rev/s =  rad/s    and    1 rev/min = 1 rpm =  rad/s

60


 . 

That is, 1 rad/s is about 10 rpm. 

 

Angular Velocity as a Vector 

 

As we have seen, our notation for the angular velocity z  about the z-axis is reminiscent of the 

notation x  for the ordinary velocity along the x-axis. Just as x  is the x-component of the velocity vector 

 , z  is the z-component of an angular velocity vector  directed along the axis of rotation. As Fig. 9.5a 

shows, the direction of   is given by the right-hand rule. If the rotation is about the z-axis, then   has 

only a z-component. This component is positive if   is along the positive z-axis and negative if   is 

along the negative z-axis (Fig. 9.5b).  

 
Figure 9.5 - (a) The right-hand rule for the direction of the angular velocity vector  . Reversing the 

direction of rotation reverses the direction of  . (b) The sign of z  for rotation along the z-axis 

The vector formulation is especially useful when the direction of the rotation axis changes. We’ll 

examine such situations briefly at the end of Chapter 10. In this chapter, however, we’ll consider only 

 

Figure 9.4 - A rigid body’s average 

angular velocity (shown here) and 

instantaneous angular velocity can 

be positive or negative 
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situations in which the rotation axis is fixed. Hence throughout this chapter we’ll use “angular velocity” 

to refer to z , the component of   along the axis. 

CAUTION! The angular velocity vector is perpendicular to the plane of rotation, not in it. 

It’s a common error to think that an object’s angular velocity vector   points in the direction in which 

some particular part of the object is moving. Another error is to think that   is a “curved vector” that 

points around the rotation axis in the direction of rotation (like the curved arrows in Figs. 9.1, 9.3, and 

9.4). Neither of these is true! Angular velocity is an attribute of the entire rotating rigid body, not any one 

part, and there’s no such thing as a curved vector. We choose the direction of   to be along the rotation 

axis—perpendicular to the plane of rotation—because that axis is common to every part of a rotating 

rigid body. 

 

 

Angular Acceleration 

 

A rigid body whose angular velocity changes has an angular acceleration. When you pedal your 

bicycle harder to make the wheels turn faster or apply the brakes to bring the wheels to a stop, you’re 

giving the wheels an angular acceleration.  

If 1z  and 2 z  are the instantaneous angular velocities at times t1 and t2, we define the average 

angular acceleration av-z  over the interval 2 1t t t = −  as the change in angular velocity divided by ∆t 

(Fig. 9.6): 

 2 1
av-

2 1

z z z
z

t t t

  


− 
= =

− 
. (9.4) 

The instantaneous angular acceleration z  is the limit of av-z  as 0t → : 

  

(9.5)

 

The usual unit of angular acceleration is the radian per second per second, or rad/s2 . From now on 

we’ll use the term “angular acceleration” to mean the instantaneous angular acceleration rather than the 

average angular acceleration.  

Because z d dt = , we can also express angular acceleration as the second derivative of the 

angular coordinate: 

 
2

2z

d d d

dt dt dt

 
 = = . (9.6) 

You’ve probably noticed that we use Greek letters for angular kinematic quantities:   for angular 

position, z  for angular velocity, and z  for angular acceleration. These are analogous to x for position, 

x for velocity, and x  for acceleration in straight-line motion. In each case, velocity is the rate of change 

of position with respect to time and acceleration is the rate of change of velocity with respect to time. We 

sometimes use the terms “linear velocity” for x  and “linear acceleration” for x  to distinguish clearly 

between these and the angular quantities introduced in this chapter.  

If the angular acceleration z  is positive, then the angular velocity z  is increasing; if z  is 

negative, then z  is decreasing. The rotation is speeding up if z  and z  have the same sign and 
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slowing down if z and z  have opposite signs. (These are exactly the same relationships as those 

between linear acceleration x and linear velocity x  for straight-line motion). 

 

Angular Acceleration as a Vector 

 

Just as we did for angular velocity, it’s useful to define an angular acceleration vector . 

Mathematically,   is the time derivative of the angular velocity vector  . If the object rotates around the 

fixed z-axis, then   has only a z-component z . In this case,   is in the same direction as   if the 

rotation is speeding up and opposite to   if the rotation is slowing down (Fig. 9.7).  

The vector   will be particularly useful in Chapter 10 when we discuss what happens when the 

rotation axis changes direction. In this chapter, however, the rotation axis will always be fixed and we 

need only the z-component z . 

  
 

Figure 9.6 - Calculating the average angular 

acceleration of a rotating rigid body 

 

Figure 9.7 - When the rotation axis is fixed, both the 

angular acceleration and angular velocity vectors lie 

along that axis 

 

 

9.2 Rotation with Constant Angular Acceleration 
 

In Chapter 2 we found that straight-line motion is particularly simple when the acceleration is 

constant. This is also true of rotational motion about a fixed axis. When the angular acceleration is 

constant, we can derive equations for angular velocity and angular position by using the same procedure 

that we used for straight-line motion in Section 2.4. In fact, the equations we are about to derive are 

identical to Eqs. (2.8), (2.12), (2.13), and (2.14) if we replace x with  , x with z , and xa  with z . We 

suggest that you review Section 2.4 before continuing.  

Let 0 z  be the angular velocity of a rigid body at time 0t = and z  be its angular velocity at a 

later time t. The angular acceleration z  is constant and equal to the average value for any interval. From 

Eq. (9.4) with the interval from 0 to t, 

 0    or
0

z z
z

t

 


−
=

−
  

  

(9.7)

 

The product zt  is the total change in z  between 0t =  and the later time t; angular velocity z  at time t 

is the sum of the initial value 0 z  and this total change.  
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With constant angular acceleration, the angular velocity changes at a uniform rate, so its average 

value between 0 and t is the average of the initial and final values: 

 0
av-

2

z z
z

 


+
= . (9.8) 

We also know that av-z  is the total angular displacement ( )0 −  divided by the time interval ( )0t − : 

 0
av-

0
z

t

 


−
=

−
. (9.9) 

When we equate Eqs. (9.8) and (9.9) and multiply the result by t, we get 

  

(9.10)

 

To obtain a relationship between   and t that doesn’t contain z , we substitute Eq. (9.7) into Eq. (9.10): 

 ( )1
0 0 02

   orz z zt t    − = + +     

  

(9.11)

 

That is, if at the initial time 0t =  the body is at angular position 0  and has angular velocity 0 z , then its 

angular position   at any later time t is 0 , plus the rotation 0zt  it would have if the angular velocity 

were constant, plus an additional rotation 21
2 zt  caused by the changing angular velocity. 

Following the same procedure as for straight-line motion in Section 2.4, we can combine  

Eqs. (9.7) and (9.11) to obtain a relationship between   and z  that does not contain t. We invite you to 

work out the details, following the same procedure we used to get Eq. (9.12). We get 

  

(9.12)

 

 

Table 9.1 - Comparison of Linear and Angular Motions with Constant Acceleration  
Straight-Line Motion with Constant 

Linear Acceleration 

Fixed-Axis Rotation with Constant  

Angular Acceleration 

constantxa = . constantz = . 

0x x xa t = + . 0z z zt  = + . 

21
0 0 2x xx x t a t= + + . 21

0 0 2z zt t   = + + . 

( )2 2

0 02x x xa x x = + − . ( )2 2

0 02z z z    = + − . 

( )1
0 02 x xx x t − = + . ( )1

0 02 z z t   − = + . 
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CAUTION! Constant angular acceleration. Keep in mind that all of these results are valid only 

when the angular acceleration z  is constant; do not try to apply them to problems in which z  is not 

constant. Table 9.1 shows the analogy between Eqs. (9.7), (9.10), (9.11), and (9.12) for fixed-axis rotation 

with constant angular acceleration and the corresponding equations for straight-line motion with constant 

linear acceleration. 

 

 

9.3 Relating Linear and Angular Kinematics 
 

How do we find the linear speed and acceleration of a particular point in a rotating rigid body? We 

need to answer this question to proceed with our study of rotation. For example, to find the kinetic energy 

of a rotating body, we have to start from 21
2

K m=  for a particle, and this requires that we know the 

speed   for each particle in the body. So it’s worthwhile to develop general relationships between the 

angular speed and acceleration of a rigid body rotating about a fixed axis and the linear speed and 

acceleration of a specific point or particle in the body. 

 

 

Linear Speed in Rigid-Body Rotation 

 

When a rigid body rotates about a fixed axis, every particle in the body moves in a circular path 

that lies in a plane perpendicular to the axis and is centered on the axis. A particle’s speed is directly 

proportional to the body’s angular velocity; the faster the rotation, the greater the speed of each particle. 

In Fig. 9.8, point P is a constant distance r from the axis, so it moves in a circle of radius r. At any time, 

Eq. (9.1) relates the angle  (in radians) and the arc length s: 

 s r= .  

We take the time derivative of this, noting that r is constant for any specific particle, and take the absolute 

value of both sides: 

 
ds d

r
dt dt


= .  

Now ds dt  is the absolute value of the rate of change of arc length, which is equal to the instantaneous 

linear speed   of the particle. The absolute value of the rate of change of the angle, d dt , is the 

instantaneous angular speed   - that is, the magnitude of the instantaneous angular velocity in rad/s. 

Thus 

  

(9.13)

 

The farther a point is from the axis, the greater its linear speed. The direction of the linear velocity vector 

is tangent to its circular path at each point (Fig. 9.8). 

 

CAUTION! Speed vs. velocity. Keep in mind the distinction between the linear and angular 

speeds  and  , which appear in Eq. (9.13), and the linear and angular velocities x  and z . The 

quantities without subscripts,   and  , are never negative; they are the magnitudes of the vectors   and 

 , respectively, and their values tell you only how fast a particle is moving ( )  or how fast a body is 



149 

rotating ( ) . The quantities with subscripts, x  and z , can be either positive or negative; their signs tell 

you the direction of the motion. 

  
 

Figure 9.8 - A rigid body rotating about a fixed axis 

through point O 

 

 
Figure 9.9 - A rigid body whose rotation is 

speeding up. The acceleration of point P has a 

component arad toward the rotation axis 

(perpendicular to  ) and a component atan along 

the circle that point P follows (parallel to  ) 

 

 

Linear Acceleration in Rigid-Body Rotation  

 

We can represent the acceleration a  of a particle moving in a circle in terms of its centripetal and 

tangential components, arad and atan (Fig. 9.9), as we did in Section 3.4. (You should review that section 

now). We found that the tangential component of accelerationatan, the component parallel to the 

instantaneous velocity, acts to change the magnitude of the particle’s velocity (i.e., the speed) and is equal 

to the rate of change of speed. Taking the derivative of Eq. (9.13), we find 

 

 

(9.14)
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This component of a  is always tangent to the circular path of point P 

(Fig. 9.10).  

The quantity d dt =  in Eq. (9.14) is the rate of change of 

the angular speed. It is not quite the same as z zd dt = , which is the rate of change of the angular 

velocity. For example, consider a object rotating so that its angular velocity vector points in the –z-

direction (see Fig. 9.5b). If the body is gaining angular speed at a rate of 10 rad/s per second, then 
210 rad/s = . But z  is negative and becoming more negative as the rotation gains speed, so 

210 rad/s = − . The rule for rotation about a fixed axis is that  is equal to z if z is positive but equal 

to z− if z is negative.  

The component of a  in Fig. 9.9 directed toward the rotation axis, the centripetal component of 

accelerationarad, is associated with the change of direction of the velocity of point P. In Section 3.4 we 

worked out the relationship
2

rada r= . We can express this in terms of  by using Eq. (9.13): 

  (9.15) 

This is true at each instant, even when  and  are not constant. The centripetal component always points 

toward the axis of rotation. 

CAUTION! Use angles in radians. Remember that Eq. (9.1), s r= , is valid only when   is 

measured in radians. The same is true of any equation derived from this, including Eqs. (9.13), (9.14), and 

(9.15). When you use these equations, you must express the angular quantities in radians, not revolutions 

or degrees (Fig. 9.10). 

Equations (9.1), (9.13), and (9.14) also apply to any particle that has the same tangential velocity 

as a point in a rotating rigid body. For example, when a rope wound around a circular cylinder unwraps 

without stretching or slipping, its speed and acceleration at any instant are equal to the speed and 

tangential acceleration of the point at which it is tangent to the cylinder. The same principle holds for 

situations such as bicycle chains and sprockets, belts and pulleys that turn without slipping, and so on. 

We’ll have several opportunities to use these relationships later in this chapter and in Chapter 10. Note 

that Eq. (9.15) for the centripetal component arad is applicable to the rope or chain only at points that are 

in contact with the cylinder or sprocket. Other points do not have the same acceleration toward the center 

of the circle that points on the cylinder or sprocket have. 

 

 

 

9.4 Energy in Rotational Motion 
 

A rotating rigid body consists of mass in motion, so it has kinetic energy. As we'll see, we can 

express this kinetic energy in terms of the body’s angular speed and a new quantity, called moment of 

inertia, that depends on the body’s mass and how the mass is distributed.  

To begin, we think of a body as being made up of a large number of particles, with masses 

1 2, ,m m  at distances 1 2, ,r r   from the axis of rotation. We label the particles with the index i: The mass 

of the ith particle is mi and ri is the perpendicular distance from the axis to the ith particle. (The particles 

need not all lie in the same plane). 

When a rigid body rotates about a fixed axis, the speed i  of the ith particle is given by Eq. (9.13), 

i ir =  , where   is the body’s angular speed. Different particles have different values of ri, but   is the 

same for all (otherwise, the body wouldn’t be rigid). The kinetic energy of the ith particle can be 

expressed as 

Figure 9.10 - Always use radians 

when relating linear and angular 

quantities 
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2 2 21 1

2 2i i i im mr = .  

The body’s total kinetic energy is the sum of the kinetic energies of all its particles: 

 
2 2 2 2 2 21 1 1

1 1 2 22 2 2 i i

i

K m r m r m r  = + += .  

 

Taking the common factor 
21

2
  out of this expression, we get 

 ( )2 2 2 2 21 1
1 1 2 22 2 i i

i

K m r m r m r 
 

= + + =  
 
 .  

The quantity in parentheses, obtained by multiplying the mass of each particle by the square of its 

distance from the axis of rotation and adding these products, is called the moment of inertiaI of the body 

for this rotation axis: 

  

(9.16)

 

“Moment” means that I depends on how the body’s mass is distributed in space; it has nothing to 

do with a “moment” of time. For a body with a given rotation axis and a given total mass, the greater the 

distances from the axis to the particles that make up the body, the greater the moment of inertia I. In a 

rigid body, all distances ri are constant and I is independent of how the body rotates around the given 

axis. The SI unit of I is the kilogram-meter2 ( )2kg m .  

Using Eq. (9.16), we see that the rotational kinetic energyK of a rigid body is 

  

(9.17)

 

The kinetic energy given by Eq. (9.17) is not a new form of energy; it’s simply the sum of the 

kinetic energies of the individual particles that make up the rotating rigid body. To use Eq. (9.17),  must 

be measured in radians per second, not revolutions or degrees per second, to give K in joules. That’s 

because we used i ir =  in our derivation.  

Equation (9.17) gives a simple physical interpretation of moment of inertia: The greater the 

moment of inertia, the greater the kinetic energy of a rigid body rotating with a given angular speed . 

We learned in Chapter 6 that the kinetic energy of an object equals the amount of work done to accelerate 

that object from rest. So the greater a body’s moment of inertia, the harder it is to start the body rotating if 

it’s at rest and the harder it is to stop its rotation if it’s already rotating (Fig. 9.11). For this reason, I is 

also called the rotational inertia. 
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Figure 9.11 - An apparatus free to rotate around a vertical axis. To vary the moment of inertia, the two 

equal-mass cylinders can be locked into different positions on the horizontal shaft 

 

When the body is a continuous distribution of matter, such as a solid cylinder or plate, the sum 

becomes an integral, and we need to use calculus to calculate the moment of inertia. Table 9.2 gives 

moments of inertia for several familiar shapes in terms of their masses and dimensions. Each body shown 

in Table 9.2 is uniform; that is, the density has the same value at all points within the solid parts of the 

body. 

 

 

 

 

 

CAUTION! Computing moments of inertia. You may be tempted to try to compute the moment 

of inertia of a body by assuming that all the mass is concentrated at the center of mass and multiplying the 

total mass by the square of the distance from the center of mass to the axis. That doesn’t work! For 

example, when a uniform thin rod of length L and mass M is pivoted about an axis through one end, 

perpendicular to the rod, the moment of inertia is 2 / 3I ML=  [case (b) in Table 9.2]. If we took the mass 

as concentrated at the center, a distance L/2 from the axis, we would obtain the incorrect result 

( )
2 2/ 2 / 4I M L ML= = . 

Now that we know how to calculate the kinetic energy of a rotating rigid body, we  can apply the 

energy principles of Chapter 7 to rotational motion.  

 

Table 9.2 - Moments of Inertia of Various Bodies  
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PROBLEM-SOLVING STRATEGY  

9.1 Rotational Energy 

 

 

IDENTIFYthe relevant concepts: 

You can use work–energy relationships and conservation of energy to find relationships involving 

the position and motion of a rigid body rotating around a fixed axis. The energy method is usually not 

helpful for problems that involve elapsed time. In Chapter 10 we’ll see how to approach rotational 

problems of this kind 

 

 

SET UPthe problemusing Problem-Solving Strategy 7.1 (Section 7.1) with the following 

additional steps: 

• You can use Eqs. (9.13) and (9.14) in problems involving a rope (or the like) wrapped 

around a rotating rigid body, if the rope doesn’t slip. These equations relate the linear speed and 

tangential acceleration of a point on the body to the body’s angular velocity and angular acceleration.  

• Use Table 9.2 to find moments of inertia. Use the parallel-axis theorem, Eq. (9.19) (to be 

derived in Section 9.5), to find moments of inertia for rotation about axes parallel to those shown in the 

table. 

EXECUTEthe solution: 

Write expressions for the initial and final kinetic and potential energies K1, K2, U1, and U2 and for 

the nonconservative work Wother (if any), where K1 and K2 must now include any rotational kinetic energy 
21

2
K I= . Substitute these expressions into Eq. (7.14), K1 + U1 + Wother = K2 + U2 (if nonconservative 

work is done), or Eq. (7.12), K1 + U1 = K2 + U2 (if only conservative work is done), and solve for the 

target variables. It’s helpful to draw bar graphs showing the initial and final values of K, U,  

and E = K + U. 
 

 

EVALUATEyour answer: 

Check whether your answer makes physical sense. 
 

 

Gravitational Potential Energy for an Extended Body 
 

If we have the cable of negligible mass, we could ignore its kinetic energy as well as the 

gravitational potential energy associated with it. If the mass is not negligible, we need to know how to 

calculate the gravitational potential energy associated with such an extended body. If the acceleration of 

gravity g is the same at all points on the body, the gravitational potential energy is the same as though all 

the mass were concentrated at the center of mass of the body. Suppose we take the y-axis vertically 

upward. Then for a body with total mass M, the gravitational potential energy U is simply 

 ( )cm   gravitational potential energy for an extended bodyU Mgy= . (9.18) 

where ycm is the y-coordinate of the center of mass. This expression applies to any extended body, 

whether it is rigid or not. 

To prove Eq. (9.18), we again represent the body as a collection of mass elements mi. The 

potential energy for element im is i im gy , so the total potential energy is 

 ( )1 1 2 2 1 1 2 2U m gy m gy m y m y g= + += + + .  

But from Eq. (8.28), which defines the coordinates of the center of mass, 
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 ( )1 1 2 2 1 2 cm cmm y m y m m y My+ += + + = .  

where 1 2M m m= + + is the total mass. Combining this with the above expression for U, we find 

cmU Mgy=  in agreement with Eq. (9.18).  

We leave the application of Eq. (9.18) to the problems. In Chapter 10 we’ll use this equation to 

help us analyze rigid-body problems in which the axis of rotation moves. 

 

 

9.5 Parallel-Axis Theorem 
 

We pointed out in Section 9.4 that a body doesn’t have just one moment of inertia. In fact, it has 

infinitely many, because there are infinitely many axes about which it might rotate. But there is a simple 

relationship, called the parallel-axis theorem, between the moment of inertia of a body about an axis 

through its center of mass and the moment of inertia about any other axis parallel to the original axis  

(Fig. 9.12): 

  

(9.19)

 
To prove this theorem, we consider two axes, both parallel to 

the z-axis: one through the center of mass and the other through a 

point P (Fig. 9.13). First we take a very thin slice of the body, parallel 

to the xy-plane and perpendicular to the z-axis. We take the origin of 

our coordinate system to be at the center of mass of the body; the 

coordinates of the center of mass are then cm cm cm 0x y z= = = . The 

axis through the center of mass passes through this thin slice at point 

O, and the parallel axis passes through point P, whose x- and y-

coordinates are ( ),a b . The distance of this axis from the axis through 

the center of mass is d, where 2 2 2d a b= + . 

We can write an expression for the moment of inertia IP about 

the axis through point P. Let mi be a mass element in our slice, with 

coordinates ( ), ,i i ix y z . Then the moment of inertia Icm of the slice 

about the axis through the center of mass (at O) is 

 ( )2 2

cm i i i

i

I m x y= + .  

The moment of inertia of the slice about the axis through P is 

 ( ) ( )
2 2

P i i i

i

I m x a y b = − + −
  .  

These expressions don’t involve the coordinates iz  measured perpendicular to the slices, so we can 

extend the sums to include all particles in all slices. Then IP becomes the moment of inertia of the entire 

body for an axis through P. We then expand the squared terms and regroup, and obtain 

 ( ) ( )2 2 2 22 2P i i i i i i i i

i i i i

I m x y a m x b m y a b m= + − − + +    .  

 
 

Figure 9.12 - The parallel-axis 

theorem 



155 

The first sum is Icm. From Eq. (8.28), the definition of the 

center of mass, the second and third sums are proportional to xcm and 

ycm; these are zero because we have taken our origin to be the center 

of mass. The final term is d2 multiplied by the total mass, or 2Md . 

This completes our proof that 
2

cmPI I Md= + .  

As Eq. (9.19) shows, a rigid body has a lower moment of 

inertia about an axis through its center of mass than about any other 

parallel axis. Thus it’s easier to start a body rotating if the rotation 

axis passes through the center of mass. This suggests that it’s 

somehow most natural for a rotating body to rotate about an axis 

through its center of mass; we’ll make this idea more quantitative in 

Chapter 10. 

 

 

9.6 Moment-of-Inertia Calculations 
 

If a rigid body is a continuous distribution of mass - like a 

solid cylinder or a solid sphere - it cannot be represented by a few 

point masses. In this case the sum of masses and distances that 

defines the moment of inertia [Eq. (9.16)] becomes an integral. 

Imagine dividing the body into elements of mass dm that are very 

small, so that all points in a particular element are at essentially the 

same perpendicular distance from the axis of rotation. We call this distance r, as before. Then the moment 

of inertia is 

 
2I r dm=  . (9.20) 

To evaluate the integral, we have to represent r and dm in terms of the same integration variable. 

When the body is effectively one-dimensional, such as the slender rods (a) and (b) in Table 9.2, we can 

use a coordinate x along the length and relate dm to an increment dx. For a three-dimensional body it is 

usually easiest to express dm in terms of an element of volume dV and the density   of the body. Density 

is mass per unit volume, dm dV = , so we may write Eq. (9.20) as 

 
2I r dV=  .  

This expression tells us that a body’s moment of inertia depends on how its density varies within its 

volume. By measuring small variations in the orbits of satellites, geophysicists can measure the earth’s 

moment of inertia. This tells us how our planet’s mass is distributed within its interior. The data show that 

the earth is far denser at the core than in its outer layers. If the body is uniform in density, then we may 

take   outside the integral: 

 
2I r dV=  . (9.21) 

To use this equation, we have to express the volume element dV in terms of the differentials of the 

integration variables, such as dV dx dy dz= . The element dV must always be chosen so that all points 

within it are at very nearly the same distance from the axis of rotation. The limits on the integral are 

determined by the shape and dimensions of the body. For regularly shaped bodies, this integration is often 

easy to do. 

 

 

CHAPTER 9: SUMMARY 

 
Figure 9.13 - The mass element mi 

has coordinates ( ),i ix y  with 

respect to an axis of rotation 

through the center of mass (cm) 

and coordinates ( ),i ix a y b− −  

with respect to the parallel axis 

through point P 
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 Rotational kinematics: 

When a rigid body rotates 

about a stationary axis (usually 

called the z-axis), the body’s 

position is described by an 

angular coordinate  . The 

angular velocity z  is the time 

derivative of  , and the 

angular acceleration z  is the 

time derivative of z  or the 

second derivative of  . If the 

angular acceleration is 

constant, then  , z , and z  

are related by simple kinematic 

equations analogous to those 

for straight-line motion with 

constant linear acceleration 

0

0

lim

lim

z
t

z z
z

t

d

t dt

d

t dt

 


 


 →

 →


= =




= =



 

 

Constant z  only: 

 

( )

( )

21
0 0 2

1
0 02

0

2 2

0 02

z z

z z

z z z

z z z

t t

t

t

   

   

  

    

= + +

− = +

= +

= + −

 

 

 

Relating linear and angular 

kinematics: The angular speed 
  of a rigid body is the 

magnitude of the body’s 

angular velocity. The rate of 

change of   is d dt = . For 

a particle in the body a distance 

r from the rotation axis, the 

speed   and the components of 

the acceleration a  are related 

to   and   

tan

2
2

rad

r

d d
a r r

dt dt

a r
r

 

 





=

= = =

= =

 

 

 Moment of inertia and 

rotational kinetic energy: The 

moment of inertia I of a body 

about a given axis is a 

measure of its rotational 

inertia: The greater the value of 

I, the more difficult it is to 

change the state of the body 

rotation. The moment of inertia 

can be expressed as a sum over 

the particles mi that make up 

the body, each of which is at its 

own perpendicular distance ri 

from the axis. The rotational 

kinetic energy of a rigid body 

rotating about a fixed axis 

depends on the angular speed 
  and the moment of inertia I 

for that rotation axis 

2 2

1 1 2 2

2

21
2

 i i

i

I m r m r

m r

K I

= + +

=

=

  
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 Calculating the 

moment of inertia: The 

parallel-axis theorem relates 

the moments of inertia of a 

rigid body of mass M about 

two parallel axes: an axis 

through the center of mass 

(moment of inertia Icm) and a 

parallel axis a distance d from 

the first axis (moment of 

inertia IP). If the body has a 

continuous mass  distribution, 

the moment of inertia can be  

calculated by integration 

2

cmPI I Md= + . 
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10 DYNAMICS OF ROTATIONAL MOTION 

We learned in Chapters 4 and 5 that a net force applied to an object gives that object an 

acceleration. But what does it take to give an object an angular acceleration? That is, what does it take to 

start a stationary object rotating or to bring a spinning object to a halt? A force is required, but it must be 

applied in a way that gives a twisting or turning action. 

 In this chapter we’ll define a new physical quantity, torque, that describes the twisting or turning 

effort of a force. We’ll find that the net torque acting on a rigid body determines its angular acceleration, 

in the same way that the net force on an object determines its linear acceleration. We’ll also look at work 

and power in rotational motion so as to understand, for example, how energy is transferred by an electric 

motor. Next we’ll develop a new conservation principle, conservation of angular momentum, that is 

tremendously useful for understanding the rotational motion of both rigid and nonrigid bodies. We’ll 

finish this chapter by studying gyroscopes, rotating devices that don’t fall over when you might think they 

should—but that actually behave in accordance with the dynamics of rotational motion. 

 

 

10.1 Torque 
 

We know that forces acting on an object can affect its 

translational motion—that is, the motion of the object as a whole 

through space. Now we want to learn which aspects of a force 

determine how effective it is in causing or changing rotational 

motion. The magnitude and direction of the force are important, but 

so is the point on the object where the force is applied. In Fig. 10.1 

a wrench is being used to loosen a tight bolt. Force bF , applied near 

the end of the handle, is more effective than an equal force aF  

applied near the bolt. Force cF  does no good; it’s applied at the 

same point and has the same magnitude as bF , but it’s directed 

along the length of the handle. The quantitative measure of the 

tendency of a force to cause or change an object’s rotational motion 

is called torque; we say that aF  applies a torque about point O to 

the wrench in Fig. 10.1, bF  applies a greater torque about O, and cF  applies zero torque about O. 

Figure 10.2 shows three examples of how to calculate torque. The object can rotate about an axis 

that is perpendicular to the plane of the figure and passes through point O. Three forces act on the object 

in the plane of the figure. The tendency of the first of these forces, 1F , to cause a rotation about O 

depends on its magnitude 1F . It also depends on the perpendicular distance 1l  between point O and the 

line of action of the force (that is, the line along which the force vector lies). We call the distance 1l  the 

lever arm (or moment arm) of force 1F  about O. The twisting effort is directly proportional to both 1F  

and 1l , so we define the torque (or moment) of the force 1F  with respect to O as the product 1 1F l . We use 

the Greek letter   (tau) for torque. If a force of magnitude F has a line of action that is a perpendicular 

distance l from O, the torque is 

 Fl = . (10.1) 

Physicists usually use the term “torque,” while engineers usually use “moment” (unless they are 

talking about a rotating shaft). 

The lever arm of 1F  in Fig. 10.2 is the perpendicular distance 1l , and the lever arm of 2F  is the 

perpendicular distance 2l . The line of action of 3F  passes through point O, so the lever arm for  

 

Figure 10.1 - Which of these three 

equal-magnitude forces is most likely 

to loosen the tight bolt? 
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3F  is zero and its torque with respect to O is zero. In the same way, force cF  in Fig. 10.1 has zero 

torque with respect to point O; bF  has a greater torque than aF  

because its lever arm is greater. 

CAUTION! Torque is always measured about a point 

Torque is always defined with reference to a specific point. If we 

shift the position of this point, the torque of each force may change. 

For example, the torque of force 3F  in Fig. 10.2 is zero with respect 

to point O but not with respect to point A. It’s not enough to refer to 

“the torque of F ”; you must say “the torque of F  with respect 

to point X” or “the torque of F  about point X.” 

Force 1F  in Fig. 10.2 tends to cause counterclockwise rotation 

about O, while 2F  tends to cause clockwise rotation. To distinguish 

between these two possibilities, we need to choose a positive sense of 

rotation. With the choice that counterclockwise torques are positive 

and clockwise torques are negative, the torques of 1F  and 2F  about 

O are 

1 1 1Fl = + 2 2 2F l = − . 

Figure 10.2 shows this choice for the sign of torque. We’ll often use the symbol  to indicate our 

choice of the positive sense of rotation.  

The SI unit of torque is the newton-meter. In our discussion of work and energy we called this 

combination the joule. But torque is not work or energy, and torque should be expressed in newton-

meters, not joules.  

Figure 10.3 shows a force F  applied at point P, located at 

position r  with respect to point O. There are three ways to 

calculate the torque of F  : 

1. Find the lever arm l and use Fl = .  

2. Determine the angle   between the vectors r  and F ; the lever 

arm is sinr   , so sinrF = .  

3. Represent F  in terms of a radial component radF  Frad along the 

direction of r  and a tangential component tanF  at right angles, 

perpendicular to r . (We call this component tangential because 

if the object rotates, the point where the force acts moves in a 

circle, and this component is tangent to that circle). Then 

tan sinF F =  and tan( sin )r F F r = =  . The component radF  

produces no torque with respect to O because its lever arm with 

respect to that point is zero (compare to forces cF  in Fig. 10.1 

and 3F  in Fig. 10.2).  

Summarizing these three expressions for torque, we have 

                             (10.2) 

 

 
 
Figure 10.2 - The torque of a force 

about a point is the product of the 

force magnitude and the lever arm 

of the force 

 

Figure 10.3 - Three ways to calculate 

the torque of force F  about point O. 

In this figure, r  and F  are in the 

plane of the page and the torque 

vector   points out of the page 

toward you 
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Torque as a Vector 

 

We saw in Section 9.1 that angular velocity and angular acceleration can be represented as 

vectors; the same is true for torque. To see how to do this, note that the quantity sinrF   in Eq. (10.2) is 

the magnitude of the vector product r F  that we defined in Section 1.10. (Go back and review that 

definition). We generalize the definition of torque as follows: When a force F  acts at a point having a 

position vector r  with respect to an origin O, as in Fig. 10.3, the torque   of the force with respect to O 

is the vector quantity 

  
(10.3)

 

The torque as defined in Eq. (10.2) is the magnitude of 

the torque vector r F . The direction of   is perpendicular to 

both r  and F . In particular, if both r  and F  lie in a plane 

perpendicular to the axis of rotation, as in Fig. 10.3, then the 

torque vector r F =   is directed along the axis of rotation, 

with a sense given by the right-hand rule (see Fig. 1.30 and  

Fig. 10.4).  

Because r F =   is perpendicular to the plane of the 

vectors r  and F , it’s common to have diagrams like Fig. 10.4, 

in which one of the vectors is perpendicular to the page. We use 

a dot ( • ) to represent a vector that points out of the page and a 

cross (×) to represent a vector that points into the page  

(see Figs. 10.3 and 10.4).  

In the following sections we’ll usually be concerned with 

rotation of an object about an axis oriented in a specified 

constant direction. In that case, only the component of torque 

along that axis will matter. We often call that component the 

torque with respect to the specified axis. 

 

 

10.2 Torque and Angular Acceleration for a 

Rigid Body 
 

We’re now ready to develop the fundamental relationship 

for the rotational dynamics of a rigid body (an object with a 

definite and unchanging shape and size). We’ll show that the 

angular acceleration of a rotating rigid body is directly 

proportional to the sum of the torque components along the axis 

of rotation. The proportionality factor is the moment of inertia.  

To develop this relationship, let’s begin as we did in 

Section 9.4 by envisioning the rigid body as being made up of a large number of particles. We choose the 

axis of rotation to be the z-axis; the first particle has mass 1m  and distance 1r  from this axis (Fig. 10.5). 

The net force 1F  acting on this particle has a component 1,radF  ,rad along the radial direction, a component 

1,tanF ,tan that is tangent to the circle of radius 1r  in which the particle moves as the body rotates, and a 

component 1zF  along the axis of rotation. Newton’s second law for the tangential component is 

 1,tan 1 1,tanF m a= . (10.4) 

 

 
Figure 10.4 - The torque vector 

r F =   is directed along the axis of 

the bolt, perpendicular to both r  and F
. The fingers of the right hand curl in the 

direction of the rotation that the torque 

tends to cause 
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We can express the tangential acceleration of the first 

particle in terms of the angular acceleration z  of the body by 

using Eq. (9.14): 1,tan 1 za r= . Using this relationship and 

multiplying both sides of Eq. (10.4) by 1r , we obtain 

2

1,tan 1 1 1 zF r m r = . (10.5) 

From Eq. (10.2), 1,tan 1F r  is the torque of the net force with 

respect to the rotation axis, equal to the component 1z  of the 

torque vector along the rotation axis. The subscript z is a reminder 

that the torque affects rotation around the z-axis, in the same way 

that the subscript on 1zF  is a reminder that this force affects the 

motion of particle 1 along the z-axis.  

Neither of the components 1,tanF  or 1zF  contributes to the 

torque about the z-axis, since neither tends to change the particle’s 

rotation about that axis. So 1 1,tan 1z F r =  is the total torque acting 

on the particle with respect to the rotation axis. Also, 
2

1 1m r  is 1I , 

the moment of inertia of the particle about the rotation axis. Hence 

we can rewrite Eq. (10.5) as 

 
2

1 1 1 1z z zI m r  = = .  

We write such an equation for every particle in the body, then add all these equations: 

 
2 2

1 2 1 2 1 1 2 2... ... ...z z z z z zI I m r m r     + + = + + = + +   

or 

 ( )2

1iz i zm r =  . (10.6) 

The left side of Eq. (10.6) is the sum of all the torques about the rotation axis that act on all the 

particles. The right side is
2

i iI m r=  , the total moment of inertia about the rotation axis, multiplied by 

the angular acceleration z . Note that z  is the same for every particle because this is a rigid body. Thus 

Eq. (10.6) says that for the rigid body as a whole, 

  (10.7) 

Just as Newton’s second law says that a net force on a particle causes an acceleration in the 

direction of the net force, Eq. (10.7) says that a net torque on a rigid body about an axis causes an angular 

acceleration about that axis.  

Our derivation assumed that the angular acceleration z  is the same for all particles in the body.  

So Eq. (10.7) is valid only for rigid bodies. Hence this equation doesn’t apply to a rotating tank of water 

or a swirling tornado of air, different parts of which have different angular accelerations. Note that since 

our derivation used Eq. (9.14), tan ,z za r =  must be measured in rad/s2 . 

 

 
Figure 10.5 - As a rigid body rotates 

around the z-axis, a net force 1F  acts 

on one particle of the body. Only the 

force component 1,tanF  can affect the 

rotation, because only 1,tanF  exerts a 

torque about O with a z-component 

(along the rotation axis) 
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The torque on each particle is due to the net force on 

that particle, which is the vector sum of external and internal 

forces (see Section 8.2). According to Newton’s third law, the 

internal forces that any pair of particles in the rigid body exert 

on each other are equal in magnitude and opposite in direction 

(Fig. 10.6). If these forces act along the line joining the two 

particles, their lever arms with respect to any axis are also 

equal. So the torques for each such pair are equal and opposite, 

and add to zero. Hence all the internal torques add to zero, so 

the sum z  in Eq. (10.7) includes only the torques of the 

external forces.  

Often, an important external force acting on a rigid body 

is its weight. This force is not concentrated at a single point; it 

acts on every particle in the entire body. Nevertheless, if g  has 

the same value at all points, we always get the correct torque 

(about any specified axis) if we assume that all the weight is 

concentrated at the center of mass of the body. We’ll prove this 

statement in Chapter 11, but meanwhile we’ll use it for some of 

the problems in this chapter. 

 

 

PROBLEM-SOLVING STRATEGY  

10.1 Rotational Dynamics for Rigid Bodies 

 

Our strategy for solving problems in rotational dynamics is very similar to Problem-Solving 

Strategy 5.2 for solving problems involving Newton’s second law. 

 

 

IDENTIFY the relevant concepts: 

Equation (10.7), z zI =  , is useful whenever torques act on a rigid body. Sometimes you can 

use an energy approach instead, as we did in Section 9.4. However, if the target variable is a force, a 

torque, an acceleration, an angular acceleration, or an elapsed time, using z zI =  is almost always 

best.  

 

 

SET UP the problem:  

• Sketch the situation and identify the body or bodies to be analyzed. Indicate the rotation axis. 

• For each body, draw a free-body diagram that shows the body’s shape, including all 

dimensions and angles. Label pertinent quantities with algebraic symbols. 

• Choose coordinate axes for each body and indicate a positive sense of rotation (clockwise or 

counterclockwise) for each rotating body. If you know the sense of z , pick that as the 

positive sense of rotation. 

 

 

EXECUTE the solution: 

1. For each body, decide whether it undergoes translational motion, rotational motion, or 

both. Then apply F ma=  (as in Section 5.2), z zI = , or both to the body. 

2. Express in algebraic form any geometrical relationships between the motions of two or 

more bodies. An example is a string that unwinds, without slipping, from a pulley or a wheel that 

rolls without slipping (discussed in Section 10.3). These relationships usually appear as 

relationships between linear and/or angular accelerations. 

 

Figure 10.6 - Why only external torques 

affect a rigid body’s rotation: Any two 

particles in the body exert equal and 

opposite forces on each other. If the 

forces act along the line joining the 

particles, the lever arms of the forces with 

respect to an axis through O are the same 

and the torques due to the two forces are 

equal and opposite 
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3. Ensure that you have as many independent equations as there are unknowns. Solve the 

equations to find the target variables. 

 

 

EVALUATEyour answer: 

Check that the algebraic signs of your results make sense. As an example, if you are unrolling 

thread from a spool, your answers should not tell you that the spool is turning in the direction that rolls 

the thread back onto the spool! Check that any algebraic results are correct for special cases or for 

extreme values of quantities.  

 

 

10.3 Rigid-Body Rotation about a Moving Axis 
 

We can extend our analysis of rigid-body rotational 

dynamics to some cases in which the axis of rotation moves. 

When that happens, the motion of the rigid body is combined 

translation and rotation. The key to understanding such 

situations is this: Every possible motion of a rigid body can be 

represented as a combination of translational motion of the 

center of mass and rotation about an axis through the center of 

mass. This is true even when the center of mass accelerates, so 

it is not at rest in any inertial frame. Figure 10.7 illustrates this 

for the motion of a tossed baton: The center of mass of the 

baton follows a parabolic curve, as though the baton were a 

particle located at the center of mass. A rolling ball is another 

example of combined translational and rotational motions. 

 

 

Combined Translation and Rotation: Energy 

Relationships 

 

It’s beyond our scope to prove that rigid-body motion 

can always be divided into translation of the center of mass and 

rotation about the center of mass. But we can prove this for the 

kinetic energy K of a rigid body that has both translational and 

rotational motions. For such a rigid body, K is the sum of two 

parts: 

 

                                   

(10.8) 

 

To prove this relationship, we again imagine the rigid body to be made up of particles. For a 

typical particle with mass im  (Fig. 10.8), the velocity i  of this particle relative to an inertial frame is the 

vector sum of the velocity cm  of the center of mass and the velocity 'i  of the particle relative to the 

center of mass: 

cm 'i i  = + . 
                                                       

 (10.9) 

 

Figure 10.7  -The motion of a rigid body 

is a combination of translational motion 

of the center of mass and  rotation around 

the center of mass 
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The kinetic energy iK  of this particle in the inertial frame is 
21

2 i im , which we can also express as 

1
2

( )i i im   . Substituting Eq. (10.9) into this, we get 

 
1

cm cm2

1
cm cm cm2

2 21
cm cm2

( ') ( ')

( 2 ' ' ')

( 2 ' ' )

i i i i

i i i i

i i i

K m

m

m

   

     

   

= + +

= + +

= + +

 

 

The total kinetic energy is the sum iK  for all the 

particles making up the rigid body. Expressing the three terms in 

this equation as separate sums, we get 

( ) ( ) ( )2 21 1
cm cm2 2

' 'i i i i i iK K m m m   = = + +    .  

The first and second terms have common factors that we 

take outside the sum: 

( ) ( ) ( )2 21 1
cm cm2 2

' 'i i i i iK m m m   = + +   . (10.10) 

Now comes the reward for our effort. In the first term, im  is the total mass M. The second term 

is zero because 'i im  is M times the velocity of the center of mass relative to the center of mass, and 

this is zero by definition. The last term is the sum of the kinetic energies of the particles computed by 

using their speeds with respect to the center of mass; this is just the kinetic energy of rotation around the 

center of mass. Using the same steps that led to Eq. (9.17) for the rotational kinetic energy of a rigid 

body, we can write this last term as 
21

cm2
I  , where cmI  is the moment of inertia with respect to the axis 

through the center of mass and   is the angular speed. So Eq. (10.10) becomes Eq. (10.8): 

 
2 21 1

cm cm2 2
K M I = + .  

 

 

Rolling Without Slipping 

 

An important case of combined translation and rotation is rolling without slipping. The rolling 

wheel in Fig. 10.9 is symmetrical, so its center of mass is at its geometric center. We view the motion in 

an inertial frame of reference in which the surface on which the wheel rolls is at rest.  

In this frame, the point on the wheel that contacts the surface must be instantaneously at rest so 

that it does not slip. Hence the velocity 1 '  of the point of contact relative to the center of mass must have 

the same magnitude but opposite direction as the center-of-mass velocity cm . If the wheel’s radius is R 

and its angular speed about the center of mass is v, then the magnitude of 1 '  is R ; hence 

  

(10.11)

 

As Fig. 10.9 shows, the velocity of a point on the wheel is the vector sum of the velocity of the 

center of mass and the velocity of the point relative to the center of mass. Thus while point 1 the point of 

contact, is instantaneously at rest, point 3 at the top of the wheel is moving forward twice as fast as the 

center of mass, and points 2 and 4 at the sides have velocities at 45° to the horizontal.  

 

 

 

Figure 10.8 - A rigid body with both 

translational and rotational motions 



165 

 

Figure 10.9 - The motion of a rolling wheel is the sum of the translational motion of the center of mass and 

the rotational motion of the wheel around the center of mass 

At any instant we can think of the wheel as rotating about an “instantaneous axis” of rotation that 

passes through the point of contact with the ground. The angular velocity   is the same for this axis as 

for an axis through the center of mass; an observer at the center of mass sees the rim make the same 

number of revolutions per second as does an observer at the rim watching the center of mass spin around 

him. If we think of the motion of the rolling wheel in Fig. 10.9 in this way, the kinetic energy of the 

wheel is 21
2 iK I= , where 1I  is the moment of inertia of the wheel about an axis through point 1. But by 

the parallel-axis theorem, Eq. (9.19), 2

1 cmI I MR= +  , where M is the total mass of the wheel and 
cmI  is 

the moment of inertia with respect to an axis through the center of mass. Using Eq. (10.11), we find that 

the wheel’s kinetic energy is as given by Eq. (10.8): 

 2 2 2 2 21 1 1 1
1 cm cm2 2 2 2

K I I MR M   = = + + .  

CAUTION! Rolling without slipping. The relationship cm R =  holds only if there is rolling 

without slipping. When a drag racer first starts to move, the rear tires are spinning very fast even though 

the racer is hardly moving, so R  is greater than cm . If a driver applies the brakes too heavily so that the 

car skids, the tires will spin hardly at all and R  is less than cm . 

If a rigid body changes height as it moves, we must also consider gravitational potential energy. 

We saw in Section 9.4 that for any extended object of mass M, rigid or not, the gravitational potential 

energy U is the same as if we replaced the object by a particle of mass M located at the object’s center of 

mass, so 

 cmU Mgy= .  

 

 

Combined Translation and Rotation: Dynamics  

 

We can also analyze the combined translational and rotational motions of a rigid body from the 

standpoint of dynamics. We showed in Section 8.5 that for an extended object, the acceleration of the 

center of mass is the same as that of a particle of the same mass acted on by all the external forces on the 

actual object: 

  

(10.12)
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The rotational motion about the center of mass is described by the rotational analog of Newton’s 

second law, Eq. (10.7): 

  

(10.13)

 

It’s not immediately obvious that Eq. (10.13) should apply to the motion of a translating rigid 

body; after all, our derivation of z zI =  in Section 10.2 assumed that the axis of rotation was 

stationary. But Eq. (10.13) is valid even when the axis of rotation moves, provided the following two 

conditions are met: 

1. The axis through the center of mass must be an axis of symmetry.  

2. The axis must not change direction.  

These conditions are satisfied for many types of rotation. Note that in general this moving axis of 

rotation is not at rest in an inertial frame of reference.  

We can now solve dynamics problems involving a rigid body that undergoes translational and 

rotational motions at the same time, provided that the rotation axis satisfies the two conditions just 

mentioned. Problem-Solving Strategy 10.1 (Section 10.2) is equally useful here, and you should review it 

now. Keep in mind that when a rigid body undergoes translational and rotational motions at the same 

time, we need two separate equations of motion for the same body Eq. (10.12) for the translation of the 

center of mass and Eq. (10.13) for rotation about an axis through the center of mass. 
 

 

Rolling Friction 
 

In Example 10.5 we said that we can ignore rolling friction if both the rolling body and the surface 

over which it rolls are perfectly rigid. In Fig. 10.10a a perfectly rigid sphere is rolling down a perfectly 

rigid incline. The line of action of the normal force passes through the center of the sphere, so its torque is 

zero; there is no sliding at the point of contact, so the friction force does no work. Figure 10.10b shows a 

more realistic situation, in which the surface “piles up” in front of the sphere and the sphere rides in a 

shallow trench. Because of these deformations, the contact forces on the sphere no longer act along a 

single point but over an area; the forces are concentrated on the front of the sphere as shown. As a result, 

the normal force now exerts a torque that opposes the rotation. In addition, there is some sliding of the 

sphere over the surface due to the deformation, causing mechanical energy to be lost. The combination of 

these two effects is the phenomenon of rolling friction. Rolling friction also occurs if the rolling body is 

deformable, such as an automobile tire. Often the rolling body and the surface are rigid enough that 

rolling friction can be ignored, as we have assumed in all the examples in this section. 

 

Figure 10.10 - Rolling down (a) a perfectly rigid surface and (b) a deformable surface. In (b) the 

deformation is greatly exaggerated, and the force n is the component of the contact force that points normal 

to the plane of the surface before it is deformed 
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10.4 Work and Power in Rotational Motion 
 

When you pedal a bicycle, you apply forces to a rotating body and do work on it. Similar things 

happen in many other real-life situations, such as a rotating motor shaft driving a power tool or a car 

engine propelling the vehicle. Let’s see how to apply our ideas about work from Chapter 6 to rotational 

motion.  

Suppose a tangential force tanF  acts at the rim of a pivoted disk - for example, a child running 

while pushing on a playground merry-go-round (Fig. 10.11a). The disk rotates through an infinitesimal 

angle d  about a fixed axis during an infinitesimal time interval dt (Fig. 10.11b).  

The work dW done by the force tanF  while a point on the rim moves a distance ds is tandW F ds= .  

If d  is measured in radians, then ds R d=  and 

 
tandW F R d= .  

Now 
tanF R  is the torque z  due to the force tanF , so 

zdW d = .                                                                   (10.19) 

As the disk rotates from 1  to 2 , the total work done by the torque is 

  

(10.20)

 

If the torque remains constant while the angle changes, then the work is the product of torque and 

angular displacement: 

  

(10.21)

 

If torque is expressed in newton-meters (N • m) and angular displacement in radians, the work is 

in joules. Equation (10.21) is the rotational analog of Eq. (6.1), W = Fs, and Eq. (10.20) is the analog of 

Eq. (6.7), xW F dx=   , for the work done by a force in a straight-line displacement.  

If the force in Fig. 10.21 had an axial component (parallel to the rotation axis) or a radial 

component (directed toward or away from the axis), that component would do no work because the 

displacement of the point of application has only a tangential component. An axial or radial component of 

               

Figure 10.11 - A tangential force applied to a rotating body does work 
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force would also make no contribution to the torque about the axis of rotation. So Eqs. (10.20) and 

(10.21) are correct for any force, no matter what its components.  

When a torque does work on a rotating rigid body, the kinetic energy changes by an amount equal 

to the work done. We can prove this by using exactly the same procedure that we used in Eqs. (6.11) 

through (6.13) for the translational kinetic energy of a particle. Let 
z  represent the net torque on the 

body so that 
z zI =  from Eq. (10.7), and assume that the body is rigid so that the moment of inertia I is 

constant. We then transform the integrand in Eq. (10.20) into an integrand with respect to 
z  as follows: 

 ( ) z
z z z z z

d d
d I d I d I d I d

dt dt

 
       = = = = .  

Since 
z  is the net torque, the integral in Eq. (10.20) is the total work done on the rotating rigid 

body. This equation then becomes 

  

(10.22)

 

The change in the rotational kinetic energy of a rigid body equals the work done by forces exerted 

from outside the body. This equation is analogous to Eq. (6.13), the work–energy theorem for a particle.  

How does power relate to torque? When we divide both sides of Eq. (10.19) by the time interval dt 

during which the angular displacement occurs, we find 

 z

dW d

dt dt


= .  

But dW/dt is the rate of doing work, or powerP, and /d dt  is angular velocity z : 

  

(10.23)

 

This is the analog of the relationship P F =  that we developed in Section 6.4 for particle 

motion. 

 

 

10.5 Angular Momentum 
 

Every rotational quantity that we have encountered in Chapters 9 and 10 is the analog of some 

quantity in the translational motion of a particle. The analog of momentum of a particle is angular 

momentum, a vector quantity denoted as L . Its relationship to momentum p  (which we’ll often call 

linear momentum for clarity) is exactly the same as the relationship of torque to force, r F =  . For a 

particle with constant mass m and velocity  , the angular momentum is 

  

(10.24)
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The value of L  depends on the choice of origin O, since it 

involves the particle’s position vector r  relative to O. The units 

of angular momentum are 2kg m / s  .  

In Fig. 10.12 a particle moves in the xy-plane; its position 

vector r  and momentum p m=  are shown. The angular 

momentum vector L  is perpendicular to the xy-plane. The right-

hand rule for vector products shows that its direction is along the 

+z-axis, and its magnitude is 

sinL m r m l  = = , (10.25) 

where l is the perpendicular distance from the line of   to 

O. This distance plays the role of “lever arm” for the momentum 

vector.  

When a net force F  acts on a particle, its velocity and 

momentum change, so its angular momentum may also change. 

We can show that the rate of change of angular momentum is 

equal to the torque of the net force. We take the time derivative of Eq. (10.24), using the rule for the 

derivative of a product: 

 ( ) ( )
dL dr d

m r m m r ma
dt dt dt


  

   
= + +  =  +    
   

.  

The first term is zero because it contains the vector product of the vector /dr dt =  with itself. In 

the second term we replace ma  with the net force F : 

 
dL

r F
dt

=  =  (for a particle acted on by net force F ). (10.26) 

The rate of change of angular momentum of a 

particle equals the torque of the net force acting on it. 

Compare this result to Eq. (8.4): The rate of change /dp dt  of 

the linear momentum of a particle equals the net force that acts 

on it. 

 

 

Angular Momentum of a Rigid Body 

 

We can use Eq. (10.25) to find the total angular 

momentum of a rigid body rotating about the z-axis with 

angular speed  . First consider a thin slice of the body lying in 

the xy-plane (Fig. 10.13). Each particle in the slice moves in a 

circle centered at the origin, and at each instant its velocity i  

is perpendicular to its position vector ir , as shown. Hence in 

Eq. (10.25),   = 90° for every particle. A particle with mass im  

at a distance ir  from O has a speed i  equal to ir . From Eq. 

(10.25) the magnitude iL  of its angular momentum is 

 2( )i i i i i iL m r r mr = = . (10.27) 

 

Figure 10.12 - Calculating the angular 

momentum L r m r p=  =    

of a particle with mass m moving  

in the xy-plane 

 

Figure 10.13 - Calculating the angular 

momentum of a particle of mass im  in a 

rigid body rotating at angular speed  . 

(Compare Fig. 10.23)  
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The direction of each particle’s angular momentum, as given by the right-hand rule for the vector 

product, is along the +z-axis.  

The total angular momentum of the slice of the rigid body that lies in the xy-plane is the sum 

iL  of the angular momenta 
iL  of all of its particles. From Eq. (10.27), 

 ( )2

i i iL L m r I = = =  ,  

where I is the moment of inertia of the slice about the z-axis.  

We can do this same calculation for the other slices of the rigid body, all parallel to the xy-plane. 

For points that do not lie in the xy-plane, a complication arises because the r  vectors have components in 

the z-direction as well as in the x- and y-directions; this gives the angular momentum of each particle a 

component perpendicular to the z-axis. But if the z-axisis an axis of symmetry, the perpendicular 

components for particles on opposite sides of this axis add up to zero (Fig. 10.14). So when a rigid body 

rotates about an axis of symmetry, its angular momentum vector L  lies along the symmetry axis, and its 

magnitude is L I= .  

The angular velocity vector   also lies along the rotation axis, as we saw in Section 9.1. Hence 

for a rigid body rotating around an axis of symmetry, L  and   are in the same direction (Fig. 10.15).  

So we have the vector relationship 

  

(10.28)

 

 

        

Figure 10.14 - Two particles of the same mass 

located symmetrically on either side of the rotation 

axis of a rigid body.  

The angular momentum vectors 1L  and 2L  of the 

two particles do not lie along the rotation axis, but 

their vector sum 1 2L L+  does 

Figure 10.15 - For rotation about an axis of 

symmetry,   and L  are parallel and along the axis. 

The directions of both vectors are given by the right-

hand rule (compare Fig. 9.5) 

From Eq. (10.26) the rate of change of angular momentum of a particle equals the torque of the 

net force acting on the particle. For any system of particles (including both rigid and nonrigid bodies), the 

rate of change of the total angular momentum equals the sum of the torques of all forces acting on all the 

particles. The torques of the internal forces add to zero if these forces act along the line from one particle 

to another, as in Fig. 10.8, and so the sum of the torques includes only the torques of the external forces. 

(We saw a similar cancellation in our discussion of center-of-mass motion in Section 8.5). So we 

conclude that 

  

(10.29)
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Finally, if the system of particles is a rigid body rotating about a symmetry axis (the z-axis), then 

z zL I=  and I is constant. If this axis has a fixed direction in space, 

then vectors L  and   change only in magnitude, not in direction. In 

that case, / /z z zdL dt I d dt I = = , or 

z zI = . 

which is again our basic relationship for the dynamics of rigid-body 

rotation. If the body is not rigid, I may change; in that case, L changes 

even when   is constant. For a nonrigid body, Eq. (10.29) is still valid, 

even though Eq. (10.7) is not.  

When the axis of rotation is not a symmetry axis, the angular 

momentum is in general not parallel to the axis (Fig. 10.16). As the 

rigid body rotates, the angular momentum vector  traces out a cone 

around the rotation axis. Because  changes, there must be a net 

external torque acting on the body even though the angular velocity 

magnitude  may be constant. If the body is an unbalanced wheel on a 

car, this torque is provided by friction in the bearings, which causes the 

bearings to wear out. “Balancing” a wheel means distributing the mass 

so that the rotation axis is an axis of symmetry; then  points along the rotation axis, and no net torque is 

required to keep the wheel turning.  

In fixed-axis rotation we often use the term “angular momentum of the body” to refer to only the 

component of  along the rotation axis of the body (the z-axis in Fig. 10.17), with a positive or negative 

sign to indicate the sense of rotation just as with angular velocity. 

 

 

10.6 Conservation of Angular Momentum 
 

We have just seen that angular momentum can be used for an alternative statement of the basic 

dynamic principle for rotational motion. It also forms the basis for the principle of conservation of 

angular momentum. Like conservation of energy and of linear momentum, this principle is a universal 

conservation law, valid at all scales from atomic and nuclear systems to the motions of galaxies. This 

principle follows directly from Eq. (10.29): /dL dt = . If 0 = , then / 0dL dt = , and L  is 

constant 
 

CONSERVATION OF ANGULAR MOMENTUM When the net external torque acting on a 

system is zero, the total angular momentum of the system is constant (conserved). 
 

A circus acrobat, a diver, and an ice skater pirouetting on one skate all take advantage of this 

principle. Suppose an acrobat has just left a swing; she has her arms and legs extended and is rotating 

counterclockwise about her center of mass. When she pulls her arms and legs in, her moment of inertia 

cmI  with respect to her center of mass changes from a large value 
1I  to a much smaller value 

2I . The only 

external force acting on her is her weight, which has no torque with respect to an axis through her center 

of mass. So her angular momentum 
cmz zL I =  remains constant, and her angular velocity 

z increases as 

cmI  decreases. That is, 

1 1 2 2z zI I =  (zero net external torque).                                  (10.30) 

When a skater or ballerina spins with arms outstretched and then pulls her arms in, her angular 

velocity increases as her moment of inertia decreases. In each case there is conservation of angular 

momentum in a system in which the net external torque is zero.  

L

L



L

L

 

Figure 10.16 - If the rotation axis 

of a rigid body is not a symmetry 

axis, L  does not in general lie 

along the rotation axis. Even if 

  is constant, the direction of L  

changes and a net torque is 

required to maintain rotation 
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When a system has several parts, the internal forces that the 

parts exert on one another cause changes in the angular momenta of 

the parts, but the total angular momentum doesn’t change.  

Here’s an example. Consider two objects A and B that interact 

with each other but not with anything else, such as the astronauts we 

discussed in Section 8.2 (see Fig. 8.9). Suppose object A exerts a 

force 
onA B

F  on B on object B; the corresponding torque (with respect 

to whatever point we choose) is 
onA B

  . According to Eq. (10.29), 

this torque is equal to the rate of change of angular momentum of B: 

on

B

A B

dF

dt
 = . 

At the same time, object B exerts a force 
onA B

F  on object A, 

with a corresponding torque 
onA B

 , and 

on

A

A B

dL

dt
 = . 

From Newton’s third law, 
on onA B A B

F F= − . Furthermore, if 

the forces act along the same line, as in Fig. 10.8, their lever arms 

with respect to the chosen axis are equal. Thus the torques of these 

two forces are equal and opposite, and
on onA B A B

 = −  . So if we add 

the two preceding equations, we find 

0A BdL dL

dt dt
+ =  

or, because 
A BL L+  is the total angular momentum L  of the system, 

0
dL

dt
=  (zero net external torque). (10.31) 

That is, the total angular momentum of the system is constant. 

The torques of the internal forces can transfer angular momentum 

from one object to the other, but they can’t change the total angular 

momentum of the system (Fig. 10.17). 

 

 

10.7 Gyroscopes and Precession 
 

In all the situations we’ve looked at so far in this chapter, the 

axis of rotation either has stayed fixed or has moved and kept the 

same direction (such as rolling without slipping). But a variety of new 

physical phenomena, some quite unexpected, can occur when the axis 

of rotation changes direction. For example, consider a toy gyroscope 

that’s supported at one end (Fig. 10.18). If we hold it with the flywheel axis horizontal and let go, the free 

end of the axis simply drops owing to gravity - if the flywheel isn’t spinning. But if the flywheel is 

spinning, what happens is quite different. One possible motion is a steady circular motion of the axis in a 

horizontal plane, combined with the spin motion of the flywheel about the axis. This surprising,  

 
Figure 10.17 - A falling cat twists 

different parts of its body in 

different directions so that it lands 

feet first. At all times during this 

process the angular momentum of 

the cat as a whole remains zero 
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nonintuitive motion of the axis is called precession. Precession 

is found in nature as well as in rotating machines such as 

gyroscopes. As you read these words, the earth itself is 

precessing; its spin axis (through the north and south poles) 

slowly changes direction, going through a complete cycle of 

precession every 26,000 years.  

To study this strange phenomenon of precession, we 

must remember that angular velocity, angular momentum, and 

torque are all vector quantities. In particular, we need the 

general relationship between the net torque   that acts on an 

object and the rate of change of the object’s angular momentum 

L , given by Eq. (10.29), /dL dt = . Let’s first apply this 

equation to the case in which the flywheel is not spinning  

(Fig. 10.19a). We take the origin O at the pivot and assume that 

the flywheel is symmetrical, with mass M and moment of inertia 

I about the flywheel axis. The flywheel axis is initially along the 

x-axis. The only external forces on the gyroscope are the normal 

force n  acting at the pivot (assumed to be frictionless) and the weight w  of the flywheel that acts at its 

center of mass, a distance r from the pivot. The normal force has zero torque with respect to the pivot, and 

the weight has a torque   in the y-direction, as shown in Fig. 10.19a. Initially, there is no rotation, and the 

initial angular momentum 
iL  is zero. From Eq. (10.29) the change dL  in angular momentum in a short 

time interval dt following this is 

 dL dt= . (10.32) 

This change is in the y-direction because T S is. As each additional time interval dt elapses, the 

angular momentum changes by additional increments dL  in the y-direction because the direction of the 

torque is constant (Fig. 10.19b). The steadily increasing horizontal angular momentum means that the 

gyroscope rotates downward faster and faster around the y-axis until it hits either the stand or the table on 

which it sits. 

           

Figure 10.19 - (a) If the flywheel in Fig. 10.18 is initially not spinning, its initial angular momentum is 

zero. (b) In each successive time interval dt, the torque produces a change dL dt=  in the angular momentum. 

The flywheel acquires an angular momentum L  in the same direction  

as  , and the flywheel axis falls 

 

Now let’s see what happens if the flywheel is spinning initially, so the initial angular momentum 

iL  is not zero (Fig. 10.20a). Since the flywheel rotates around its symmetry axis, 
iL  lies along this axis. 

But each change in angular momentum dL  is perpendicular to the flywheel axis because the torque 

r w =   is perpendicular to that axis (Fig. 10.20b). 

 

Figure 10.18 - A gyroscope supported at 

one end. The horizontal circular motion 

of the flywheel and axis is called 

precession. The angular speed of 

precession is Ω 
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Figure 10.20 - (a) The flywheel is spinning initially with angular momentum . The forces (not 

shown) are the same as those in Fig. 10.19a. (b) Because the initial angular momentum is not zero, each 

change  in angular momentum is perpendicular to . As a result, the magnitude of  remains 

the same but its direction changes continuously 

This causes the direction of L  to change, but not its magnitude. The changes dL  are always in the 

horizontal xy-plane, so the angular momentum vector and the flywheel axis with which it moves are 

always horizontal. That is, the axis doesn’t fall - it precesses.  

 If this still seems mystifying to you, think about a ball attached to a string. If the ball is initially at 

rest and you pull the string toward you, the ball moves toward you also. But if the ball is initially moving 

and you continuously pull the string in a direction perpendicular to the ball’s motion, the ball moves in a 

circle around your hand; it does not approach your hand at all. In the first case the ball has zero linear 

momentum p  to start with; when you apply a force F  toward you for a time dt, the ball acquires a 

momentum dp F dt= , which is also toward you. But if the ball 

already has linear momentum p , a change in momentum dp  that’s 

perpendicular to p  changes the direction of motion, not the speed. 

Replace p  with L  and F  with   in this argument, and you’ll see 

that precession is simply the rotational analog of uniform circular 

motion.  

At the instant shown in Fig. 10.20a, the gyroscope has 

angular momentum L . A short time interval dt later, the angular 

momentum is L dL+ ; the infinitesimal change in angular 

momentum is dL dt=  , which is perpendicular to L . As the vector 

diagram in Fig. 10.21 shows, this means that the flywheel axis of the 

gyroscope has turned through a small angle d given by 

/d dL L = . The rate at which the axis moves, /d dt , is called the precession angular speed; 

denoting this quantity by Ω, we find 

 
/

z

z

dL Ld wr

dt dt L I




 = = = = . (10.33) 

Thus the precession angular speed is inversely proportional to the angular speed of spin about the 

axis. A rapidly spinning gyroscope precesses slowly; if friction in its bearings causes the flywheel to slow 

down, the precession angular speed increases! The precession angular speed of the earth is very slow  

(1 rev/26,000 yr) because its spin angular momentum 
zL  is large and the torque 

z , due to the 

gravitational influences of the moon and sun, is relatively small.  

iL

dL dt= L L

 

Figure 10.21 Detailed view of part 

of Fig. 10.20b  
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As a gyroscope precesses, its center of mass moves in a circle with radius r in a horizontal plane. 

Its vertical component of acceleration is zero, so the upward normal force n  exerted by the pivot must be 

just equal in magnitude to the weight. The circular motion of the center of mass with angular speed Ω 

requires a force F  directed toward the center of the circle, with magnitude 2F M r=   . This force must 

also be supplied by the pivot.  

One key assumption that we made in our analysis of the gyroscope was that the angular 

momentum vector L  is associated with only the spin of the flywheel and is purely horizontal. But there 

will also be a vertical component of angular momentum associated with the precessional motion of the 

gyroscope. By ignoring this, we’ve tacitly assumed that the precession is slow—that is, that the 

precession angular speed Ω is very much less than the spin angular speed  . As Eq. (10.33) shows, a 

large value of   automatically gives a small value of Ω, so this approximation is reasonable. When the 

precession is not slow, additional effects show up, including an up-and-down wobble or nutation of the 

flywheel axis that’s superimposed on the precessional motion. You can see nutation occurring in a 

gyroscope as its spin slows down, so that Ω increases and the vertical component of L  can no longer be 

ignored. 

 

CHAPTER 10: SUMMARY 

 Torque: When a force F  acts on 

an object, the torque of that force with 

respect to a point O has a magnitude 

given by the product of the force 

magnitude F and the lever arm l. More 

generally, torque is a vector   equal to the 

vector product of r  (the position vector of 

the point at which the force acts) and F . 

(See Example 10.1) 

tansinFl rF F r = = =  

r F =   

 

 Rotational dynamics: The 

rotational analog of Newton’s second law 

says that the net torque acting on an 

object equals the product of the object’s 

moment of inertia and its angular 

acceleration. (See Examples 10.2 and 

10.3) 

z zI =  

 

 Combined translation and 

rotation: If a rigid body is both moving 

through space and rotating, its motion can 

be regarded as translational motion of the 

center of mass plus rotational motion 

about an axis through the center of mass. 

Thus the kinetic energy is a sum of 

translational and rotational kinetic 

energies. For dynamics, Newton’s second 

law describes the motion of the center of 

mass, and the rotational equivalent of 

Newton’s second law describes rotation 

about the center of mass. In the case of 

rolling without slipping, there is a special 

relationship between the motion of the 

center of mass and the rotational motion. 

(See Examples 10.4–10.5) 

2 21 1
cm cm2 2

K M I = +  

cmext
F Ma=  

cmz zI =  

cm R =  

(rolling without slipping) 
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 Work done by a torque: A torque 

that acts on a rigid body as it rotates does 

work on that body. The work can be 

expressed as an integral of the torque. The 

work– energy theorem says that the total 

rotational work done on a rigid body is 

equal to the change in rotational kinetic 

energy. The power, or rate at which the 

torque does work, is the product of the 

torque and the angular velocity (See 

Example 10.6) 

2

1
zW d




 =   

2 1( )z zW     = − =   

(constant torque only) 
2 21 1

tot 2 12 2
W I = −  

z zP  =  

 

 Angular momentum: The 

angular momentum of a particle with 

respect to point O is the vector product of 

the particle’s position vector r  relative to 

O and its momentum p m= . When a 

symmetrical object rotates about a 

stationary axis of symmetry, its angular 

momentum is the product of its moment 

of inertia and its angular velocity vector 

 . If the object is not symmetrical or the 

rotation (z) axis is not an axis of 

symmetry, the component of angular 

momentum along the rotation axis is
zI  

L r p r m=  =   

(particle) 

L I=  

(rigid body rotating about 

axis of symmetry)  

 Rotational dynamics and 

angular momentum: The net external 

torque on a system is equal to the rate of 

change of its angular momentum. If the 

net external torque on a system is zero, 

the total angular momentum of the system 

is constant (conserved). (See Examples 

10.7–10.9) 

dL

dt
 =  

0
dL

dt
=  

(zero net external torque) 
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11 EQUILIBRIUM AND ELASTICITY 

We’ve devoted a good deal of effort to understanding why and how objects accelerate in response 

to the forces that act on them. But very often we’re interested in making sure that objects don’t accelerate. 

Any building, from a multistory skyscraper to the humblest shed, must be designed so that it won’t topple 

over. Similar concerns arise with a suspension bridge, a ladder leaning against a wall, or a crane hoisting 

a bucket full of concrete. 

An object that can be modeled as a particle is in equilibrium whenever the vector sum of the 

forces acting on it is zero. But for the situations we’ve just described, that condition isn’t enough. If 

forces act at different points on an extended object, an additional requirement must be satisfied to ensure 

that the object has no tendency to rotate: The sum of the torques about any point must be zero. This 

requirement is based on the principles of rotational dynamics. We can compute the torque due to the 

weight of an object by using the concept of center of gravity, which we introduce in this chapter. 

Idealized rigid bodies don’t bend, stretch, or squash when forces act on them. But all real 

materials are elastic and do deform to some extent. Elastic properties of materials are tremendously 

important. You want the wings of an airplane to be able to bend a little, but you’d rather not have them 

break off. Tendons in your limbs need to stretch when you exercise, but they must return to their relaxed 

lengths when you stop. Many of the necessities of everyday life, from rubber bands to suspension bridges, 

depend on the elastic properties of materials. In this chapter we’ll introduce the concepts of stress, strain, 

and elastic modulus and a simple principle called Hooke’s law, which helps us predict what deformations 

will occur when forces are applied to a real (not perfectly rigid) object. 

 

 

11.1 Conditions for Equilibrium 
 

We know that a particle is in equilibrium—that is, the particle does not accelerate—in an inertial 

frame of reference if the vector sum of all the forces acting on the particle is zero, 0F = . For an 

extended object, the equivalent statement is that the center of mass of the object has zero acceleration if 

the vector sum of all external forces acting on the object is zero. This is often called the first condition 

for equilibrium: 

  
(11.1)

 

A second condition for an extended object to be in equilibrium is that the object must have no 

tendency to rotate. A rigid body that, in an inertial frame, is not rotating about a certain point has zero 

angular momentum about that point. If it is not to start rotating about that point, the rate of change of 

angular momentum must also be zero. From the discussion in Section 10.5, particularly Eq. (10.29), this 

means that the sum of torques due to all the external forces acting on the object must be zero. A rigid 

body in equilibrium can’t have any tendency to start rotating about any point,  

so the sum of external torques must be zero about any point. This is the second condition for 

equilibrium: 

  
(11.2)

 

In this chapter we’ll apply the first and second conditions for equilibrium to situations in which a 

rigid body is at rest (no translation or rotation). Such a rigid body is said to be in static equilibrium  

(Fig. 11.1). But the same conditions apply to a rigid body in uniform translational motion (without 

rotation), such as an airplane in flight with constant speed, direction, and altitude. Such a rigid body is in 

equilibrium but is not static. 

 

 



178 

 

 

Figure 11.1 - To be in static equilibrium, an 

object at rest must satisfy both conditions for 

equilibrium: It can have no tendency to accelerate as 

a whole or to start rotating 
 

 

 

11.2 Center of Gravity 
 

In most equilibrium problems, one of the forces acting on the object is its weight. We need to be 

able to calculate the torque of this force. The weight doesn’t act at a single point; it is distributed over the 

entire object. But we can always calculate the torque due to the object’s weight by assuming that the 

entire force of gravity (weight) is concentrated at a point called the center of gravity (abbreviated “cg”). 

The acceleration due to gravity decreases with altitude; but if we can ignore this variation over the 

vertical dimension of the object, then the object’s center of gravity is identical to its center of mass 

(abbreviated “cm”), which we defined in Section 8.5. We stated this result without proof in Section 10.2, 

and now we’ll prove it. 

First let’s review the definition of the center of mass. For a collection of particles with masses m1, 

m2 …, and coordinates (x1, y1, z1), (x2, y2, z2),…, the coordinates xcm, ycm, and zcm, of the center of mass of 

the collection are 

 1 1 2 2 3 3
cm

1 2 3

...

...

i i

i

i

i

m x
m x m x m x

x
m m m m

+ + +
= =

+ + +




,  

 1 1 2 2 3 3
cm

1 2 3

...

...

i i

i

i

i

m y
m y m y m y

y
m m m m

+ + +
= =

+ + +




(center of mass), (11.3) 

 1 1 2 2 3 3
cm

1 2 3

...

...

i i

i

i

i

m z
m z m z m z

z
m m m m

+ + +
= =

+ + +




.  
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Also, xcm, ycm, and zcm are the components of the position vector 
cmr  of the center of mass, so Eqs. 

(11.3) are equivalent to the vector equation 

 

.                     (11.4)

 

Now consider the gravitational torque on an object of arbitrary shape (Fig. 11.2). We assume that 

the acceleration due to gravity g  is the same at every point in the object. Every particle in the object 

experiences a gravitational force, and the total weight of the object is the vector sum of a large number of 

parallel forces. A typical particle has mass mi and weight 
i i iw m g= . If 

ir  is the position vector of this particle with respect to an arbitrary 

origin O, then the torque vector 
i  of the weight 

iw  with respect to O 

is, from Eq. (10.3), 

i i i i ir w r m g =  =  . 

The total torque due to the gravitational forces on all the particles is 

1 1 2 2

1 1 2 2

...

( ...)

( )

i

i

i i

i

r m g r m g

m r m r g

m r g

 = =  +  +

= + + 

= 





 

When we multiply and divide this result by the total mass of the 

object, 

 1 2 ... i

i

M m m m= + + = ,  

we get 

 1 1 2 2

1 2

...

...

i i

i

i

i

m r
m r m r

Mg Mg
m m m


+ +

=  = 
+ +




.  

The fraction in this equation is just the position vector 
cmr  of the center of mass, with components xcm, 

ycm, and zcm, as given by Eq. (11.4), and Mg  is equal to the total weight w  of the object. Thus 

 
cm cmr Mg r w =  =  . (11.5) 

The total gravitational torque, given by Eq. (11.5), is the same as though the total weight w  were 

acting at the position 
cmr  of the center of mass, which we also call the center of gravity. If g  has the 

same value at all points on an object, its center of gravity is identical to its center of mass. Note, 

however, that the center of mass is defined independently of any gravitational effect. While the value of 

g  varies somewhat with elevation, the variation is extremely slight. We’ll assume throughout this chapter 

that the center of gravity and center of mass are identical unless explicitly stated otherwise. 

 

 

Figure 11.2 - The center of gravity 

(cg) and center of mass (cm) of an 

extended object 
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Finding and Using the Center of Gravity 

 

We can often use symmetry considerations to locate the center of gravity of an object, just as we 

did for the center of mass. The center of gravity of a homogeneous sphere, cube, or rectangular plate is at 

its geometric center. The center of gravity of a right circular cylinder or cone is on its axis of symmetry. 

For an object with a more complex shape, we can sometimes locate the center of gravity by 

thinking of the object as being made of symmetrical pieces. For example, we could approximate the 

human body as a collection of solid cylinders, with a sphere for the head. Then we can locate the center of 

gravity of the combination with Eqs. (11.3), letting m1, m2,… be the masses of the individual pieces and 

(x1, y1, z1), (x2, y2, z2),… be the coordinates of their centers of gravity.  

 When an object in rotational equilibrium and acted on by 

gravity is supported or suspended at a single point, the center of 

gravity is always at or directly above or below the point of 

suspension. If it were anywhere else, the weight would have a 

torque with respect to the point of suspension, and the object 

could not be in rotational equilibrium. Figure 11.3 shows an 

application of this idea. 

Using the same reasoning, we can see that an object 

supported at several points must have its center of gravity 

somewhere within the area bounded by the supports. This 

explains why a car can drive on a straight but slanted road if the 

slant angle is relatively small (Fig. 11.4a) but will tip over if the 

angle is too steep (Fig. 11.4b). The truck in Fig. 11.4c has a 

higher center of gravity than the car and will tip over on a 

shallower incline. 

The lower the center of gravity and the larger the area of 

support, the harder it is to overturn an object. Four-legged 

animals such as deer and horses have a large area of support 

bounded by their legs; hence they are naturally stable and need 

only small feet or hooves. Animals that walk on two legs, such 

as humans and birds, need relatively large feet to give them a 

reasonable area of support. If a two-legged animal holds its body 

approximately horizontal, like a chicken or the dinosaur 

Tyrannosaurus rex, it must perform a balancing act as it walks to keep its center of gravity over the foot 

that is on the ground. A chicken does this by moving its head; T. rex probably did it by moving its 

massive tail. 

 

Figure 11.4 - In (a) the center of gravity is within the area bounded by the supports, and the car is in 

equilibrium. The car in (b) and the truck in (c) will tip over because their centers of gravity lie outside the 

area of support 

  

 

Figure 11.3 - Finding the center of 

gravity of an irregularly shaped object - 

in this case, a coffee mug. 
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EXAMPLE 11.1 Walking the plank 

A uniform plank of length L = 6.0 m and mass M = 90 kg rests on sawhorses separated by  

D = 1.5m and equidistant from the center of the plank. Cousin Throckmorton wants to stand on the right-

hand end of the plank. If the plank is to remain at rest, how massive can Throckmorton be? 

 

 

IDENTIFY and SET UP  

To just balance, Throckmorton’s mass m must be such that the center of gravity of the plank–

Throcky system is directly over the right-hand sawhorse (Fig. 11.6). We take the origin at C, the 

geometric center and center of gravity of the plank, and take the positive x-axis horizontally to the right. 

Then the centers of gravity of the plank and Throcky are at xP = 0 and xT = L/2 = 3.0 m, respectively, and 

the right-hand sawhorse is at xS = D/2. We’ll use Eqs. (11.3) to locate the center of gravity xcg of the 

plank–Throcky system. 

 

 

EXECUTE  

From the first of Eqs. (11.3), 

(0) ( / 2)

2
cg

M m L m L
x

M m M m

+
= =

+ +
. 

 

 

 
Figure 11.6 - Our sketch for this problem 

 

We set 
cg Sx x=  and solve for m: 

2 2

m L D

M m
=

+
, 

( )mL M m D= + , 

1.5
(90 kg) 30 kg

6.0 1.5

D m
m M

L D m m
= = =

− −
. 

EVALUATE  

As a check, let’s repeat the calculation with the origin at the right-hand sawhorse.  

Now xS = 0, xP = –D/2, and xT = (L/2) – (D/2), and we require xcg = xS = 0: 

cg

( / 2) [( / 2) ( / 2)]
0

M D m L D
x

M m

− + −
= =

+
, 

/ 2
30 kg

( / 2) ( / 2)

MD D
m M

L D L D
= = =

− −
. 
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The result doesn’t depend on our choice of origin.  

A 60 kg adult could stand only halfway between the right-hand sawhorse and the end of the plank. 

Can you see why? 

 

 

KEYCONCEPT 

If an extended object supported at two or more  points is to be in equilibrium, its center of gravity 

must be somewhere within the area bounded by the supports. If the object is supported at only one point, 

its center of gravity must be above that point. 

 

 

11.3 Solving Rigid-body Equilibrium problems 
 

There are just two key conditions for rigid-body equilibrium: The vector sum of the forces on the 

object must be zero, and the sum of the torques about any point must be zero. To keep things simple, 

we’ll restrict our attention to situations in which we can treat all forces as acting in a single plane, which 

we’ll call the xy-plane. Then we need consider only the x- and y-components of force in Eq. (11.1), and in 

Eq. (11.2) we need consider only the z-components of torque (perpendicular to the plane). The first and 

second conditions for equilibrium are then 

 

 0xF =  and 0yF =  (first condition for equilibrium, forces in xy-plane), 

  

 0z =  (second condition for equilibrium, forces in xy-plane). 

  

CAUTION! Choosing the reference point for calculating torques. In equilibrium problems, the 

choice of reference point for calculating torques in 
z  is completely arbitrary. But once you make your 

choice, you must use the same point to calculate all the torques on an object. Choose the point so as to 

simplify the calculations as much as possible.  

 

 

PROBLEM-SOLVING STRATEGY  

11.1 Equilibrium of a Rigid Body 

 

 

IDENTIFY the relevant concepts: 

The first and second conditions for equilibrium ( 0xF = , 0yF = , and 0z = ) are 

applicable to any rigid body that is not accelerating in space and not rotating.  

 

 

SET UP the problem : 

• Sketch the physical situation and identify the object in equilibrium to be analyzed. Sketch 

the object accurately; do not represent it as a point. Include dimensions. 

• Draw a free-body diagram showing all forces acting on the object. Show the point on the 

object at which each force acts. 

• Choose coordinate axes and specify their direction. Specify a positive direction of rotation 

for torques. Represent forces in terms of their components with respect to the chosen axes. 

• Choose a reference point about which to compute torques. Choose wisely; you can 

eliminate from your torque equation any force whose line of action goes through the point you choose. 

The object doesn’t actually have to be pivoted about an axis through the reference point. 

 

 

 



183 

EXECUTE the solution: 

1 Write equations expressing the equilibrium conditions. Remember that ,

 , and  are separate equations. You can compute the torque of a force by finding the 

torque of each of its components separately, each with its appropriate lever arm and sign, and adding the 

results.  

2 To obtain as many equations as you have unknowns, you may need to compute torques 

with respect to two or more reference points; choose them wisely, too. 

 

 

EVALUATE your answer: 

Check your results by writing  with respect to a different reference point. You should 

get the same answers.  

11.4 Stress, strain, and Elastic Moduli 
 

The rigid body is a useful idealized model, but the stretching, squeezing, and twisting of real 

objects when forces are applied are often too important to ignore. Figure 11.5 shows three examples. We 

want to study the relationship between the forces and deformations for each case. 

 

 
Figure 11.5 - Three types of stress. (a) Guitar strings under tensile stress, being stretched by forces acting at 

their ends. (b) A diver under bulk stress, being squeezed from all sides by forces due to water pressure.  

(c) A ribbon under shear stress, being deformed and eventually cut by forces exerted by the scissors  
You don’t have to look far to find a deformable object; it’s as plain as the nose on your face  

(Fig. 11.6). If you grasp the tip of your nose between your index 

finger and thumb, you’ll find that the harder you pull your nose 

outward or push it inward, the more it stretches or compresses. 

Likewise, the harder you squeeze your index finger and thumb 

together, the more the tip of your nose compresses. If you try to 

twist the tip of your nose, you’ll get a greater amount of twist if 

you apply stronger forces. 

These observations illustrate a general rule. In each case 

you apply a stress to your nose; the amount of stress is a 

measure of the forces causing the deformation, on a “force per 

unit area” basis. And in each case the stress causes a 

deformation, or strain. More careful versions of the experiments 

with your nose suggest that for relatively small stresses, the 

resulting strain is proportional to the stress: The greater the 

deforming forces, the greater the resulting deformation. This 

proportionality is called Hooke’s law, and the ratio of stress to 

strain is called the elastic modulus: 

  

(11.7) 

0xF =
0yF = 0z =

0z =

 

Figure 11.6 - When you pinch your 

nose, the force per area that you apply to 

your nose is called stress. The fractional 

change in the size of your nose (the 

change in size divided by the initial size) 

is called strain. The deformation is 

elastic because your nose springs back to 

its initial size when you stop pinching  
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The value of the elastic modulus depends on what the object is made of but not its shape or size. If a 

material returns to its original state after the stress is removed, it is called elastic; Hooke’s law is a special 

case of elastic behavior. If a material instead remains deformed after the stress is removed, it is called 

plastic. Here we’ll consider elastic behavior only; we’ll return to plastic behavior in Section 11.5. 

We used one form of Hooke’s law in Section 6.3: The elongation of an ideal spring is proportional 

to the stretching force. Remember that Hooke’s “law” is not really a general law; it is valid over only a 

limited range of stresses. In Section 11.5 we’ll see what happens beyond that limited range. 

 

 

Tensile and Compressive Stress and Strain 

 

The simplest elastic behavior to understand is the stretching 

of a bar, rod, or wire when its ends are pulled (Fig. 11.5a).  

Figure 11.7 shows an object that initially has uniform cross-

sectional area A and length
0l . We then apply forces of equal 

magnitude F⊥
 but opposite directions at the ends (this ensures that 

the object has no tendency to move left or right). We say that the 

object is in tension. We’ve already talked a lot about tension in 

ropes and strings; it’s the same concept here. The subscript ⊥  is a 

reminder that the forces act perpendicular to the cross-section.  

We define the tensile stress at the cross section as the ratio 

of the force F⊥
 to the cross-sectional area A 

 Tensile stress
F

A

⊥= . (11.8) 

This is a scalar quantity because F⊥
 is the magnitude of the force. 

The SI unit of stress is the pascal (abbreviated Pa and named for 

the 17th-century French scientist and philosopher Blaise Pascal). 

Equation (11.8) shows that 1 pascal equals 1 newton per square 

meter (N/m2): 

1 pascal = 1 Pa = 1 N/m2. 

The units of stress are the same as those of pressure, which we’ll encounter often in later chapters. 

Under tension the object in Fig. 11.7 stretches to a length
0l l l= +  . The elongation l  does not 

occur only at the ends; every part of the object stretches in the same proportion. The tensile strain of the 

object equals the fractional change in length, which is the ratio of the elongation l  to the original length

0l : 

 Tensile strain 0

0 0

l l l

l l

− 
= = . (11.9) 

Tensile strain is stretch per unit length. It is a ratio of two lengths, always measured in the same units, and 

so is a pure (dimensionless) number with no units.  

Experiment shows that for a sufficiently small tensile stress, stress and strain are proportional, as 

in Eq. (11.7). The corresponding elastic modulus is called Young’s modulus, denoted by Y: 

 

Figure 11.7 - An object in tension. 

The net force on the object is zero, 

but the object deforms. The tensile 

stress (the ratio of the force to the 

cross-sectional area) produces a 

tensile strain (the elongation divided 

by the initial length). The elongation 

∆l is exaggerated for clarity 
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(11.10)

 

Table 11.1 - Approximate Elastic Moduli 

Material Young’s modulus 

Y(Pa) 

Bulk Modulus 

B(Pa) 

Shear Modulus 

S(Pa) 

Aluminum 107.0 10  

107.5 10  

102.5 10  

Brass 109.0 10  

106.0 10  

103.5 10  

Copper 1011 10  

1014 10  

104.4 10  

Iron 1021 10  

1016 10  

107.7 10  

Lead 101.6 10  

104.1 10  

100.6 10  

Nickel 1021 10  

1017 10  

107.8 10  

Silicone rubber 100.001 10  

100.2 10  

100.0002 10  

Steel 1020 10  

1016 10  

107.5 10  

Tendon (typical) 100.12 10  

−  −  

 

Since strain is a pure number, the units of Young’s modulus are the same as those of stress: force 

per unit area. Table 11.1 lists some typical values. (This table also gives values of two other elastic 

moduli that we’ll discuss later in this chapter). A material with a large value of Y is relatively 

unstretchable; a large stress is required for a given strain. For example, the value of Y for cast steel  

( 111.2 10  Pa  ) is much larger than that for a tendon ( 91.2 10  Pa ). 

When the forces on the ends of a bar are pushes rather 

than pulls (Fig. 11.8), the bar is in compression and the 

stress is a compressive stress. The compressive strain of an 

object in compression is defined in the same way as the 

tensile strain, but l  has the opposite direction. Hooke’s law 

and Eq. (11.10) are valid for compression as well as tension if 

the compressive stress is not too great. For many materials, 

Young’s modulus has the same value for both tensile and 

compressive stresses. Composite materials such as concrete 

and stone are an exception; they can withstand compressive 

stresses but fail under comparable tensile stresses. Stone was 

the primary building material used by ancient civilizations 

such as the Babylonians, Assyrians, and Romans, so their 

structures had to be designed to avoid tensile stresses. Hence 

they used arches in doorways and bridges, where the weight 

of the overlying material compresses the stones of the arch 

together and does not place them under tension. 

In many situations, objects can experience both tensile 

and compressive stresses at the same time. For example, a 

horizontal beam supported at each end sags under its own 

weight. As a result, the top of the beam is under compression 

while the bottom of the beam is under tension (Fig. 11.9a). 

To minimize the stress and hence the bending strain, the top 

and bottom of the beam are given a large cross-sectional area. There is neither compression nor tension 

along the centerline of the beam, so this part can have a small cross section; this helps keep the weight of 

the beam to a minimum and further helps reduce the stress. The result is an I-beam of the familiar shape 

used in building construction (Fig. 11.9b). 

 

Figure 11.8 - An object in compression. The 

compressive stress and compressive strain 

are defined in the same way as tensile stress 

and strain (see Fig.11.7), except that  

now denotes the distance that the object 

contracts 

l
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Figure 11.9 - (a) A beam supported at both ends is under both compression and tension.  

(b) The cross-sectional shape of an I-beam minimizes both stress and weight 

 

 

Bulk Stress and Strain 

 

When a scuba diver plunges deep into the ocean, the water exerts nearly uniform pressure 

everywhere on his surface and squeezes him to a slightly smaller volume (see Fig. 11.5b). This is a 

different situation from the tensile and compressive stresses and strains we have discussed. The uniform 

pressure on all sides of the diver is a bulk stress (or volume stress), and the resulting deformation—a 

bulk strain (or volume strain)—is a change in his volume. 

CAUTION! Pressure vs. force. Unlike force, pressure has no intrinsic direction: The pressure on 

the surface of an immersed object is the same no matter how the surface is oriented. Hence pressure is a 

scalarquantity, not a vector quantity. 

If an object is immersed in a fluid (liquid or gas) at rest, the fluid exerts a force on any part of the 

object’s surface; this force is perpendicular to the surface. (If we tried to make the fluid exert a force 

parallel to the surface, the fluid would slip sideways to counteract the effort). The force F⊥
 per unit area 

that the fluid exerts on an immersed object is called the pressurep in the fluid: 

  

(11.11)

 

Pressure has the same units as stress; commonly used units include 1 Pa (= 1 N/m2),  

and 1 atmosphere (1atm). One atmosphere is the approximate average pressure of the earth’s atmosphere 

at sea level: 

51 atmosphere = 1 atm = 1.013 10  Pa . 

The pressure in a fluid increases with depth. For example, the pressure in the ocean increases by 

about 1 atm every 10 m. If an immersed object is relatively small, however, we can ignore these pressure 

differences for purposes of calculating bulk stress. We’ll then treat the pressure as having the same value 

at all points on an immersed object’s surface. 

Pressure plays the role of stress in a volume deformation. The corresponding strain is the 

fractional change in volume — that is, the ratio of the volume change V  to the original volume V0: 

 Bulk (volume) strain = 
0

V

V


.  (11.12) 

Volume strain is the change in volume per unit volume. Like tensile or compressive strain, it is a 

pure number, without units. 
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When Hooke’s law is obeyed, an increase in pressure (bulk stress) produces a proportional bulk 

strain (fractional change in volume). The corresponding elastic modulus (ratio of stress to strain) is called 

the bulk modulus, denoted by B. When the pressure on an object changes by a small amount p  , from p0 

to p0 + p , and the resulting bulk strain is ∆V > V0, Hooke’s law takes the form 

  

(11.13)

 

We include a minus sign in this equation because an increase of pressure always causes a decrease in 

volume. In other words, if p is positive, V is negative. The bulk modulus B itself is a positive quantity. 

For small pressure changes in a solid or a liquid, we consider B to be constant. The bulk modulus 

of a gas, however, depends on the initial pressure p0. Table 11.1 includes values of B for several solid 

materials. Its units, force per unit area, are the same as those of pressure (and of tensile or compressive 

stress). 

The reciprocal of the bulk modulus is called the compressibility and is denoted by k. From Eq. 

(11.13), 

 0

0

/1 1V V V
k

B p V p

 
= = − = −

 
 (compressibility). (11.14) 

Compressibility is the fractional decrease in volume
0/V V−  , per unit increase p  incpressure. The 

units of compressibility are those of reciprocal pressure, Pa-1 or atm-1 . 

For example, the compressibility of water is 46.4   10-6 atm-1 , which means that the volume of 

water decreases by 46.4 parts per million for each 1 atmosphere increase in pressure. Materials with small 

bulk modulus B and large compressibility k are easiest to compress. 

 

 

Shear Stress and Strain 

 

The third kind of stress-strain situation is called shear. The 

ribbon in Fig. 11.5c is under shear stress: One part of the ribbon 

is being pushed up while an adjacent part is being pushed down, 

producing a deformation of the ribbon. Figure 11.10 shows an 

object being deformed by a shear stress. In the figure, forces of 

equal magnitude but opposite direction act tangent to the surfaces 

of opposite ends of the object. We define the shear stress as the 

force F  acting tangent to the surface divided by the area A on 

which it acts: 

 Shear stress = 
F

A
. (11.15) 

Shear stress, like the other two types of stress, is a force per unit 

area. 

Figure 11.10 shows that one face of the object under shear 

stress is displaced by a distance x relative to the opposite face. 

We define shear strain as the ratio of the displacement x to 

the transverse dimension h: 

 Shear strain = 
x

h
. (11.16) 

 

Figure 11.10 - An object under shear 

stress. Forces are applied tangent to 

opposite surfaces of the object (in 

contrast to the situation in Fig. 11.7, in 

which the forces act perpendicular to 

the surfaces). The deformation x is 

exaggerated for clarity 
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In real-life situations, x is typically much smaller than h. Like all strains, shear strain is a dimensionless 

number; it is a ratio of two lengths. 

If the forces are small enough that Hooke’s law is obeyed, the shear strain is proportional to the 

shear stress. The corresponding elastic modulus (ratio of shear stress to shear strain) is called the shear 

modulus, denoted by S: 

   

For a given material, S is usually onethird to one-half as large as Young’s modulus Y for tensile 

stress. Keep in mind that the concepts of shear stress, shear strain, and shear modulus apply to solid 

materials only. The reason is that shear refers to deforming an object that has a definite shape  

(see Fig. 11.10). This concept doesn’t apply to gases and liquids, which do not have definite shapes. 

 

 

11.5 Elasticity and plasticity 
 

Hooke’s law - the proportionality of stress and strain in elastic deformations - has a limited range 

of validity. In the preceding section we used phrases such as “if the forces are small enough that Hooke’s 

law is obeyed.” Just what are the limitations of Hooke’s law? What’s more, if you pull, squeeze, or twist 

anything hard enough, it will bend or break. Can we be more 

precise than that? 

To address these questions, let’s look at a graph of tensile 

stress as a function of tensile strain. Figure 11.11 shows a typical 

graph of this kind for a metal such as copper or soft iron. The 

strain is shown as the percent elongation; the horizontal scale is 

not uniform beyond the first portion of the curve, up to a strain of 

less than 1%. The first portion is a straight line, indicating 

Hooke’s law behavior with stress directly proportional to strain. 

This straight-line portion ends at point a; the stress at this point is 

called the proportional limit. 

From a to b, stress and strain are no longer proportional, 

and Hooke’s law is not obeyed. However, from a to b  

(and O to a), the behavior of the material is elastic: If the load is 

gradually removed starting at any point between O and b, the 

curve is retraced until the material returns to its original length. 

This elastic deformation is reversible. 

Point b, the end of the elastic region, is called the yield point; the stress at the yield point is called 

the elastic limit. When we increase the stress beyond point b, the strain continues to increase. But if we 

remove the load at a point like c beyond the elastic limit, the material does not return to its original 

length. Instead, it follows the red line in Fig. 11.11. The material has deformed irreversibly and acquired 

a permanent set. This is the plastic behavior. 

 Once the material has become plastic, a small additional stress produces a relatively large 

increase in strain, until a point d is reached at which fracture takes place. That’s what happens if a steel 

guitar string in Fig. 11.5a is tightened too much: The string breaks at the fracture point. Steel is brittle 

because it breaks soon after reaching its elastic limit; other materials, such as soft iron, are ductile - they 

can be given a large permanent stretch without breaking. (The material depicted in Fig. 11.11 is ductile, 

since it can stretch by more than 30 % before breaking). 

Unlike uniform materials such as metals, stretchable biological materials such as tendons and 

ligaments have no true plastic region. That’s because these materials are made of a collection of 

microscopic fibers; when stressed beyond the elastic limit, the fibers tear apart from each other. (A torn 

ligament or tendon is one that has fractured in this way). 

 

Figure 11.11 - Typical stress-strain 

diagram for a ductile metal under 

tension 
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If a material is still within its elastic region, something 

very curious can happen when it is stretched and then allowed 

to relax. Figure 11.12 is a stress-strain curve for vulcanized 

rubber that has been stretched by more than seven times its 

original length. The stress is not proportional to the strain, but 

the behavior is elastic because when the load is removed, the 

material returns to its original length. However, the material 

follows different curves for increasing and decreasing stress. 

This is called elastic hysteresis. The work done by the material 

when it returns to its original shape is less than the work 

required to deform it; that’s due to internal friction. Rubber 

with large elastic hysteresis is very useful for absorbing 

vibrations, such as in engine mounts and shock-absorber 

bushings for cars. Tendons display similar behavior. 

The stress required to cause actual fracture of a material 

is called the breaking stress, the ultimate strength, or (for 

tensile stress) the tensile strength. Two materials, such as two 

types of steel, may have very similar elastic constants but 

vastly different breaking stresses. Iron and steel are comparably stiff (they have almost the same value of 

Young’s modulus), but steel is stronger (it has a larger breaking stress than does iron). 

 

CHAPTER 11: SUMMARY 

 Conditions for 

equilibrium: For a rigid body to 

be in equilibrium, two conditions 

must be satisfied. First, the vector 

sum of forces must be zero. 

Second, the sum of torques about 

any point must be zero. The 

torque due to the weight of an 

object can be found by assuming 

the entire weight is concentrated 

at the center of gravity, which is 

at the same point as the center of 

mass if g  has the same value at 

all points 

0F =  

 

0 = about any point 

 

1 1 2 2 3 3
cm

1 2 3

...

...

m r m r m r
r

m m m

+ + +
=

+ + +
 

 

 

 Stress, strain, and 

Hooke’s law: Hooke’s law states 

that in elastic deformations, stress 

(force per unit area) is 

proportional to strain (fractional 

deformation). The proportionality 

constant is called the elastic 

modulus 

Stress
Elastic modulus

Strain
=

  

 Tensile and compressive 

stress: Tensile stress is tensile 

force per unit area, /F A⊥
. Tensile 

strain is fractional change in 

length, 
0/l l . The elastic 

modulus for tension is called 

Young’s modulus Y. Compressive 

stress and strain are defined in the 

same way 

0

0

/Tensile stress

Tensile strail /

lF A F
Y

l l A l

⊥ ⊥= = =
 

 

 

 

Figure 11.12  -Typical stress-strain 

diagram for vulcanized rubber. The curves 

are different for increasing and decreasing 

stress, a phenomenon called elastic 

hysteresis 
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 Bulk stress: Pressure in a 

fluid is force per unit area. Bulk 

stress is pressure change, ∆p, and 

bulk strain is fractional volume 

change, ∆V/V0. The elastic 

modulus for compression is called 

the bulk modulus, B. 

Compressibility, k, is the 

reciprocal of bulk modulus: 

k = 1/B  

F
p

A

⊥=  

 

0

Bulk stress

Bulk strain /

p
B

V V


= = −


 

 

 Shear stress: Shear stress 

is force per unit area, /F A , for a 

force applied tangent to a surface. 

Shear strain is the displacement x 

of one side divided by the 

transverse dimension h. The 

elastic modulus for shear is called 

the shear modulus, S  

/Shear stress

Shear strain /

F A F h
S

x h A x
= = =  

 

 The limits of Hooke’s law: The proportional limit is the maximum stress for which stress and 

strain are proportional. Beyond the proportional limit, Hooke’s law is not valid. The elastic limit is the 

stress beyond which irreversible deformation occurs. The breaking stress, or ultimate strength, is the 

stress at which the material breaks 
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12 FLUID MECHANICS 

Fluids play a vital role in many aspects of everyday life. We drink them, breathe them, swim in 

them. They circulate through our bodies and control our weather. The physics of fluids is therefore crucial 

to our understanding of both nature and technology. 

We begin our study with fluid statics, the study of fluids at rest in equilibrium situations. Like 

other equilibrium situations, it is based on Newton’s first and third laws. We’ll explore the 

KEYCONCEPTs of density, pressure, and buoyancy. Fluid dynamics, the study of fluids in motion, is 

much more complex; indeed, it is one of the most complex branches of mechanics. Fortunately, we can 

analyze many important situations by using simple idealized models and familiar principles such as 

Newton’s laws and conservation of energy. Even so, we’ll barely scratch the surface of this broad and 

interesting topic. 

 

 

12.1 Elasticity and Plasticity 
 

A fluid is any substance that can flow and change the shape of the volume that it occupies. 

(By contrast, a solid tends to maintain its shape). We use the term “fluid” for both gases and liquids. The 

key difference between them  is that a liquid has cohesion, while a gas does not. The molecules in a 

liquid are close to one another, so they can exert attractive forces on each other and thus tend to stay 

together (that is, to cohere). That’s why a quantity of liquid maintains the same volume as it flows: If you 

pour 500 mL of water into a pan, the water will still occupy a volume of 500 mL. The molecules of a gas, 

by contrast, are separated on average by distances far larger than the size of a molecule. Hence the forces 

between molecules are weak, there is little or no cohesion, and a gas can easily change in volume. If you 

open the valve on a tank of compressed oxygen that has a volume of 500 mL, the oxygen will expand to a 

far greater volume. 

An important property of any material, fluid or solid, is its density, defined as its mass per unit 

volume. A homogeneous material such as ice or iron has the same density throughout. We use ρ(the 

Greek letter rho) for density. For a homogeneous material, 

  

(12.1)

 

Two objects made of the same material have the same 

density even though they may have different masses and different 

volumes. That’s because the ratio of mass to volume is the same 

for both objects (Fig. 12.1). 

The SI unit of density is the kilogram per cubic meter  

(1 kg/m3). The cgs unit, the gram per cubic centimeter (1 g/cm3), is 

also widely used: 

 

1 g/cm3 = 1000 kg/m3. 

 

The densities of some common substances at ordinary 

temperatures are given in Table 12.1. Note the wide range of 

magnitudes. The densest material found on earth is the metal 

osmium (ρ = 22,500 kg/m3 ), but its density pales by comparison to 

the densities of exotic astronomical objects, such as white dwarf 

stars and neutron stars. 

The specific gravity of a material is the ratio of its density to the density of water at 4.0°C,  

1000 kg/m3; it is a pure number without units. For example, the specific gravity of aluminum is 2.7. 

“Specific gravity” is a poor term, since it has nothing to do with gravity; “relative density” would have 

been a better choice. 

 

Figure 12.1 - Two objects with 

different masses and different 

volumes but the same density 
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The density of some materials varies from point to point within the material. One example is the 

material of the human body, which includes low-density fat (about 940 kg/m3 ) and high-density bone 

(from 1700 to 2500 kg/m3 ). Two others are the earth’s atmosphere (which is less dense at high altitudes) 

and oceans (which are denser at greater depths). For these materials, Eq. (12.1) describes the average 

density. In general, the density of a material depends on environmental factors such as temperature and 

pressure. 

 

Table 12.1 - Densities of Some Common Substances 

Material Density(kg/m3)* Material Density(kg/m3)* 

Air (1 atm, 20℃) 1.20 Iron steel 37.8 10  

Ethanol 30.81 10  

Brass 38.6 10  

Benzene 30.90 10  

Copper 38.9 10  

Ice 30.92 10  

Silver 310.5 10  

Water 31.00 10  

Lead 311.3 10  

Seawater 31.03 10  

Mercury 313.6 10  

Blood 31.06 10  

Gold 319.3 10  

Glycerin 31.26 10  

Platinum 321.4 10  

Concrete 32 10  

White dwarf star 1010  

Aluminum 32.7 10  

Neutron star 1810  

*To obtain the densities in grams per cubic centimeter, simply divide by 103 

 

 

EXAMPLE 12.1 The weight of a roomful of air 

Find the mass and weight of the air at 20°C in a living room with a 4.0 m × 5.0 m floor and a 

ceiling 3.0 m high, and the mass and weight of an equal volume of water. 

 

 

IDENTIFY and SET UP 

We assume that the air density is the same throughout the room. (Air is less dense at high 

elevations than near sea level, but the density varies negligibly over the room’s 3.0 m height). We use  

Eq. (12.1) to relate the mass mair to the room’s volume V (which we’ll calculate) and the air density ρair 

(given in Table 12.1). 

 

 

EXECUTE  

We have V = (4.0 m)(5.0 m)(3.0 m) = 60 m3 , so from Eq. (12.1), 

 
3 3

air air (1.20 kg/m )(60 m ) 72 kgm V= = = ,
 

 
2

air air (72 kg)(9.8 m/s ) 700 Nw m g= = = . 

 

The mass and weight of an equal volume of water are 

 
3 3 4

water water (1000 kg/m )(60 m ) 6.0 10  kgm V= = =  , 

 
4 2 5

water water (6.0 10  kg)(9.8 m/s )=5.9 10  Nw m g= =   . 

 

EVALUATE  

A roomful of air weighs about the same as an average adult. Water is nearly a thousand times 

denser than air, so its mass and weight are larger by the same factor. The weight of a roomful of water 

would collapse the floor of an ordinary house. 
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KEYCONCEPT 

To find the density of a uniform substance, divide the mass of the substance by the volume that it 

occupies. 
 

 

12.2 Pressure in a Fluid 
 

A fluid exerts a force perpendicular to any surface in contact with it, such as a container wall or an 

object immersed in the fluid. This is the force that you feel pressing on your legs when you dangle them 

in a swimming pool. Even when a fluid as a whole is at rest, the molecules that make up the fluid are in 

motion; the force exerted by the fluid is due to molecules colliding with their surroundings. 

Imagine a surface within a fluid at rest. For this surface and the fluid to remain at rest, the fluid 

must exert forces of equal magnitude but opposite direction on the surface’s two sides. Consider a small 

surface of area dA centered on a point in the fluid; the normal force exerted by the fluid on each side is 

dF⊥
 (Fig. 12.2). We define the pressure p at that point as the normal force per unit area - that is, the ratio 

of dF⊥
 to dA (Fig. 12.3): 

  (12.2) 

If the pressure is the same at all points of a finite plane surface with area A, then 

 

F
p

A

⊥= , (12.3)  

where F⊥
 is the net normal force on one side of the surface. The SI 

unit of pressure is the pascal, where 

1 pascal = 1 Pa = 1 N/m2. 

We introduced the pascal in Chapter 11. Two related units, 

used principally in meteorology, are the bar, equal to 105 Pa, and 

the millibar, equal to 100 Pa. 

 Atmospheric pressure pa is the pressure of the earth’s 

atmosphere, the pressure at the bottom of this sea of air in which 

we live. This pressure varies with weather changes and with 

elevation. Normal atmospheric pressure at sea level (an average 

value) is 1 atmosphere (atm), defined to be exactly 101,325 Pa. To 

four significant figures, 

 

5

a av( ) 1 atm = 1.013 10  Pa

          = 1.013 bar = 1013 milibar

p = 

.

=
 

CAUTION! Don’t confuse pressure and force. In 

everyday language “pressure” and “force” mean pretty much the 

same thing. In fluid mechanics, however, these words describe very 

different quantities. Pressure acts perpendicular to any surface in a 

fluid, no matter how that surface is oriented (Fig. 12.3). Hence 

pressure has no direction of its own; it’s a scalar. By contrast, force 

is a vector with a definite direction. Remember, too, that pressure is 

force per unit area. As Fig. 12.3 shows, a surface with twice the 

area has twice as much force exerted on it by the fluid, so the 

 

Figure 12.2 - Forces acting on a small 

surface within a fluid at rest 

 

Figure 12.3 - Pressure is a scalar with 

units of newtons per square meter.  

By contrast, force is a vector with 

units of newtons 
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pressure is the same. 

 

 

EXAMPLE 12.2 The force of air 

In the room described in Example 12.1, what is the total downward force on the floor due to an air 

pressure of 1.00 atm? 

 

 

IDENTIFY and SET UP 

This example uses the relationship among the pressure p of a fluid (air), the area A subjected to 

that pressure, and the resulting normal force F⊥
 the fluid exerts. The pressure is uniform, so we use  

Eq. (12.3), F pA⊥ = , to determine F⊥
. The floor is horizontal, so F⊥

 is vertical (downward). 

 

 

EXECUTE  

We have A = (4.0 m)(5.0 m) = 20 m3 , so from Eq. (12.3), 

 
5 2 2 6(1.013 10  N/m )(20 m ) 2.0 10  NF pA⊥ = =  =  .

 

 

 

EVALUATE  

Unlike the water in Example 12.1, F⊥
 will not collapse the 

floor here, because there is an upward force of equal magnitude on 

the floor’s underside. If the house has a basement, this upward force 

is exerted by the air underneath the floor. In this case, if we ignore 

the thickness of the floor, the net force due to air pressure is zero. 

 

 

KEYCONCEPT 

To find the force exerted by a fluid perpendicular to a surface, 

multiply the pressure of the fluid by the surface’s area. This 

relationship comes from the definition of pressure as the normal 

force per unit area within the fluid. 

 

 

Pressure, Depth, and Pascal’s Law 

 

If the weight of the fluid can be ignored, the pressure in a 

fluid is the same throughout its volume. We used that approximation 

in our discussion of bulk stress and strain in Section 11.4. But often 

the fluid’s weight is not negligible, and pressure variations are 

important. Atmospheric pressure is less at high altitude than at sea 

level, which is why airliner cabins have to be pressurized. When you 

dive into deep water, you can feel the increased pressure on your 

ears. 

We can derive a relationship between the pressure p at any point in a fluid at rest and the elevation 

y of the point. We’ll assume that the density ρ has the same value throughout the fluid (that is, the density 

is uniform), as does the acceleration due to gravity g. If the fluid is in equilibrium, any thin element of the 

fluid with thickness dy is also in equilibrium (Fig. 12.4a). The bottom and top surfaces each have area A, 

and they are at elevations y and y + dy above some reference level where y = 0. The fluid element has 

volume dV Ady= , mass dm dV Ady = = , and weight dw dmg gAdy= = . 

 
Figure 12.4 - The forces on an 

element of fluid in equilibrium 
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What are the other forces on this fluid element (Fig 12.4b)? Let’s call the pressure at the bottom 

surface p; then the total y-component of upward force on this surface is pA. The pressure at the top 

surface is p + dp, and the total y-component of (downward) force on the top surface is –(p + dp)A. The 

fluid element is in equilibrium, so the total y-component of force, including the weight and the forces at 

the bottom and top surfaces, must be zero: 

0yF = , 

so 

( ) 0pA p dp A gAdy− + − = . 

When we divide out the area A and rearrange, we get 

 
dp

g
dy

= − . (12.4) 

This equation shows that when y increases, p decreases; that is, as we move upward in the fluid, 

pressure decreases, as we expect. If p1 and p2 are the pressures at elevations y1 and y2, respectively, and if 

ρ and g are constant, then 

  

(12.5)

 

It’s often convenient to express Eq. (12.5) in terms of the depth below the surface of a fluid (Fig. 

12.5). Take point 1 at any level in the fluid and let p represent the pressure at this point. Take point 2 at 

the surface of the fluid, where the pressure is p0 (subscript zero for zero depth). The depth of point 1 

below the surface is h = y2 - y1, and Eq. (12.5) becomes 

( )0 2 1p p g y y gh − = − − = −    or 

 

(12.6)

 
 

The pressure p at a depth h is greater than the pressure p0 at 

the surface by an amount gh . Note that the pressure is the same at 

any two points at the same level in the fluid. The shape of the 

container does not matter (Fig. 12.6) 

Equation (12.6) shows that if we increase the pressure p0 at 

the top surface, possibly by using a piston that fits tightly inside the 

container to push down on the fluid surface, the pressure p at any 

depth increases by exactly the same amount. This observation is 

called Pascal’s law. 

 

PASCAL’S LAW: Pressure applied to an enclosed fluid 

is transmitted undiminished to every portion of the fluid and 

the walls of the containing vessel. 

 

 
 

Figure 12.5 - How pressure varies 

with depth in a fluid with uniform 

density 
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The hydraulic lift (Fig. 12.7) illustrates Pascal’s law. A 

piston with small cross-sectional area A1 exerts a force F1 on the 

surface of a liquid such as oil. The applied pressure p = F1/A1 is 

transmitted through the connecting pipe to a larger piston of area 

A2. The applied pressure is the same in both cylinders, so 

1 2 2
2 1

1 2 1

     and     
F F A

p F F
A A A

= = =            (12.7) 

The hydraulic lift is a force-multiplying device with a 

multiplication factor equal to the ratio of the areas of the two 

pistons. Dentist’s chairs, car lifts and jacks, many lifts, and 

hydraulic brakes all use this principle. 

For gases the assumption that the density ρ is uniform is 

realistic over only short vertical distances. In a room with a ceiling 

height of 3.0 m filled with air of uniform density 1.2 kg/m3, the 

difference in pressure between floor and ceiling, given by  

Eq. (12.6), is 

 ( )( )( )3 21.2 kg/m 9.8 m/s 3.0 m 35 Pagh = =   

or about 0.00035 atm, a very small difference. But between sea 

level and the summit of Mount Everest (8882 m) the density of 

air changes by nearly a factor of 3, and in this case we cannot 

use Eq. (12.6). Liquids, by contrast, are nearly incompressible, 

and it is usually a very good approximation to regard their 

density as independent of pressure. 

 

 

Absolute Pressure and Gauge Pressure 

 

If the pressure inside a car tire is equal to atmospheric 

pressure, the tire is flat. The pressure has to be greater than 

atmospheric to support the car, so the significant quantity is the 

difference between the inside and outside pressures. When we 

say that the pressure in a car tire is “3 bar” (equal to 

3.0 × 105 Pa), we mean that it is greater than atmospheric 

pressure (1.01 × 105 Pa) by this amount. The total pressure in the 

tire is then 4.01 bar or 4.01 × 105 Pa. The excess pressure above 

atmospheric pressure is usually called gauge pressure, and the total pressure is called absolute pressure. 

If the pressure is less than atmospheric, as in a partial vacuum, the gauge pressure is negative. 

 

 

EXAMPLE 12.3 Finding absolute and gauge pressures 

Water stands 12.0 m deep in a storage tank whose top is open to the atmosphere. What are the 

absolute and gauge pressures at the bottom of the tank? 

 

 

IDENTIFY and SET UPThe water is nearly incompressible, so we can treat it as having uniform 

density. The level of the top of the tank corresponds to point 2 in Fig. 12.5, and the level of the bottom of 

the tank corresponds to point 1. Our target variable is p in Eq. (12.6). We have h = 12.0 m and 
5

0 1 atm = 1.01  10  Pap =  . 

 

 

Figure 12.6 - Each fluid column has 

the same height, no matter what its 

shape 

 
Figure 12.7 - The hydraulic lift is an 

application of Pascal’s law. The size of 

the fluid-filled container is exaggerated 

for clarity 
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EXECUTE  

From Eq. (12.6), the pressures are absolute: 

( ) ( )( )( )5 3 2

0

5

1.01  10  Pa 1000 kg/m 9.80 m/s 12.0 m

2.19  10  Pa = 2.16 atm

p p gh= + =  + =

= 

 

gauge: 

( ) 5 5

0 2.19 1.01   10  Pa = 1.18  10  Pa = 1.16p p− = −   . 

EVALUATE  

A pressure gauge at the bottom of such a tank would probably be calibrated to read gauge pressure 

rather than absolute pressure. 

 

 

KEYCONCEPT 

Absolute pressure is the total pressure at a given point in a fluid. Gauge pressure is the difference 

between absolute pressure and atmospheric pressure. 

 

 

Pressure Gauges 

 

The simplest pressure gauge is the open-tube manometer (Fig. 12.8a). The U-shaped tube contains 

a liquid of density ρ, often mercury or water. The left end of the tube is connected to the container where 

the pressure p is to be measured, and the right end is open to the atmosphere at pressure 
0 atmp p= . The 

pressure at the bottom of the tube due to the fluid in the left column is
atm 1p gy+ , and the pressure at the 

bottom due to the fluid in the right column is 
atm 2p gy+ . These pressures are measured at the same 

level, so they must be equal: 

 

 
1 atm 2

atm 2 1( )

p gy p gy

p p g y y gh

 

 

+ = +

− = − =
 (12.8) 

 

In Eq. (12.8), p is the absolute pressure, and the difference 
atmp p− between absolute and atmospheric 

pressure is the gauge pressure. Thus the gauge pressure is proportional to the difference in height 

2 1h y y= − of the liquid columns. 

Another common pressure gauge is the mercury barometer. It consists of a long glass tube, 

closed at one end, that has been filled with mercury and then inverted in a dish of mercury (Fig. 12.8b). 

The space above the mercury column contains only mercury vapor; its pressure is negligibly small, so the 

pressure p0 at the top of the mercury column is practically zero. From Eq. (12.6), 

  (12.9) 

So the height h of the mercury column indicates the atmospheric pressure patm. 

Pressures are often described in terms of the height of the corresponding mercury column, as so 

many “millimeters of mercury” (abbreviated mm Hg). A pressure of 1 mm Hg is called 1torr, after 

Evangelista Torricelli, inventor of the mercury barometer. But these units depend on the density of 

mercury, which varies with temperature, and on the value of g, which varies with location, so the pascal is 

the preferred unit of pressure. 

Many types of pressure gauges use a flexible sealed tube (Fig. 12.9). A change in the pressure 

either inside or outside the tube causes a change in its dimensions. This change is detected optically, 

electrically, or mechanically. 

atm 2 10 ( )p p g y y gh = = + − =
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12.3 Buoyancy 
 

An object immersed in water seems to weigh less than when it is in air. When the object is less 

dense than the fluid, it floats. The human body usually floats in water, and a heliumfilled balloon floats in 

air. These are examples of buoyancy, a phenomenon described by Archimedes’s principle. 

ARCHIMEDES’S PRINCIPLE: When an object is completely or partially immersed in a 

fluid, the fluid exerts an upward force on the object equal to the weight of the fluid displaced by the 

object. 

To prove this principle, we consider an arbitrary element of fluid at rest. The dashed curve in 

Fig. 12.10a outlines such an element. The arrows labeled dF⊥
 represent the forces exerted on the 

element’s surface by the surrounding fluid. 

 

Figure 12.8 - Two types of pressure gauge  

 

Figure 12.9 - (a) A Bourdon pressure gauge. When the pressure inside the flexible tube increases, the 

tube straightens out a little, deflecting the attached pointer. (b) This Bourdon-type pressure gauge is 

connected to a high-pressure gas line. The gauge pressure shown is just over 5 bars (1 bar = 105 Pa) 
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The entire fluid is in equilibrium, so the sum of all the y-components of force on this element of 

fluid is zero. Hence the sum of the y-components of the surface forces must be an upward force equal in 

magnitude to the weight mg of the fluid inside the surface. Also, the sum of the torques on the element of 

fluid must be zero, so the line of action of the resultant y-component of surface force must pass through 

the center of gravity of this element of fluid. 

Now we replace the fluid inside the surface with a solid object that has exactly the same shape 

(Fig. 12.10b). The pressure at every point is the same as before. So the total upward force exerted on the 

object by the fluid is also the same, again equal in magnitude to the weight mg of the fluid displaced to 

make way for the object. We call this upward force the buoyant force on the solid object. The line of 

action of the buoyant force again passes through the center of gravity of the displaced fluid (which 

doesn’t necessarily coincide with the center of gravity of the object). 

When a balloon floats in equilibrium in air, its weight (including the gas inside it) must be the 

same as the weight of the air displaced by the balloon. A fish’s flesh is denser than water, yet many fish 

can float while submerged. These fish have a gas-filled cavity within their bodies, which makes the fish’s 

average density the same as water’s. 

So the net weight of the fish is the same as the weight of the water it displaces. An object whose 

average density is less than that of a liquid can float partially submerged at the free upper surface of the 

liquid. A ship made of steel (which is much denser than water) can float because the ship is hollow,  

with air occupying much of its interior volume, so its average density is less than that of water. The 

greater the density of the liquid, the less of the object is submerged. When you swim in seawater  

(density 1030 kg/m3), your body floats higher than in freshwater (1000 kg/m3 ). 

A practical example of buoyancy is the hydrometer, used to measure the density of liquids (Fig. 

12.11a). The calibrated float sinks into the fluid until the weight of the fluid it displaces is exactly equal to 

its own weight. The hydrometer floats higher in denser liquids than in less dense liquids, and a scale in 

the top stem permits direct density readings. Hydrometers like this are used in medical diagnosis to 

measure the density of urine (which depends on a patient’s level of hydration). Figure 12.11b shows a 

type of hydrometer used to measure the density of battery acid or antifreeze. The bottom of the large tube 

is immersed in the liquid; the bulb is squeezed to expel air and is then released, like a giant medicine 

dropper. The liquid rises into the outer tube, and the hydrometer floats in this liquid. 

CAUTION! The buoyant force depends on the fluid density. The buoyant force on an object is 

proportional to the density of the fluid in which the object is immersed, not the density of the object. If a 

wooden block and an iron block have the same volume and both are submerged in water, both experience 

the same buoyant force. The wooden block rises and the iron block sinks because this buoyant force is 

greater than the weight of the wooden block but less than the weight of the iron block. 

 

 

 

 

Figure 12.10 - Archimedes’s principle 
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Surface Tension 

 

We’ve seen that if an object is less dense than water, it will 

float partially submerged. But a paper clip can rest atop a water 

surface even though its density is several times that of water. This 

is an example of surface tension: Surface tension arises because 

the molecules of the liquid exert attractive forces on each other. 

There is zero net force on a molecule within the interior of the 

liquid, but a surface molecule is drawn into the interior 

(Fig. 12.12). Thus the liquid tends to minimize its surface area, just 

as a stretched membrane does. 

Surface tension explains why raindrops are spherical (not 

teardrop-shaped): A sphere has a smaller surface area for its 

volume than any other shape. It also explains why hot, soapy water 

is used for washing. To wash clothing thoroughly, water must be 

forced through the tiny spaces between the fibers (Fig. 12.13). This 

requires increasing the surface area of the water, which is difficult 

to achieve because of surface tension. The job is made easier by 

increasing the temperature of the water and adding soap, both of 

which decrease the surface tension. 

Surface tension is important for a millimeter-sized water 

drop, which has a relatively large surface area for its volume.  

(A sphere of radius r has surface area 4π2 and volume (4π/3)r3. The 

ratio of surface area to volume is 3/r, which increases with 

decreasing radius). But for large quantities of liquid, the ratio of 

surface area to volume is relatively small, and surface tension is 

negligible compared to pressure forces. For the remainder of this 

chapter, we’ll consider only fluids in bulk and ignore the effects of 

surface tension. 

 

 

12.4 Fluid Flow 
We are now ready to consider motion of a fluid. Fluid flow 

can be extremely complex, as shown by the currents in river rapids 

or the swirling flames of a campfire. But we can represent some 

situations by relatively simple idealized models. An ideal fluid is a 

fluid that is incompressible (that is, its density cannot change) and 

has no internal friction (called viscosity). Liquids are approximately 

incompressible in most situations, and we may also treat a gas as 

incompressible if the pressure differences from one region to 

another are not too great. Internal friction in a fluid causes shear 

stresses when two adjacent layers of fluid move relative to each 

other, as when fluid flows 

inside a tube or around an 

obstacle. In some cases we can ignore these shear forces in 

comparison with forces arising from gravitation and pressure 

differences.  

The path of an individual particle in a moving fluid is 

called a flow line. In steady flow, the overall flow pattern does not 

change with time, so every element passing through a given point 

follows the same flow line. In this case the “map” of the fluid 

velocities at various points in space remains constant, although the 

velocity of a particular particle may change in both magnitude and 

direction during its motion. A streamline is a curve whose tangent at any point is in the direction of the 

 
Figure 12.11 - Measuring the density 

of a fluid 

 

Figure 12.12 - A molecule at the 

surface of a liquid is attracted into the 

bulk liquid, which tends to reduce the 

liquid’s surface area 

 

Figure 12.13  -Surface tension makes 

it difficult to force water through small 

crevices. The required water pressure 

p can be reduced by using hot, soapy 

water, which has less surface tension 
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fluid velocity at that point. When the flow pattern changes 

with time, thestreamlines do not coincide with the flow lines. 

We’ll consider only steady-flow situations, for which flow 

lines and streamlines are identical.

The flow lines passing through the edge of an imaginary 

element of area form a tube called a flow tube. From the 

definition of a flow line, in steady flow no fluid can cross the 

side walls of a given flow tube. 

 Figure 12.14 shows the pattern of fluid flow from left 

to right around an obstacle. The photograph was made by 

injecting dye 

into water flowing between two closely spaced glass 

plates. This pattern is typical of laminar flow, in which 

adjacent layers of fluid slide smoothly past each other and 

the flow is steady. (A lamina is a thin sheet). At 

sufficiently high flow rates, or when boundary surfaces 

cause abrupt changes in velocity, the flow can become 

irregular and chaotic. This is called turbulent flow (Fig. 

12.15). In turbulent flow there is no steady-state 

pattern; the flow pattern changes continuously. 

 

 

The Continuity Equation 

The mass of a moving fluid doesn’t change as it 

flows. This leads to an important relationship called the 

continuity equation. Consider a portion of a flow tube 

between two stationary cross sections with areas A1 and 

A2 (Fig. 12.17). The fluid speeds at these sections are v1 and v2, respectively. As we mentioned above, no 

fluid flows in or out across the side walls of such a tube. 

During a small time interval dt, the fluid at A1 moves a 

distance ds1 = v1dt, so a cylinder of fluid with height v1 dt and 

volume dV1 = A1v1 dt flows into the tube across A1. During this 

same interval, a cylinder of volume dV2 = A2v2dt flows out of 

the tube across A2. 

Let’s first consider the case of an incompressible fluid 

so that the density ρ has the same value at all points. The mass 

dm1 flowing into the tube across A1 in time dt is 
1 1 1dm A dt =

. Similarly, the mass dm2 that flows out across A2 in the same 

time is 
2 2 2dm A dt = . In steady flow the total mass in the 

tube is constant, so dm1 = dm2 and 

1 1 2 2Av dt A v dt =
 
or 

 

  

(12.10)

 

The product Av is the volumeflow ratedV/dt, the rate at which volume crosses a section of the tube: 

 

 (12.11)

 

 

Figure 12.14 - A flow tube bounded by flow 

lines. In steady flow, fluid cannot cross the 

walls of a flow tube 

 

Figure 12.15 - The flow of smoke rising 

from this burnt match is laminar up to a 

certain point, and then becomes turbulent 

 
Figure 12.16 - Laminar flow around an 

obstacle  Де посилання на цей 

малюнок? 
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The mass flow rate is the mass flow per unit time through a cross 

section. This is equal to the density r times the volume flow rate dV/dt. 

Equation (12.10) shows that the volume flow rate has the same 

value at all points along any flow tube. When the cross section of a flow 

tube decreases, the speed increases, and vice versa. A broad, deep part of 

a river has a larger cross section and slower current than a narrow, 

shallow part, but the volume flow rates are the same in both. This is the 

essence of the familiar maxim, “Still waters run deep”. If a water pipe 

with 2 cm diameter is connected to a pipe with 1 cm diameter, the flow 

speed is four times as great in the 1 cm part as in the 2 cm part. 

We can generalize Eq. (12.10) for the case in which the fluid is 

not incompressible. If 
1  and 

2  are the densities at sections 1 and 2, 

then 

1 1 1 2 2 2Av A v =  (continuity equation, compressible fluid).    (12.12) 

If the fluid is denser at point 2 than at point 1 (
2 >

1  ),  

the volume flow rate at point 2 will be less than at point 1 (
2 2 1 1A A  ). 

We leave the details to you. If the fluid is incompressible so that 
1  and 

2  are always equal, Eq. (12.12) 

reduces to Eq. (12.10). 

 

 

12.5 Bernoulli’s Equation 
 

According to the continuity equation, the speed of fluid flow can 

vary along the paths of the fluid. The pressure can also vary; it depends 

on height as in the static situation, and it also depends on the speed of 

flow. We can derive an important relationship called Bernoulli’s 

equation, which relates the pressure, flow speed, and height for flow of 

an ideal, incompressible fluid. Bernoulli’s equation is useful in 

analyzing many kinds of fluid flow. 

The dependence of pressure on speed follows from the continuity 

equation, Eq. (12.10). When an incompressible fluid flows along a flow 

tube with varying cross section, its speed must change, and so an 

element of fluid must have an acceleration. If the tube is horizontal, the 

force that causes this acceleration has to be applied by the surrounding 

fluid. This means that the pressure must be different in regions of 

different cross section; if it were the same everywhere, the net force on 

every fluid element would be zero. When a horizontal flow tube narrows 

and a fluid element speeds up, it must be moving toward a region of 

lower pressure in order to have a net forward force to accelerate it. If the 

elevation also changes, this causes an additional pressure difference. 

 

 

Deriving Bernoulli’s Equation 

 

To derive Bernoulli’s equation, we apply the work–energy theorem to the fluid in a section of a 

flow tube. In Fig. 12.18 we consider the element of fluid that at some initial time lies between the two 

cross sections a and c. The speeds at the lower and upper ends are 
1  and 

2 . In a small time interval dt, 

the fluid that is initially at a moves to b, a distance 
1 1ds dt= , and the fluid that is initially at c moves to 

d, a distance 
2 2ds dt= . The cross-sectional areas at the two ends are 

1A and 
2A , as shown. The fluid is 

 

Figure 12.17 - A flow tube with 

changing cross-sectional area 

 

Figure 12.18 - Deriving 

Bernoulli’s equation. The net 

work done on a fluid element by 

the pressure of the surrounding 

fluid equals the change in the 

kinetic energy plus the change  

in the gravitational potential 

energy 
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incompressible; hence by the continuity equation, Eq. (12.10), the volume of fluid dV passing any cross 

section during time dt is the same. That is,  

 

1 1 2 2dV A ds A ds= = . 

 

Let’s compute the work done on this fluid element during dt. If there is negligible internal friction 

in the fluid (i.e., no viscosity), the only nongravitational forces that do work on the element are due to the 

pressure of the surrounding fluid. The pressures at the two ends are 
1p  and 

2p  the force on the cross 

section at a is
1 1p A , and the force at c is

2 2p A . The net work dW done on the element by the surrounding 

fluid during this displacement is therefore 

 
1 1 1 2 2 2 1 2( )dW p A ds p A ds p p dV= − = − . (12.13) 

The term 
2 2 2p A ds  has a negative sign because the force at c opposes the displacement of the fluid. 

 The work dW is due to forces other than the conservative force of gravity, so it equals the change 

in the total mechanical energy (kinetic energy plus gravitational potential energy) associated with the 

fluid element. The mechanical energy for the fluid between sections b and c does not change.  

At the beginning of dt the fluid between a and b has volume 
1 1A ds , mass

1 1A ds , and kinetic energy
21

1 1 12
( )Ads  . At the end of dt the fluid between c and d has kinetic energy 21

2 2 22
( )A ds  . The net change 

in kinetic energy dK during time dt is 

 2 21
2 12

( )dK dV  = − . (12.14) 

What about the change in gravitational potential energy? At the beginning of time interval dt, the 

potential energy for the mass between a and b is 
1 1dm gy dV gy= . At the end of dt, the potential 

energy for the mass between c and d is 
2 2dm gy dV gy= . The net change in potential energy dU during 

dt is 

 
2 1( )dU dVg y y= − . (12.15) 

Combining Eqs. (12.13), (12.14), and (12.15) in the energy equation dW = dK + dU, we obtain 

 
( ) 2 21

1 2 2 1 2 12

2 21
1 2 2 1 2 12

( ) ( )

( ) ( )

p p dV dV dVg y y

p p g y y

   

   

− = − + −

− = − + −
 (12.16) 

This is Bernoulli’s equation. It states that the work done on a unit volume of fluid by the 

surrounding fluid is equal to the sum of the changes in kinetic and potential energies per unit volume that 

occur during the flow. We may also interpret Eq. (12.16) in terms of pressures. The first term on the right 

is the pressure difference associated with the change of speed of the fluid. The second term on the right is 

the additional pressure difference caused by the weight of the fluid and the difference in elevation of the 

two ends. 

We can also express Eq. (12.16) in a more convenient form as 

 2 21 1
1 1 1 2 2 22 2

p gy p gy   + + = + + . (12.17) 

Subscripts 1 and 2 refer to any two points along the flow tube, so we can write 
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(12.18)

 

Note that when the fluid is not moving (so
1 2 0 = = ), Eq. (12.17) reduces to the pressure relationship 

we derived for a fluid at rest, Eq. (12.5). 

CAUTION! Bernoulli’s equation applies in certain situations onlyю We stress again that 

Bernoulli’s equation is valid for only incompressible, steady flow of a fluid with no internal friction  

(no viscosity). It’s a simple equation, but don’t be tempted to use it in situations in which it doesn’t apply! 

 

 

PROBLEM-SOLVING STRATEGY 12.1 Bernoulli’s Equation 

Bernoulli’s equation is derived from the work–energy theorem, so much of Problem-Solving 

Strategy 7.1 (Section 7.1) applies here. 

 

 

IDENTIFY the relevant concepts: 

Bernoulli’s equation is applicable to steady flow of an incompressible fluid that has no internal 

friction (see Section 12.6). It is generally applicable to flows through large pipes and to flows within bulk 

fluids (e.g., air flowing around an airplane or water flowing around a fish). 

 

 

SET UP the problem : 

• Identify the points 1 and 2 referred to in Bernoulli’s equation, Eq. (12.17). 

• Define your coordinate system, particularly the level at which y = 0. Take the positive y-

direction to be upward. 

• List the unknown and known quantities in Eq. (12.17). Decide which unknowns are the 

target variables. 

 

 

EXECUTE the solution: 

Write Bernoulli’s equation and solve for the unknowns. You may need the continuity equation, 

Eq. (12.10), to relate the two speeds in terms of cross-sectional areas of pipes or containers. You may also 

need Eq. (12.11) to find the volume flow rate. 

 

 

EVALUATE your answer: 

• Verify that the results make physical sense. Check that you have used consistent units: In 

SI units, pressure is in pascals, density in kilograms per cubic meter, and speed in meters per second. The 

pressures must be either all absolute pressures or all gauge pressures. 

  

 

12.6 Viscosity and Turbulence 
 

In our discussion of fluid flow we assumed that the fluid had no internal friction and that the flow 

was laminar. While these assumptions are often quite valid, in many important physical situations the 

effects of viscosity (internal friction) and turbulence (nonlaminar flow) are extremely important. Let’s 

take a brief look at some of these situations. 
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Viscosity is internal friction in a fluid. Viscous forces oppose the motion of one portion of a fluid 

relative to another. Viscosity is the reason it takes effort to paddle a canoe through calm water, but it is 

also the reason the paddle works. Viscous effects are important in the flow of fluids in pipes, the flow of 

blood, the lubrication of engine parts, and many other situations. 

Fluids that flow readily, such as water or petrol have smaller viscosities than do “thick” liquids 

such as honey or motor oil. Viscosities of all fluids are strongly temperature dependent, increasing for 

gases and decreasing for liquids as the temperature increases. Oils for engine lubrication must flow 

equally well in cold and warm conditions, and so are designed to have as little temperature variation of 

viscosity as possible. 

A viscous fluid always tends to cling to a solid surface in contact with it. There is always a thin 

boundary layer of fluid near the surface, in which the fluid is nearly at rest with respect to the surface. 

That’s why dust particles can cling to a fan blade even when it is rotating rapidly, and why you can’t get 

all the dirt off your car by just squirting a hose at it. 

 Viscosity has important effects on the flow of liquids through pipes, including the flow of blood 

in the circulatory system. First think about a fluid with zero viscosity so that we can apply Bernoulli’s 

equation, Eq. (12.17). If the two ends of a long cylindrical pipe are at the same height (
1 2y y= ) and the 

flow speed is the same at both ends (
1 2 = ), Bernoulli’s equation tells us that the pressure is the same at 

both ends of the pipe. But this isn’t true if we account for viscosity. To see why, consider Fig. 12.19, 

which shows the flow-speed profile for laminar flow of a viscous fluid in a long cylindrical pipe. Due to 

viscosity, the speed is zero at the pipe walls (to which the fluid clings) and is greatest at the center of the 

pipe. The motion is like a lot of concentric tubes sliding relative to one another, with the central tube 

moving fastest and the outermost tube at rest. Viscous forces between the tubes oppose this sliding, so to 

keep the flow going we must apply a greater pressure at the back of the flow than at the front. That’s why 

you have to keep squeezing a tube of toothpaste or a packet of 

ketchup (both viscous fluids) to keep the fluid coming out of its 

container. Your fingers provide a pressure at the back of the flow that 

is far greater than the atmospheric pressure at the front of the flow. 

The pressure difference required to sustain a given volume 

flow rate through a cylindrical pipe of length L and radius R turns out 

to be proportional to L/R4 . If we decrease R by one-half, the required 

pressure increases by 24 = 16; decreasing R by a factor of 0.90 (a 10% 

reduction) increases the required pressure difference by a factor of 

(1/0.90)4 = 1.52 (a 52% increase). This simple relationship explains 

the connection between a highcholesterol diet (which tends to narrow 

the arteries) and high blood pressure. Due to the R4 dependence, even 

a small narrowing of the arteries can result in substantially elevated 

blood pressure and added strain on the heart muscle. 

 

Turbulence 

When the speed of a flowing fluid exceeds a certain critical value, the flow is no longer laminar. 

Instead, the flow pattern becomes extremely irregular and complex, and it changes continuously with 

time; there is no steady-state pattern. This irregular, chaotic flow is called turbulence. Figure 12.15 

shows the contrast between laminar and turbulent flow for smoke rising in air. Bernoulli’s equation is not 

applicable to regions where turbulence occurs because the flow is not steady. 

Whether a flow is laminar or turbulent depends in part on the fluid’s viscosity. The greater the 

viscosity, the greater the tendency for the fluid to flow in sheets (laminae) and the more likely the flow is 

to be laminar. (When we discussed Bernoulli’s equation in Section 12.5, we assumed that the flow was 

laminar and that the fluid had zero viscosity. In fact, a little viscosity is needed to ensure that the flow is 

laminar). 

For a fluid of a given viscosity, flow speed is a determining factor for the onset of turbulence.  

A flow pattern that is stable at low speeds suddenly becomes unstable when a critical speed is reached. 

Irregularities in the flow pattern can be caused by roughness in the pipe wall, variations in the density of 

the fluid, and many other factors. At low flow speeds, these disturbances damp out; the flow pattern is 

stable and tends to maintain its laminar nature. When the critical speed is reached, however, the flow 

 

Figure 12.19 - Velocity profile for 

a viscous fluid in a cylindrical pipe 
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pattern becomes unstable. The disturbances no longer damp out but grow until they destroy the entire 

laminar-flow pattern. 

 

 

 

 

CHAPTER 12: SUMMARY 

 Density and pressure: 

Density is mass per unit volume. 

If a mass m of homogeneous 

material has volume V, its density 

ρ is the ratio m/V. Specific gravity 

is the ratio of the density of a 

material to the density of water. 

Pressure is normal force 

per unit area. Pascal’s law states 

that pressure applied to an 

enclosed fluid is transmitted 

undiminished to every portion of 

the fluid. Absolute pressure is the 

total pressure in a fluid; gauge 

pressure is the difference between 

absolute pressure and 

atmospheric pressure. The SI unit 

of pressure is the pascal (Pa):  

1 Pa = 1 N/m2  

m

V

dF
p

dA



⊥

=

=

 

 

 Pressures in a fluid at 

rest: The pressure difference 

between points 1 and 2 in a static 

fluid of uniform density ρ  

(an incompressible fluid) is 

proportional to the difference 

between the elevations 
1y  and

2y . 

If the pressure at the surface of an 

incompressible liquid at rest 

 is
0p , then the pressure at a depth 

h is greater by an amount ρgh 

2 1 2 1( )p p g y y− = − −  

(pressure in a fluid of uniform 

density) 

0p p gh= +  

(pressure in a fluid of uniform 

density) 

 

 Buoyancy: Archimedes’s principle states that when an 

object is immersed in a fluid, the fluid exerts an upward buoyant 

force on the object equal to the weight of the fluid that the object 

displaces.  

 



207 

 Fluid flow: An ideal fluid 

is incompressible and has no 

viscosity (no internal friction). A 

flow line is the path of a fluid 

particle; a streamline is a curve 

tangent at each point to the 

velocity vector at that point. A 

flow tube is a tube bounded at its 

sides by flow lines. In laminar 

flow, layers of fluid slide 

smoothly past each other. In 

turbulent flow, there is great 

disorder and a constantly 

changing flow pattern. 

Conservation of mass in 

an incompressible fluid is 

expressed by the continuity 

equation, which relates the flow 

speeds 
1  and 

2  for two cross 

sections 
1A  and 

2A  in a flow tube. 

The product Av equals the volume 

flow rate, dV/dt, the rate at which 

volume crosses a section of the 

tube. 

Bernoulli’s equation states 

that a quantity involving the 

pressure p, flow speed  , and 

elevation y has the same value 

anywhere in a flow tube, 

assuming steady flow in an ideal 

fluid. This equation can be used 

to relate the properties of the flow 

at any two points. 

1 1 2 2A A =  

(continuity equation, 

incompressible fluid) 

dV
A

dt
=  

(volume flow rate) 

21
constant

2
p gy + + =  

(Bernoulli’s equation) 
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13 GRAVITATION 

Some of the earliest investigations in physical science started with questions that people asked 

about the night sky. Why doesn’t the moon fall to earth? Why do the planets move across the sky? Why 

doesn’t the earth fly off into space rather than remaining in orbit around the sun? The study of gravitation 

provides the answers to these and many related questions. 

As we remarked in Chapter 5, gravitation is one of the four classes of interactions found in nature, 

and it was the earliest of the four to be studied extensively. Newton discovered in the 17th century that 

the same interaction that makes an apple fall out of a tree also keeps the planets in their orbits around the 

sun. This was the beginning of celestial mechanics, the study of the dynamics of objects in space. Today, 

our knowledge of celestial mechanics allows us to determine how to put a satellite into any desired orbit 

around the earth or to choose just the right trajectory to send a spacecraft to another planet. 

In this chapter you’ll learn the basic law that governs gravitational interactions. This law is 

universal: Gravity acts in the same fundamental way between the earth and your body, between the sun 

and a planet, and between a planet and one of its moons. We’ll apply the law of gravitation to phenomena 

such as the variation of weight with altitude, the orbits of satellites around the earth, and the orbits of 

planets around the sun. 

 

 

13.1 Newton’s Law of Gravitation 
 

The gravitational attraction that’s most familiar to you is your weight, the force that attracts you 

toward the earth. By studying the motions of the moon and planets, Newton discovered a fundamental 

law of gravitation that describes the gravitational attraction between any two objects. Newton published 

this law in 1687 along with his three laws of motion. In modern language, it says 

NEWTON’S LAW OF GRAVITATION. Every particle of matter in the universe attracts 

every other particle with a force that is directly proportional to the product of the masses of the 

particles and inversely proportional to the square of the distance between them. 

Figure 13.1 depicts this law, which we can express as an equation: 

  

(13.1)

 

The gravitational constant G in Eq. (13.1) is a 

fundamental physical constant that has the same value for any 

two particles. We’ll see shortly what the value of G is and how 

this value is measured. 

Equation (13.1) tells us that the gravitational force 

between two particles decreases with increasing distance r: If the 

distance is doubled, the force is only one-fourth as great, and so 

on. Although many of the stars in the night sky are far more 

massive than the sun, they are so far away that their gravitational 

force on the earth is negligibly small. 

CAUTION! Don’t confuse g and G. The symbols g and 

G are similar, but they represent two very different gravitational 

quantities. Lowercase g is the acceleration due to gravity, which 

relates the weight w of an object to its mass m: w = mg. The value 

of g is different at different locations on the earth’s surface and on the surfaces of other planets.  

By contrast, capital G relates the gravitational force between any two objects to their masses and the 

distance between them. We call G a universal constant because it has the same value for any two objects, 

no matter where in space they are located. We’ll soon see how the values of g and G are related. 

 

Figure 13.1 - The gravitational forces 

that two particles of masses  and 

 exert on each other 

1m

2m
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Gravitational forces always act along the line joining the two particles and form an action–reaction 

pair. Even when the masses of the particles are different, the two interaction forces have equal magnitude 

(Fig. 13.1). The attractive force that your body exerts on the earth has the same magnitude as the force 

that the earth exerts on you. When you fall from a diving board into a swimming pool, the entire earth 

rises up to meet you! (You don’t notice this because the earth’s mass is greater than yours by a factor of 

about 2310 . Hence the earth’s acceleration is only 2310−  as great as yours). 

 

 

Gravitation and Spherically Symmetric Objects 

 

We have stated the law of gravitation in terms of the interaction between two particles. It turns out 

that the gravitational interaction of any two objects that have sphericallysymmetric mass distributions 

(such as solid spheres or spherical shells) is the same as though we concentrated all the mass of each at its 

center, as in Fig. 13.2. Thus, if we model the earth as a spherically symmetric object with mass
Em  , the 

force it exerts on a particle or on a spherically symmetric object with mass m, at a distance r between 

centers, is 

 E
g 2

Gm m
F

r
= , (13.2) 

provided that the object lies outside the earth. A force of the same 

magnitude is exerted on the earth by the object. (We’ll prove these 

statements in Section 13.6). 

At points inside the earth the situation is different. If we 

could drill a hole to the center of the earth and measure the 

gravitational force on an object at various depths, we would find 

that toward the center of the earth the force decreases, rather than 

increasing as 1/ 2r . As the object enters the interior of the earth (or 

other spherical object), some of the earth’s mass is on the side of the 

object opposite from the center and pulls in the opposite direction. 

Exactly at the center, the earth’s gravitational force on the object is 

zero. 

Spherically symmetric objects are an important case because 

moons, planets, and stars all tend to be spherical. Since all particles 

in an object gravitationally attract each other, the particles tend to 

move to minimize the distance between them. As a result, the object 

naturally tends to assume a spherical shape, just as a lump of clay 

forms into a sphere if you squeeze it with equal forces on all sides. 

This effect is greatly reduced in celestial objects of low mass, since 

the gravitational attraction is less, and these objects tend not to be 

spherical. 

 

 

Determining the Value of G 

 

To determine the value of the gravitational constant G, we have to measure the gravitational force 

between two objects of known masses 
1m  and 

2m  at a known distance r. The force is extremely small for 

objects that are small enough to be brought into the laboratory, but it can be measured with an instrument 

called a torsion balance, which Sir Henry Cavendish used in 1798 to determine G. 

Figure 13.3 shows a modern version of the Cavendish torsion balance. A light, rigid rod shaped 

like an inverted T  is supported by a very thin, vertical quartz  fiber. Two small spheres, each of mass 
1m , 

are mounted at the ends of the horizontal arms of the T. When we bring two large spheres, each of mass 

 
Figure 13.2 - The gravitational effect 

outside any spherically symmetric 

mass distribution is the same as 

though all of the mass were 

concentrated at its center 
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2m , to the positions shown, the attractive gravitational forces twist the T through a small angle.  

To measure this angle, we shine a beam of light on a mirror fastened to the T. The reflected beam strikes 

a scale, and as the T twists, the reflected beam moves along the scale.  

After calibrating the Cavendish balance, we can measure gravitational forces and thus determine 

G. The accepted value as of this writing (2018) is 

 11 2 26.67408(31) 10 N m / kgG −=  .  

To three significant figures, 11 2 26.67 10 N m / kgG −=  . Because 1 N = 1 kg • m/s2 , the units of G can 

also be expressed as m3/(kg • s2 ). 

 

Gravitational forces combine vectorially. If each of two masses exerts a force on a third, the total 

force on the third mass is the vector sum of the individual forces of the first two. Example 13.3 makes use 

of this property, which is often called superposition of forces (see Section 4.1). 

 

 

EXAMPLE 13.1 Calculating gravitational force 

The mass 
1m  of one of the small spheres of a Cavendish balance is 0.0100 kg,  the mass 

2m  of  

the nearest large sphere is 0.500 kg, and the center-to-center distance between them is 0.0500 m. Find the 

gravitational force 
gF  on each sphere due to the other. 

 

 

IDENTIFY, SET UP and EXECUTE 

Because the spheres are spherically symmetric, we can calculate 
gF  by treating them as particles 

separated by 0.0500 m, as in Fig. 13.2. Each sphere experiences the same magnitude of force from the 

other sphere. We use Newton’s law of gravitation, Eq. (13.1), to determine 
gF : 

11 2 2
10

2

(6.67 10 N m / kg )(0.0100kg)(0.500kg)
1.33 10 N

(0.500m)
gF

−
−

= =  . 

 

 

EVALUATE It’s remarkable that such a small force could be measured— or even detected—

more than 200 years ago. Only a very massive object such as the earth exerts a gravitational force we can 

feel. 

CAUTION! Newton’s third law applies to gravitational forces, too. Even though the large 

sphere in this example has 50 times the mass of the small sphere, each sphere feels the same magnitude of 

 
Figure 13.3 - The principle of the Cavendish balance, used for determining the value of G.  

The angle of deflection has been exaggerated here for clarity 
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force from the other. But because their masses are different, the accelerations of the two objects in 

response to that magnitude of force are different (see the following example). 

 

 

KEYCONCEPT 

Any two objects exert attractive gravitational forces on each other that are proportional to the 

product of the masses of the two objects and inversely proportional to the square of the distance between 

their centers (Newton’s law of gravitation). 

 

 

Why Gravitational Forces Are Important 

 

Comparing Examples 13.1 and 13.3 shows that gravitational forces are negligible between 

ordinary household-sized objects but very substantial between objects that are the size of stars. Indeed, 

gravitation is the most important force on the scale of planets, stars, and galaxies. It is responsible for 

holding our earth together and for keeping the planets in orbit about the sun. The mutual gravitational 

attraction between different parts of the sun compresses material at the sun’s core to very high densities 

and temperatures, making it possible for nuclear reactions to take place there. These reactions generate 

the sun’s energy output, which makes it possible for life to exist on earth and for you to read these words. 

The gravitational force is so important on the cosmic scale because it acts at a distance, without 

any direct contact between objects. Electric and magnetic forces have this same remarkable property, but 

they are less important on astronomical scales because large accumulations of matter are electrically 

neutral; that is, they contain equal amounts of positive and negative charge. As a result, the electric and 

magnetic forces between stars or planets are very small or zero. The strong and weak interactions that we 

discussed in Section 5.5 also act at a distance, but their influence is negligible at distances much greater 

than the diameter of an atomic nucleus (about 10-14 m). 

A useful way to describe forces that act at a distance is in terms of a field. One object sets up a 

disturbance or field at all points in space, and the force that acts on a second object at a particular point is 

its response to the first object’s field at that point. There is a field associated with each force that acts at a 

distance, and so we refer to gravitational fields, electric fields, magnetic fields, and so on. We won’t need 

the field concept for our study of gravitation in this chapter, so we won’t discuss it further here. But in 

later chapters we’ll find that the field concept is an extraordinarily powerful tool for describing electric 

and magnetic interactions. 

 

 

13.2Weight 
 

We defined the weight of an object in Section 4.4 as the attractive gravitational force exerted on it 

by the earth. We can now broaden our definition and say that the weight of an object is the total 

gravitational force exerted on the object by all other objects in the universe. When the object is near the 

surface of the earth, we can ignore all other gravitational forces and consider the weight as just the earth’s 

gravitational attraction. At the surface of the moon we consider an object’s weight to be the gravitational 

attraction of the moon, and so on. 

If we again model the earth as a spherically symmetric object with radius 
ER  , the weight of a 

small object at the earth’s surface (a distance 
ER  from its center) is 

  

(13.3)
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But we also know from Section 4.4 that the weight w of an object is the force that causes the acceleration 

g of free fall, so by Newton’s second law, w = mg. Equating this with Eq. (13.3) and dividing by m, we 

find 

  

(13.4)

 

The acceleration due to gravity g is independent of the mass m of the object because m doesn’t appear in 

this equation. We already knew that, but we can now see how it follows from the law of gravitation. 

We can measure all the quantities in Eq. (13.4) except for 
Em  , so this relationship allows us to 

compute the mass of the earth. Solving Eq. (13.4) for 
Em  and using 

ER  = 6370 km = 6.37 × 106 m  

and g = 9.80 m/s2 , we find 

 
2

24E
E 5.96 10 kg

gR
m

G
= =  .  

This is very close to the currently accepted value of 5.972 × 1024 kg. Once Cavendish had measured G, he 

computed the mass of the earth in just this way. 

At a point above the earth’s surface a distance r from the center of the earth (a distance r - 
ER  

above the surface), the weight of an object is given by Eq. (13.3) with 
ER  replaced by r: 

 E
g 2

Gm m
w F

r
= = . (13.5) 

The weight of an object decreases inversely with the square of its distance from the earth’s center. 

The apparent weight of an object on earth differs slightly from the earth’s gravitational force 

because the earth rotates and is therefore not precisely an inertial frame of reference. We’ve ignored this 

relatively small effect in our discussion but will consider it carefully in Section 13.7. 

 
Figure 13.4 - An astronaut who weighs 700 N at the earth’s surface experiences less gravitational 

attraction when above the surface. The relevant distance r is from the astronaut to the center of the earth  

(not from the astronaut to the earth’s surface)  
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While the earth is an approximately spherically symmetric distribution of mass, it is not uniform 

throughout its volume. To demonstrate this, let’s first calculate the average density, or mass per unit 

volume, of the earth. If we assume a spherical earth, the volume is 

 3 6 3 21 34 4
E E3 3

(6.63 10 m) 1.08 10 mV R = =  =  .  

The average density ρ (the Greek letter rho) of the earth is the total mass divided by the total volume: 

 

24
3 3E

21 3

E

5.97 10 kg
5500kg/m 5.5g/cm

1.08 10 m

m

V



= = = =


.  

 (Compare to the density of water, 1000 kg/m3 = 1.00 g/cm3). If the earth were uniform, rocks near the 

earth’s surface would have this same density. In fact, the density of 

surface rocks is substantially lower, ranging from about 2000 kg/m3 for 

sedimentary rocks to about 3300 kg/m3 for basalt. So the earth cannot 

be uniform, and its interior must be much more dense than its surface 

in order that the average density be 5500 kg/m3. According to 

geophysical models of the earth’s interior, the maximum density at the 

center is about 13,000 kg/m3. Figure 13.5 is a graph of density as a 

function of distance from the center. 

 

 

13.3Gravitational Potential Energy 
 

When we first introduced gravitational potential energy in 

Section 7.1, we assumed that the earth’s gravitational force on an 

object of mass m doesn’t depend on the object’s height. This led to the 

expression U = mgy. But Eq. (13.2), 
2

g E /F Gm m r= , shows that the 

gravitational force exerted by the earth (mass
Em ) does in general 

depend on the distance r from the object to the earth’s center. For 

problems in which an object can be far from the earth’s surface, we 

need a more general expression for gravitational potential energy. To 

find this expression, we follow the same steps as in Section 7.1. We 

consider an object of mass m outside the earth, and first compute the 

work 
gravW  done by the gravitational force when the object moves 

directly away from or toward the center of the earth from r = 
1r  to r = 

2r , as in Fig. 13.6. This work is 

given by 

 
2

1
grav

r

r
r

W F dr=  , (13.6) 

where 
rF is the radial component of the gravitational force F —that is, the component in the direction 

outward from the center of the earth. Because F  points directly inward toward the center of the earth, 
rF  

is negative. It differs from Eq. (13.2), the magnitude of the gravitational force, by a minus sign: 

E

2r

Gm m
F

r
=  (13.7). 

  

 

Figure 13.5 - The density ρ of the 

earth decreases with increasing 

distance r from its center 



214 

Substituting Eq. (13.7) into Eq. (13.6), we see that 
gravW  is 

given by 

.               (13.8) 

The path doesn’t have to be a straight line; it could also be a 

curve like the one in Fig. 13.6. By an argument similar to that in 

Section 7.1, this work depends on only the initial and final values 

of r, not on the path taken. This also proves that the gravitational 

force is always conservative. 

We now define the corresponding potential energy U so 

that 
grav 1 2W U U= − , as in Eq. (7.3). Comparing this with Eq. 

(13.8),  

we see that the appropriate definition for gravitational potential 

energy is 

 

.                                (13.9)

 

CAUTION! Gravitational force vs. gravitational potential energy. Don’t confuse the 

expressions for gravitational force, Eq. (13.7), and gravitational potential energy, Eq. (13.9). The force 
rF  

is proportional to 1/r2 , while potential energy U is proportional to 1/r. 

Figure 13.7 shows how the gravitational potential energy depends on the distance r between the 

object of mass m and the center of the earth. When the object moves away from the earth, r increases, the 

gravitational force does negative work, and U increases (i.e., becomes less negative). When the object 

“falls” toward earth, r decreases, the gravitational work is positive, and the potential energy decreases 

(i.e., becomes more negative). 

CAUTION! Don't worry about gravitational potential 

energy being negative. You may be troubled by Eq. (13.9) 

because it states that gravitational potential energy is always 

negative. But in fact you’ve seen negative values of U before. In 

using the formula  

U = mgy in Section 7.1, we found that U was negative whenever 

the object of mass m was at a value of y below the arbitrary height 

we chose to be y = 0—that is, whenever the object and the earth 

were closer together than some arbitrary distance. (See, for 

instance, Example 7.2 in Section 7.1). In defining U by Eq. 

(13.9), we have chosen U to be zero when the object of mass m is 

infinitely far from the earth (r = ∞). As the object moves toward 

the earth, gravitational potential energy decreases and so becomes 

negative. 

If we wanted, we could make U = 0 at the earth’s surface, 

where r =
ER  , by adding the quantity 

EGm m /
ER  to Eq. (13.9). 

This would make U positive when r>
ER . We won’t do this for 

two reasons: One, it would complicate the expression for U; two, 

the added term would not affect the difference in potential energy 

between any two points, which is the only physically significant 

quantity. 

If the earth’s gravitational force on an object is the only 

2

1

E E
grav E 2

2 1

r

r

Gm m Gm mdr
W Gm m

r r r
= − = −

 

Figure 13.6 - Calculating the work done 

on an object by the gravitational force as 

the object moves from radial coordinate 

 to  

 
Figure 13.7 - A graph of the 

gravitational potential energy U for the 

system of the earth (mass ) and an 

astronaut (mass m) versus the 

astronaut’s distance r from the center 

of the earth 

1r 2r

Em
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force that does work, then the total mechanical energy of the system of the earth and object is constant, or 

conserved. In the following example we’ll use this principle to calculate escape speed, the speed required 

for an object to escape completely from a planet. 

 

 

More on Gravitational Potential Energy 

 

As a final note, let’s show that when we are close to the earth’s surface, Eq. (13.9) reduces to the 

familiar U = mgy from Chapter 7. We first rewrite Eq. (13.8) as 

 1 2
grav E

1 2

r r
W Gm m

rr

−
= .  

If the object stays close to the earth, then in the denominator we may replace 
1r  and 

2r  by 
ER , the earth’s 

radius, so 

 1 2
grav E 2

E

r r
W Gm m

R

−
= .  

According to Eq. (13.4), g = 
EGm / 2

ER , so 

 
grav 1 2( )W mg r r= − .  

If we replace the r’s by y’s, this is just Eq. (7.1) for the work done by a constant gravitational force. In 

Section 7.1 we used this equation to derive Eq. (7.2), U = mgy, so we may consider Eq. (7.2) for 

gravitational potential energy to be a special case of the more general Eq. (13.9). 

 

 

13.4 The Motion of Satellites 
 

Artificial satellites orbiting the earth are a familiar part of technology. But how do they stay in 

orbit, and what determines the properties of their orbits? We can use Newton’s laws and the law of 

gravitation to provide the answers. In the next section we’ll analyze the motion of planets in the same 

way. 

To begin, think back to the discussion of projectile motion in Section 3.3. In Example 3.6 a 

motorcycle rider rides horizontally off the edge of a cliff, launching himself into a parabolic path that 

ends on the flat ground at the base of the cliff. If he survives and repeats the experiment with increased 

launch speed, he will land farther from the starting point. We can imagine him launching himself with 

great enough speed that the earth’s curvature becomes significant. As he falls, the earth curves away 

beneath him. If he is going fast enough, and if his launch point is high enough that he clears the 

mountaintops, he may be able to go right on around the earth without ever landing. 

Figure 13.8 shows a variation on this theme. We launch a projectile from point A in the direction 

AB, tangent to the earth’s surface. Trajectories 1 through 7 show the effect of increasing the initial speed. 

In trajectories 3 through 5 the projectile misses the earth and becomes a satellite. If there is no retarding 

force such as air resistance, the projectile’s speed when it returns to point A is the same as its initial speed 

and it repeats its motion indefinitely. 

Trajectories 1 through 5 close on themselves and are called closed orbits. All closed orbits are 

ellipses or segments of ellipses; trajectory 4 is a circle, a special case of an ellipse. (We’ll discuss the 

properties of an ellipse in Section 13.5). Trajectories 6 and 7 are open orbits. For these paths the 

projectile never returns to its starting point but travels ever farther away from the earth. 
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Satellites: Circular Orbits 

 

A circular orbit, like trajectory 4 in Fig. 13.8, is the 

simplest case. It is also an important case, since many artificial 

satellites have nearly circular orbits and the orbits of the planets 

around the sun are also fairly circular. The only force acting on a 

satellite in circular orbit around the earth is the earth’s 

gravitational attraction, which is directed toward the center of the 

earth and hence toward the center of the orbit (Fig. 13.9). As we 

discussed in Section 5.4, this means that the satellite is in uniform 

circular motion and its speed is constant. The satellite isn’t 

falling toward the earth; rather, it’s constantly falling around the 

earth. In a circular orbit the speed is just right to keep the 

distance from the satellite to the center of the earth constant. 

Let’s see how to find the constant speed υ of a satellite in 

a circular orbit. The radius of the orbit is r, measured from the 

center of the earth; the acceleration of the satellite has magnitude 
2

rad /a r=  and is always directed toward the center of the 

circle. By the law of gravitation, the net force (gravitational 

force) on the satellite of mass m has magnitude 
2

g E /F Gm m r=  

and is in the same direction as the acceleration. Newton’s second 

law ( )F ma=  then tells us that 

 
2

E

2

Gm m m

r r


= .  

  

 
Figure 13.8 - Trajectories of a projectile launched from a great height (ignoring air resistance).  

Orbits 1 and 2 would be completed as shown if the earth were a point mass at C.  

(This illustration is based on one in Isaac Newton’s Principia) 

 

Figure 13.9 - The force  due to the 

earth’s gravitational attraction provides 

the centripetal acceleration that keeps a 

satellite in orbit. Compare to Fig. 5.12 

gF
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Solving this for υ, we find 

  

(13.10)

 

This relationship shows that we can’t choose the orbit radius r and the speed υ independently; for a given 

radius r, the speed υ for a circular orbit is determined. 

The satellite’s mass m doesn’t appear in Eq. (13.10), which shows that the motion of a satellite 

does not depend on its mass. An astronaut on board an orbiting space station is herself a satellite of the 

earth, held by the earth’s gravity in the same orbit as the station. The astronaut has the same velocity and 

acceleration as the station, so nothing is pushing her against the station’s floor or walls. She is in a state of 

apparent weightlessness, as in a freely falling lift; see the discussion following Example 5.9 in  

Section 5.2. (True weightlessness would occur only if the astronaut were infinitely far from any other 

masses, so that the gravitational force on her would be zero). Indeed, every part of her body is apparently 

weightless; she feels nothing pushing her stomach against her intestines or her head against her shoulders. 

Apparent weightlessness is not just a feature of circular orbits; it occurs whenever gravity is the 

only force acting on a spacecraft. Hence it occurs for orbits of any shape, including open orbits such as 

trajectories 6 and 7 in Fig. 13.8. 

We can derive a relationship between the radius r of a circular orbit and the period T, the time for 

one revolution. The speed v is the distance 2πr traveled in one revolution, divided by the period: 

 
2 r

T


 = . (13.11) 

We solve Eq. (13.11) for T and substitute υ from Eq. (13.10): 

  

(13.12)

 

Equations (13.10) and (13.12) show that larger orbits correspond to slower speeds and longer periods. As 

an example, the International Space Station orbits 6800 km from the center of the earth (400 km above 

the earth’s surface) with an orbital speed of 7.7 km/s and an orbital period of 93 min. The moon orbits the 

earth in a much larger orbit of radius 384,000 km, and so has a much slower orbital speed (1.0 km/s) and 

a much longer orbital period (27.3 days). 

It’s interesting to compare Eq. (13.10) to the calculation of escape speed in Example 13.5. We see 

that the escape speed from a spherical object with radius R is 2  times greater than the speed of a satellite 

in a circular orbit at that radius. If our spacecraft is in circular orbit around any planet, we have to 

multiply our speed by a factor of 2  to escape to infinity, regardless of the planet’s mass. 

Since the speed υ in a circular orbit is determined by Eq. (13.10) for a given orbit radius r, the 

total mechanical energy E = K + U is determined as well. Using Eqs. (13.9) and (13.10), we have 

 

2 E1
2

E E E1
2

2

Gm m
E K U m

r

Gm Gm m Gm m
m

r r r


 

= + = + − 
 

 
= − = − 

 

 (circular orbit). (13.13) 

The total mechanical energy in a circular orbit is negative and equal to one-half the potential 

energy. Increasing the orbit radius r means increasing the total mechanical energy (that is, making E less 

negative). If the satellite is in a relatively low orbit that encounters the outer fringes of earth’s 
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atmosphere, the total mechanical energy decreases due to negative work done by the force of air 

resistance; as a result, the orbit radius decreases until the satellite hits the ground or burns up in the 

atmosphere. We have talked mostly about earth satellites, but we can apply the same analysis to the 

circular motion of any object under its gravitational attraction to a stationary object. 

 

 

13.5 Kepler’s Laws and the Motion of Planets 
 

The name planet comes from a Greek word meaning “wanderer”, and indeed the planets 

continuously change their positions in the sky relative to the background of stars. One of the great 

intellectual accomplishments of the 16th and 17th centuries was the threefold realization that the earth is 

also a planet, that all planets orbit the sun, and that the apparent motions of the planets as seen from the 

earth can be used to determine their orbits precisely. 

 The first and second of these ideas were published by Nicolaus Copernicus in Poland in 1543. 

The nature of planetary orbits was deduced between 1601 and 1619 by the German astronomer and 

mathematician Johannes Kepler, using precise data on apparent planetary motions compiled by his 

mentor, the Danish astronomer Tycho Brahe. By trial and error, Kepler discovered three empirical laws 

that accurately described the motions of the planets: 

 

KEPLER’S LAWS  

1. Each planet moves in an elliptical orbit, with the sun at one focus of the ellipse.  

2. A line from the sun to a given planet sweeps out equal areas in equal times.  

3. The periods of the planets are proportional to the 3
2
 powers of the major axis lengths of 

their orbits. 

 

Kepler did not know why the planets moved in this way. Three generations later, when Newton 

turned his attention to the motion of the planets, he discovered that each of Kepler’s laws can be derived; 

they are consequences of Newton’s laws of motion and the law of gravitation. Let’s see how each of 

Kepler’s laws arises. 

 

 

   Kepler’s First Law 

 

First consider the elliptical orbits described in Kepler’s 

first law. Figure 13.10 shows the geometry of an ellipse. The 

longest dimension is the major axis, with half-length a; this half-

length is called the semi-major axis. The sum of the distances 

from S to P and from S′ to P is the same for all points on the 

curve. S and S′ are the foci (plural of focus). The sun is at S (not 

at the center of the ellipse) and the planet is at P; we think of both 

as points because the size of each is very small in comparison to 

the distance between them. There is nothing at the other focus, S′. 

The distance of each focus from the center of the ellipse is 

ea, where e is a dimensionless number between 0 and 1 called the 

eccentricity. If e = 0, the two foci coincide and the ellipse is a 

circle. The actual orbits of the planets are fairly circular; their 

eccentricities range from 0.007 for Venus to 0.206 for Mercury. 

(The earth’s orbit has e = 0.017). The point in the planet’s orbit 

closest to the sun is the perihelion, and the point most distant is 

the aphelion. 

Newton showed that for an object acted on by an 

attractive force proportional to 1/r2, the only possible closed orbits are a circle or an ellipse; he also 

showed that open orbits (trajectories 6 and 7 in Fig. 13.8) must be parabolas or hyperbolas. These results 

 
Figure 13.10 - Geometry of an ellipse. 

The sum of the distances SP and S′P is 

the same for every point on the curve. 

The sizes of the sun (S) and planet (P) 

are exaggerated for clarity 
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can be derived from Newton’s laws and the law of gravitation, together with a lot more differential 

equations than we’re ready for. 

 

 

Kepler’s Second Law 

 

Figure 13.11 shows Kepler’s second law. In a small time interval dt, the line from the sun S to the 

planet P turns through an angle d . The area swept out is the colored triangle with height r, base length r

d , and area dA = 21
2
r d  in Fig. 13.19b. The rate at which area is swept out, dA/dt, is called the sector 

velocity: 

 
21

2

dA d
r

dt dt


= . (13.14) 

The essence of Kepler’s second law is that the sector velocity has the same value at all points in 

the orbit. When the planet is close to the sun, r is small and d / dt  is large; when the planet is far from 

the sun, r is large and du > dt is small. 

 

 
 

 

Figure 13.11 - (a) The planet (P) moves about the 

sun (S) in an elliptical orbit.  

(b) In a time dt the line SP sweeps out an area 

. 

 (c) The planet’s speed varies so that the line SP 

sweeps out the same area A in a given time t 

regardless of the planet’s position in its orbit  
 

To see how Kepler’s second law follows from Newton’s laws, we express dA/dt in terms of the 

velocity vector v S of the planet P. The component of   perpendicular to the radial line is sin  ⊥ = . 

From Fig. 13.11b the displacement along the direction of ⊥
 during time dt is r d , so we also have

/rd dt ⊥ = . Using this relationship in Eq. (13.14), we find 

 1
2

sin
dA

r
dt

 =  (sector velocity). (13.15) 

Now sinr   is the magnitude of the vector product r   , which in turn is 1/m times the angular 

momentum L r m=   of the planet with respect to the sun. So we have 

 
1

2 2

dA L
r m

dt m m
=  = . (13.16) 

Thus Kepler’s second law—that sector velocity is constant—means that angular momentum is constant! 

It is easy to see why the angular momentum of the planet must be constant.  

21 1
2 2
( )dA rd r r d = =
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According to Eq. (10.26), the rate of change of L  equals 

the torque of the gravitational force F  acting on the planet: 

dL
r F

dt
= =  . 

In our situation, r  is the vector from the sun to the planet, and the 

force F  is directed from the planet to the sun (Fig. 13.12). So 

these vectors always lie along the same line, and their vector 

product r F  is zero. Hence / 0dL dt = . This conclusion does 

not depend on the 1/r2 behavior of the force; angular momentum 

is conserved for any force that acts always along the line joining 

the particle to a fixed point. Such a force is called a central force. 

(Kepler’s first and third laws are valid for a 1/r2 force only). 

Conservation of angular momentum also explains why the 

orbit lies in a plane. The vector L r m=   is always 

perpendicular to the plane of the vectors r  and  ; since L  is 

constant in magnitude and direction, r  and   always lie in the 

same plane, which is just the plane of the planet’s orbit. 

 

 

Kepler’s Third Law 

 

We have already derived Kepler’s third law for the particular case of circular orbits.  

Equation (13.12) shows that the period of a satellite or planet in a circular orbit is proportional to the 
3
2  

power of the orbit radius. Newton was able to show that this same relationship holds for an elliptical 

orbit, with the orbit radius r replaced by the semi-major axis a: 

3/2

S

2 a
T

Gm


=  (elliptical orbit around the sun).                             (13.17) 

Since the planet orbits the sun, not the earth, we have replaced the earth’s mass 
Em  in Eq. (13.12) 

with the sun’s mass
Sm . Note that the period does not depend on the eccentricity e. An asteroid in an 

elongated elliptical orbit with semi-major axis a will have the same orbital period as a planet in a circular 

orbit of radius a. The key difference is that the asteroid moves at different speeds at different points in its 

elliptical orbit (Fig. 13.11c), while the planet’s speed is constant around its circular orbit. 

 

 

EXAMPLE 13.2 Orbital speeds 

At what point in an elliptical orbit (see Fig. 13.11) does a planet move the fastest? The slowest? 

 

 

SOLUTION 

Total mechanical energy is conserved as a planet moves in its orbit. The planet’s kinetic energy 
21

2
K m=  is maximum when the potential energy 

S /U Gm m r= − >r is minimum (that is, most negative; 

see Fig. 13.7), which occurs when the sun–planet distance r is a minimum. Hence the speed υ is greatest 

at perihelion. Similarly, K is minimum when r is maximum, so the speed is slowest at aphelion. 

Your intuition about falling objects is helpful here. As the planet falls inward toward the sun, it 

picks up speed, and its speed is maximum when closest to the sun. The planet slows down as it moves 

away from the sun, and its speed is minimum at aphelion. 

KEYCONCEPT 

 
 

Figure 13.12 - Because the gravitational 

force that the sun exerts on a planet 

produces zero torque around the sun, 

the planet’s angular momentum around 

the sun remains constant 
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Total mechanical energy remains constant for a planet in an elliptical orbit. The planet’s kinetic 

energy (and speed) therefore increases as it moves closer to the sun and the gravitational potential energy 

decreases (becomes more negative). 

 

 

Planetary Motions and the Center of Mass 

 

We have assumed that as a planet or comet orbits the sun, the sun remains absolutely stationary. 

This can’t be correct; because the sun exerts a gravitational force on the planet, the planet exerts a 

gravitational force on the sun of the same magnitude but opposite direction. In fact, both the sun and the 

planet orbit around their common center of mass (Fig. 13.13). We’ve made only a small error by ignoring 

this effect, however; the sun’s mass is about 750 times the total 

mass of all the planets combined, so the center of mass of the 

solar system is not far from the center of the sun. Remarkably, 

astronomers have used this effect to detect the presence of 

planets orbiting other stars. Sensitive telescopes are able to 

detect the apparent “wobble” of a star as it orbits the common 

center of mass of the star and an unseen companion planet. 

(The planets are too faint to observe directly). By analyzing 

these “wobbles,” astronomers have discovered planets in orbit 

around hundreds of other stars. 

The most remarkable result of Newton’s analysis of 

planetary motion is that objects in the heavens obey the same 

laws of motion as do objects on the earth. This Newtonian 

synthesis, as it has come to be called, is one of the great 

unifying principles of science. It has had profound effects on 

the way that humanity looks at the universe - not as a realm of 

impenetrable mystery, but as a direct extension of our 

everyday world, subject to scientific study and calculation. 

 

 

13.6 Spherical Mass Distributions 
 

We have stated without proof that the gravitational interaction between two spherically symmetric 

mass distributions is the same as though all the mass of each were concentrated at its center. Now we’re 

ready to prove this statement. Newton searched for a proof for several years, and he delayed publication 

of the law of gravitation until he found one. 

Rather than starting with two spherically symmetric masses, we’ll tackle the simpler problem of a 

point mass m interacting with a thin spherical shell with total mass M. We’ll show that when m is outside 

the sphere, the potential energy associated with this gravitational interaction is the same as though M 

were concentrated in a point at the center of the sphere. We learned in Section 7.4 that the force is the 

negative derivative of the potential energy, so the force on m is also the same as for a point mass M. Our 

result will also hold for any spherically symmetric mass distribution, which we can think of as being 

made of many concentric spherical shells. 

 

 

A Point Mass Outside a Spherical Shell 

 

We start by considering a ring on the surface of a shell (Fig. 13.14a, next page), centered on the 

line from the center of the shell to m. We do this because all of the particles that make up the ring are the 

same distance s from the point mass m. From Eq. (13.9) the potential energy of interaction between the 

earth (mass 
Em ) and a point mass m, separated by a distance r, is U = -GmEm > r. From this expression, 

we see that the potential energy of interaction between the point mass m and a particle of mass 
im  within 

the ring is 

 

Figure 13.13 - Both a star and its planet 

orbit about their common center of mass 
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 i
i

Gmm
U

s
= − .  

To find the potential energy dU of interaction between m and the entire ring of mass i

i

dU m=   we 

sum this expression for 
iU  over all particles in the ring: 

 i
i i

i i i

Gmm Gm GmdM
dU U m

s s s

 
= = − = − = − 

 
   . (13.18) 

To proceed, we need to know the mass dM of the ring. We can find this with the aid of a little geometry. 

The radius of the shell is R, so in terms of the angle   f shown in the figure, the radius of the ring is 

sinR  , and its circumference is 2 sinR  . The width of the ring is Rd  , and its area dA is 

approximately equal to its width times its circumference: 

 22 sindA R = d .  

The ratio of the ring mass dM to the total mass M of the shell is equal to the ratio of the area dA of the 

ring to the total area 22A R=  of the shell: 

 
2

1
22

2 sin
sin

4

R ddM
d

M R

  
 


= = . (13.19) 

Now we solve Eq. (13.19) for dM and substitute the result into Eq. (13.18) to find the potential energy of 

interaction between point mass m and the ring: 

 
sin

2

GMm d
dU

s

 
= − . (13.20)  

The total potential energy of interaction between the point mass and the shell is the integral of Eq. 

(13.20) over the whole sphere as   varies from 0 to π (not 2π!) and s varies from r – Rtor + R. To carry 

out the integration, we have to express the integrand in terms of a single variable; we choose s. To express 

  and d  in terms of s, we have to do a little more geometry. Figure 13.14b shows that s is the 

hypotenuse of a right triangle with sides ( cosr R − ) and sinR  , so the Pythagorean theorem gives 

 2 2 2 2 2( cos ) ( sin ) 2 coss r R R r rR R  = − + = − + . (13.21) 

We take differentials of both sides: 

2 2 coss ds rR d = . 

Next we divide this by 2rR and substitute the result into Eq. (13.20): 

 
2 2

s dsGMm GMm
dU ds

s rR rR
= − = − . (13.22) 

 

 

 

We can now integrate Eq. (13.22), recalling that s varies from r - R to r + R: 
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  ( ) ( )
2 2

r R

r R

GMm GMm
U ds r R r R

rR rR

+

−

= − = − + − − . (13.23) 

Finally, we have 

GMm
U

r
= −  (point mass m outside spherical shell M).     (13.24) 

This is equal to the potential energy of two point masses m and M at a 

distance r. So we have proved that the gravitational potential energy 

of spherical shell M and point mass m at any distance r is the same as 

though they were point masses. Because the force is given by 

/rF dU dr= − , the force is also the same. 

 

 

The Gravitational Force Between Spherical Mass 

Distrutions 

 

Any spherically symmetric mass distribution can be thought 

of as a combination of concentric spherical shells. Because of the 

principle of superposition of forces, what is true of one shell is also 

true of the combination. So we have proved half of what we set out to 

prove: that the gravitational interaction between any spherically 

symmetric mass distribution and a point mass is the same as though 

all the mass of the spherically symmetric distribution were 

concentrated at its center. 

The other half is to prove that two spherically symmetric mass 

distributions interact as though both were points. That’s easier.  

In Fig. 13.14a the forces the two objects exert on each other are an 

action–reaction pair, and they obey Newton’s third law. So we have 

also proved that the force that m exerts on sphere M is the same as 

though M were a point. But now if we replace m with a spherically 

symmetric mass distribution centered at m’s location, the resulting 

gravitational force on any part of M is the same as before, and so is 

the total force. This completes our proof. 

 

 

A Point Mass Inside a Spherical Shell 

 

We assumed at the beginning that the point mass m was 

outside the spherical shell, so our proof is valid only when m is 

outside a spherically symmetric mass distribution. When m is inside a spherical shell, the geometry is as 

shown in Fig. 13.15. The entire analysis goes just as before; Eqs. (13.18) through (13.22) are still valid. 

But when we get to Eq. (13.23), the limits of integration have to be changed to R - r and R + r. We then 

have 

  ( ) ( )
2 2

R r

R r

GMm GMm
U ds R r R r

rR rR

+

−

= − = − + − − . (13.25) 

  

 

 
 

Figure 13.14 Calculating the 

gravitational potential energy of 

interaction between a point mass m 

outside a spherical shell and 

 a ring on the surface of the shell 

of mass M 
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and the final result is 

 
GMm

U
r

= −  (point mass m outside spherical shell M). (13.26) 

Compare this result to Eq. (13.24): Instead of having r, the distance 

between m and the center of M, in the denominator, we have R, the 

radius of the shell. This means that U in Eq. (13.26) doesn’t 

depend on r and thus has the same value everywhere inside the 

shell. When m moves around inside the shell, no work is done on 

it, so the force on m at any point inside the shell must be zero. 

More generally, at any point in the interior of any 

spherically symmetric mass distribution (not necessarily a shell), at 

a distance r from its center, the gravitational force on a point mass 

m is  

the same as though we removed all the mass at points farther than r 

from the center and concentrated all the remaining mass at the 

center. 

 

 

13.7Apparent weight and the Earth’s Rotation 
 

Because the earth rotates on its axis, it is not precisely an 

inertial frame of reference. For this reason the apparent weight of 

an object on earth is not precisely equal to the earth’s gravitational 

attraction, which we’ll call the true weight
0w  of the object. Figure 13.16 is a cutaway view of the earth, 

showing three observers. Each one holds a spring scale with an object of mass m hanging from it. Each 

scale applies a tension force F  to the object hanging from it, and the reading on each scale is the 

magnitude F of this force. If the observers are unaware of the earth’s rotation, each one thinks that the 

scale reading equals the weight of the object because he thinks the object on his spring scale is in 

equilibrium. So each observer thinks that the tension F  must be opposed by an equal and opposite force 

w  , which we call the apparent weight. But if the objects are rotating with the earth, they are not 

precisely in equilibrium. Our problem is to find the relationship between the apparent weight w  and the 

true weight 
0w . 

If we assume that the earth is spherically symmetric, then the true weight 
0w  has magnitude

2

E E/Gm m R  , where 
Em  and 

ER  are the mass and radius of the earth. This value is the same for all points 

on the earth’s surface. If the center of the earth can be taken as the origin of an inertial coordinate system, 

then the object at the north pole really is in equilibrium in an inertial system, and the reading on that 

observer’s spring scale is equal to
0w  . But the object at the equator is moving in a circle of radius 

ER  

with speed υ, and there must be a net inward force equal to the mass times the centripetal acceleration: 

2

0

E

m
w F

R


− = . 

So the magnitude of the apparent weight (equal to the magnitude of F) is 

 

2

0

E

m
w w

R


= −  (at the equator). (13.27) 

 
 
Figure 13.15 - When a point mass m is 

inside a uniform spherical shell of 

mass M, the potential energy is the 

same no matter where inside the shell 

the point mass is located. The force 

from the masses’ mutual gravitational 

interaction is zero 
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If the earth were not rotating, the object when released would have a free-fall acceleration 

0 0 /g w m= . Since the earth is rotating, the falling object’s actual acceleration relative to the observer at 

the equator is /g w m= . Dividing Eq. (13.27) by m and using these relationships, we find 

2

0

E

g g
R


= −  (at the equator). 

To evaluate 2

E/ R  , we note that in 86,164 s a point on the equator moves a distance equal to the 

earth’s circumference, 6

E2 2 (6.37 10 m)R =  . (The solar day, 86,400 s, is 1
365

 longer than this because 

in one day the earth also completes 1
365

 of its orbit around the sun). Thus we find 

62 (6.37 10 )
465 m / s

86,164 s





= = , 

22
2

6

E

(465 m/s)
0.0339 m/s

6.37 10 mR


= =


. 

So for a spherically symmetric earth the acceleration due to gravity should be about 20.03 m/s  less at the 

equator than at the poles. 

At locations intermediate between the equator and the poles, the true weight 
0w  and the 

centripetal acceleration are not along the same line, and we need to write a vector equation corresponding 

to Eq. (13.27). From Fig. 13.16 we see that the appropriate equation is 

0 0 rad 0 radw w ma mg ma= − = − .                                            (13.28) 

 
 

Figure 13.16 - Except at the poles, the reading for an object being weighed on a scale (the apparent weight) 

is less than the gravitational force of attraction on the object (the true weight). The reason is that a net force 

is needed to provide a centripetal acceleration as the object rotates with the earth. For clarity, the illustration 

greatly exaggerates the angle β between the true and apparent weight vectors 
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The difference in the magnitudes of g and 
0g  lies between zero and 0.0339 m/s2 . As Fig. 13.16 

shows, the direction of the apparent weight differs from the direction toward the center of the earth by a 

small angle β, which is 0.1° or less. 

Table 13.1 gives the values of g at several locations. In addition to moderate variations with 

latitude, there are small variations due to elevation, differences in local density, and the earth’s deviation 

from perfect spherical symmetry. 

 

Table13.1 - Variations of g with Latitude and Elevation 

 

 

13.8 Black Holes 
 

In 1916 Albert Einstein presented his general theory of relativity, which included a new concept of 

the nature of gravitation. In his theory, a massive object actually changes the geometry of the space 

around it. Other objects sense this altered geometry and respond by being attracted to the first object. The 

general theory of relativity is beyond our scope in this chapter, but we can look at one of its most startling 

predictions: the existence of black holes, objects whose gravitational influence is so great that nothing - 

not even light - can escape them. We can understand the basic idea of a black hole by using Newtonian 

principles. 

 

 

The Escape Speed from a Star 

 

Think first about the properties of our own sun. Its mass M = 1.99 × 1030 kg and radius  

R = 6.96 × 108 m are much larger than those of any planet, but compared to other stars, our sun is not 

exceptionally massive. You can find the sun’s average density ρ in the same way we found the average 

density of the earth in Section 13.2: 

 

30
3

3 8 34 4
3 3

1.99 10 kg
1410kg/m

(6.96 10 m)

M M

V R


 


= = = =


.  

The sun’s temperatures range from 5800 K (about 5500°C or 10,000°F) at the surface up to 1.5 × 107 K 

(about 2.7 × 107 °F) in the interior, so it surely contains no solids or liquids. Yet gravitational attraction 

pulls the sun’s gas atoms together until the sun is, on average, 41% denser than water and about 1200 

times as dense as the air we breathe. 

Now think about the escape speed for an object at the surface of the sun. In Example 13.5  

(Section 13.3) we found that the escape speed from the surface of a spherical mass M with radius R is 

2 /GM R = . Substituting 34
3

( )M V R  = =  into the expression for escape speed gives 

 
2 8

3

GM G
R

R

 
 = = . (13.29) 

Station North Latitude Elevation (m) g(m/s2) 

Canal Zone 09° 0  9.78243 

Jamaica 18° 0 9.78591 

Bermuda 32° 0 9.79806 

Denver, CO 40° 1638 9.79609 

Pittsburgh, PA 40.5° 235 9.80118 

Cambridge, MA 42° 0 9.80398 

Greenland 70° 0 9.82534 
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Using either form of this equation, you can show that the escape speed for an object at the surface of our 

sun is 56.18 10 m/s =   (about 2.2 million km/h). This value, roughly 1
500

 the speed of light in vacuum, 

is independent of the mass of the escaping object; it depends on only the mass and radius (or average 

density and radius) of the sun. 

Now consider various stars with the same average density ρ and different radii R. Equation (13.29) 

shows that for a given value of density ρ, the escape speed   is directly proportional to R. In 1783 the 

Rev. John Michell noted that if an object with the same average density as the sun had about 500 times 

the radius of the sun, its escape speed would be greater than the speed of light in vacuum, c. With his 

statement that “all light emitted from such a body would be made to return towards it,” Michell became 

the first person to suggest the existence of what we now call a black hole. 

 

 

Black Holes, the Schwarzschild Radius, and the Event Horizon 

 

The first expression for escape speed in Eq. (13.29) suggests that an object of mass M will act as a 

black hole if its radius R is less than or equal to a certain critical radius. How can we determine this 

critical radius? You might think that you can find the answer by simply setting υ = c in Eq. (13.29). As a 

matter of fact, this does give the correct result, but only because of two compensating errors. The kinetic 

energy of light is notmc2/2, and the gravitational potential energy near a black hole is not given by Eq. 

(13.9). In 1916, Karl Schwarzschild used Einstein’s general theory of relativity to derive an expression 

for the critical radius 
SR , now called the Schwarzschild radius. The result turns out to be the same as 

though we had set υ = c in Eq. (13.29), so 

 
S

2GM
c

R
= .  

Solving for the Schwarzschild radius 
SR , we find 

 

.

 

(13.30)

 

If a spherical, nonrotating object with mass M has a radius less than 
SR , then nothing (not even light) can 

escape from the surface of the object, and the object is a black hole (Fig. 13.17). In this case, any other 

object within a distance 
SR  of the center of the black hole is trapped by the gravitational attraction of the 

black hole and cannot escape from it. 

The surface of the sphere with radius 
SR  surrounding a black hole is called the event horizon: 

Since light can’t escape from within that sphere, we can’t see events occurring inside. All that an observer 

outside the event horizon can know about a black hole is its mass (from its gravitational effects on other 

objects), its electric charge (from the electric forces it exerts on other charged objects), and its angular 

momentum (because a rotating black hole tends to drag space—and everything in that space—around 

with it). All other information about the object is irretrievably lost when it collapses inside its event 

horizon. 
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A Visit to a Black Hole 

 

At points far from a black hole, its gravitational effects are the same as those of any normal object 

with the same mass. If the sun collapsed to form a black hole, the orbits of the planets would be 

unaffected. But things get dramatically different close to the black hole. If you decided to become a 

martyr for science and jump into a black hole, the friends you left behind would notice several odd effects 

as you moved toward the event horizon, most of them associated with effects of general relativity. 

If you carried a radio transmitter to send back your comments on what was happening, your 

friends would have to retune their receiver continuously to lower and lower frequencies, an effect called 

the gravitational red shift. Consistent with this shift, they would observe that your clocks (electronic or 

biological) would appear to run more and more slowly, an effect called time dilation. In fact, during their 

lifetimes they would never see you make it to the event horizon. 

In your frame of reference, you would make it to the event horizon in a rather short time but in a 

rather disquieting way. As you fell feet first into the black hole, the gravitational pull on your feet would 

be greater than that on your head, which would be slightly farther away from the black hole. The 

differences in gravitational force on different parts of your body would be great enough to stretch you 

along the direction toward the black hole and compress you perpendicular to it. These effects (called tidal 

forces) would rip you to atoms, and then rip your atoms apart, before you reached the event horizon. 

 

 

Detecting Black Holes 

 

If light cannot escape from a black hole and if black holes are as small as Example 13.11 suggests, 

how can we know that such things exist? The answer is that any gas or dust near the black hole tends to 

be pulled into an accretion disk that swirls around and into the black hole, rather like a whirlpoo. Friction 

within the accretion disk’s gas causes it to lose mechanical energy and spiral into the black hole; as it 

moves inward, it is compressed together. This causes heating of the gas, just as air compressed in a 

bicycle pump gets hotter. Temperatures in excess of 106 K can occur in the accretion disk, so hot that the 

disk emits not just visible light (as do objects that are “red-hot” or “white-hot”) but x rays. Astronomers 

 
Figure 13.17 - (a) An object with a radius R greater than the Schwarzschild radius . (b) If the object 

collapses to a radius smaller than , it is a black hole with an escape speed greater than the speed of light. 

The surface of the sphere of radius  is called the event horizon of the black hole 

 

SR

SR

SR
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look for these x rays (emitted by the gas material before it crosses the event horizon) to signal the 

presence of a black hole. Several promising candidates have been found, and astronomers now express 

considerable confidence in the existence of black holes. 

Black holes in binary star systems like the one 

depicted in Fig. 13.18 have masses a few times greater than 

the sun’s mass. There is also mounting evidence for the 

existence of much larger supermassive black holes. One 

example lies at the center of our Milky Way galaxy, some 

26,000 light-years from earth in the direction of the 

constellation Sagittarius. High-resolution images of the 

galactic center reveal stars moving at speeds greater than 

1500 km/s about an unseen object that lies at the position of a 

source of radio waves called Sgr A*. By analyzing these 

motions, astronomers can infer the period T and semi-major 

axis a of each star’s orbit. The mass 
Xm  of the unseen object 

can be calculated from Kepler’s third law in the form given in 

Eq. (13.17), with the mass of the sun 
Sm  replaced by 

Xm : 

           

3/2

X

2 a
T

Gm


=         so        

2 3

X 2

4 a
m

GT


= . 

The conclusion is that the mysterious dark object at 

the galactic center has a mass of 368.2 10 kg , or 4.1 million 

times the mass of the sun. Yet observations with radio 

telescopes show that it has a radius no more than 4.4 × 1010 

m, about one-third of the distance from the earth to the sun. 

These observations suggest that this massive, compact object 

is a black hole with a Schwarzschild radius of 1.1 × 1010 m. 

Astronomers hope to improve the resolution of their observations so that they can actually see the event 

horizon of this black hole. 

Additional evidence for the existence of black holes has come from observations of gravitational 

radiation. Einstein’s general theory of relativity, which we’ll discuss in Chapter 37, predicts that space 

itself is curved by the presence of massive objects like a planet, star, or black hole. If a massive object 

accelerates in a certain manner, it produces ripples in the curvature of space that radiate outward from the 

object. The disturbances caused by such gravitational radiation are incredibly feeble, but can be measured 

with sensitive detectors if the objects that produce them are very massive and have tremendous 

accelerations. This can happen when two massive black holes are in close orbits around each other. Each 

black hole has an acceleration as it moves around its curved orbit, so it emits gravitational radiation that 

carries away energy. This makes the orbits of the black holes smaller, so they move faster and emit 

gravitational radiation at an ever faster rate. The orbits keep shrinking until the two black holes finally 

merge. Since 2015 scientists have detected the gravitational radiation from several such black hole 

mergers. From the data, they conclude that the merging black holes have masses from 7 to 36 times the 

mass of the sun. (Rainer Weiss, Kip Thorne, and Barry Barish were awarded the 2017 Nobel Prize in 

Physics for their contributions to these discoveries).  

Other lines of research suggest that even larger black holes, in excess of 109 times the mass of the 

sun, lie at the centers of other galaxies. Observational and theoretical studies of black holes of all sizes 

continue to be an exciting area of research in both physics and astronomy. 

 

 

 

 

 

 

 
Figure 13.18 - In a binary star system, two 

stars orbit each other; in the special case 

shown here, one of the stars is a black hole. 

The black hole itself cannot be seen, but the 

x rays from its accretion disk can be 

detected 
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CHAPTER 13: SUMMARY 

Newton’s law of 

gravitation:Any two particles 

with masses 
1m  and

2m  , a 

distance r apart, attract each 

other with forces inversely 

proportional to r2 . These 

forces form an action– reaction 

pair and obey Newton’s third 

law. When two or more objects 

exert gravitational forces on a 

particular object, the total 

gravitational force on that 

individual object is the vector 

sum of the forces exerted by 

the other objects. The 

gravitational interaction 

between spherical mass 

distributions, such as planets or 

stars, is the same as if all the 

mass of each distribution were 

concentrated at the center. 

1 2
g 2

Gm m
F

r
=  

 

Gravitational force, 

weight, and gravitational 

potential energy: The weight 

w of an object is the total 

gravitational force exerted on it 

by all other objects in the 

universe. Near the surface of 

the earth (mass 
Em  and radius

ER  ), the weight is essentially 

equal to the gravitational force 

of the earth alone. The 

gravitational potential energy 

U of two masses m and 
Em  

separated by a distance r is 

inversely proportional to r. The 

potential energy is never 

positive; it is zero only when 

the two objects are infinitely 

far apart.  

E
g 2

E

Gm m
w F

R
= =  

(weight at earth’s surface) 

E

2

E

Gm
g

R
=  

(acceleration due to gravity at 

earth’s surface) 

EGm m
U

r
= −  

 

Orbits: When a satellite 

moves in a circular orbit, the 

centripetal acceleration is 

provided by the gravitational 

attraction of the earth. Kepler’s 

three laws describe the more 

general case: an elliptical orbit 

of a planet around the sun or a 

satellite around a planet.  

EGm

r
 =  

(speed in circular orbit) 
3/2

E E

2 2
2

r r r
T r

Gm Gm

 



= = =  

(period in circular orbit) 
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Black holes: If a 

nonrotating spherical mass 

distribution with total mass M 

has a radius less than its 

Schwarzschild radius 
SR  , it is 

called a black hole. The 

gravitational interaction 

prevents anything, including 

light, from escaping from 

within a sphere with radius 
SR .  

S 2

2GM
R

c
=  

(Schwarzschild radius) 
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14 PERIODIC MOTION 

Many kinds of motion repeat themselves over and over: the vibration of a quartz crystal in a 

watch, the swinging pendulum of a grandfather clock, the sound vibrations produced by a clarinet or an 

organ pipe, and the back-and-forth motion of the pistons in a car engine. This kind of motion, called 

periodic motion or oscillation, is the subject of this chapter. Understanding periodic motion will be 

essential for our later study of waves, sound, alternating electric currents, and light. 

An object that undergoes periodic motion always has a stable equilibrium position. When it is 

moved away from this position and released, a force or torque comes into play to pull it back toward 

equilibrium. But by the time it gets there, it has picked up some kinetic energy, so it overshoots, stopping 

somewhere on the other side, and is again pulled back toward equilibrium. Picture a ball rolling back and 

forth in a round bowl or a pendulum that swings back and forth past its straight-down position. 

In this chapter we’ll concentrate on two simple examples of systems that can undergo periodic 

motions: spring-mass systems and pendulums. We’ll also study why oscillations often tend to die out with 

time and why some oscillations can build up to greater and greater displacements from equilibrium when 

periodically varying forces act. 

 

 

14.1 Describing Oscillation 
 

Figure 14.1 shows one of the simplest systems that can 

have periodic motion. An object with mass m rests on a 

frictionless horizontal guide system, such as a linear air track, so 

it can move along the x-axis only. The object is attached to a 

spring of negligible mass that can be either stretched or 

compressed. The left end of the spring is held fixed, and the 

right end is attached to the object. The spring force is the only 

horizontal force acting on the object; the vertical normal and gravitational forces always add to zero. 

It’s simplest to define our coordinate system so that the origin O is at the equilibrium position, 

where the spring is neither stretched nor compressed. Then x is the x-component of the displacement of 

the object from equilibrium and is also the change in the length of the spring. The spring exerts a force on 

the object with x-component
xF , and the x-component of acceleration is /x xa F m= . 

Figure 14.2 shows the object for three different displacements of the spring. Whenever the object 

is displaced from its equilibrium position, the spring force tends to restore it to the equilibrium position. 

We call a force with this character a restoring force. Oscillation can occur only when there is a restoring 

force tending to return the system to equilibrium. 

Let’s analyze how oscillation occurs in this system. If we displace the object to the right to x A=  

and then let go, the net force and the acceleration are to the left (Fig. 14.2a). The speed increases as the 

object approaches the equilibrium position O. When the object is at O, the net force acting on it is zero 

(Fig. 14.2b), but because of its motion it overshoots the equilibrium position. On the other side of the 

equilibrium position the object is still moving to the left, but the net force and the acceleration are to the 

right (Fig. 14.2c); hence the speed decreases until the object comes to a stop. We’ll show later that with 

an ideal spring, the stopping point is at x = -A. The object then accelerates to the right, overshoots 

equilibrium again, and stops at the starting point x = A, ready to repeat the whole process. The object is 

oscillating! If there is no friction or other force to remove mechanical energy from the system, this motion 

repeats forever; the restoring force perpetually draws the object back toward the equilibrium position, 

only to have the object overshoot time after time. 

In different situations the force may depend on the displacement x from equilibrium in different 

ways. But oscillation always occurs if the force is a restoring force that tends to return the system to 

equilibrium. 

 
Figure 14.1 - A system that can have 

periodic motion 
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Figure 14.2 - Model for periodic motion.  

When the object is displaced from its equilibrium 

position at x = 0, the spring exerts a restoring 

force back toward the equilibrium position  
 

 

Amplitude, Period, Frequency, and Angular Frequency 

 

Here are some terms that we’ll use in discussing periodic motions of all kinds: 

The amplitude of the motion, denoted by A, is the maximum magnitude of displacement from 

equilibrium - that is, the maximum value of x . It is always positive. If the spring in Fig. 14.2 is an ideal 

one, the total overall range of the motion is 2A. The SI unit of A is the meter. A complete vibration, or 

cycle, is one complete round trip—say, from A to -A and back to A, or from O to A, back through O to -A, 

and back to O. Note that motion from one side to the other (say, -A to A) is a half-cycle, not a whole 

cycle.  

The period, T, is the time to complete one cycle. It is always positive. The SI unit is the second, 

but it is sometimes expressed as “seconds per cycle.”  

The frequency, f, is the number of cycles in a unit of time. It is always positive. The SI unit of 

frequency is the hertz, named for the 19th-century German physicist Heinrich Hertz: 

 

 1 hertz = 1 Hz = 1 cycle/s = 1 s-1. 

  

The angular frequency,  , is 2  times the frequency: 

 2 f = .  

We’ll learn shortly why   is a useful quantity. It represents the rate of change of an angular 

quantity (not necessarily related to a rotational motion) that is always measured in radians, so its units are 

rad/s. Since f is in cycle/s, we may regard the number 2π as having units rad/cycle.  

By definition, period and frequency are reciprocals of each other: 

  

(14.1) 
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Also, from the definition of   

  (14.2) 

CAUTION! One period spans a complete cycle. Keep in mind that the period of an oscillation is 

the time for a complete cycle—for example, the time to travel from x = -A to x = +A and back again to  

x = -A. 

 

 

EXAMPLE 14.1 Period, frequency, and angular freguency 

An ultrasonic transducer used for medical diagnosis oscillates at 6.7 MHz = 6.7 × 106 Hz. How 

long does each oscillation take, and what is the angular frequency? 

 

 

IDENTIFY and SET UP 

The target variables are the period T and the angular frequency  . We can find these from the 

given frequency f in Eqs. (14.1) and (14.2). 

 

EXECUTE  

From Eqs. (14.1) and (14.2), 

 

7

6

1 1
1.5 10 s = 0.15 s

6.7 10 Hz
T

f
−= = = 


, 

 
6 6 72 2 (6.7 10 Hz) (2 rad/cycle)(6.7 10 cycle/s) 4.2 10 rad/sf   = =  =  =  . 

 

 

EVALUATE  

This is a very rapid vibration, with large f and   and small T. A slow vibration has small f and   

and large T. 

 

 

KEYCONCEPT 

The period of an oscillation is the reciprocal of the oscillation frequency. The angular frequency 

equals the frequency multiplied by 2π. 

 

 

14.2 Simple Harmonic Motion 
 

The simplest kind of oscillation occurs when the restoring force 
xF  is directly proportional to the 

displacement from equilibrium x. This happens if the spring in Figs. 14.1 and 14.2 is an ideal one that 

obeys Hooke’s law (see Section 6.3). The constant of proportionality between 
xF  and x is the force 

constant k. On either side of the equilibrium position, 
xF  and x always have opposite signs. In Section 6.3 

we represented the force acting on a stretched ideal spring as 
xF  = kx. The x-component of force the 

spring exerts on the object is the negative of this, so 

 

. (14.3)
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This equation gives the correct magnitude and sign of the force, whether x is positive, negative, or zero 

(Fig. 14.3). The force constant k is always positive and has units of N/m (a useful alternative set of units 

is kg/s2 ). We are assuming that there is no friction, so Eq. (14.3) gives the net force on the object. 

When the restoring force is directly proportional to the displacement from equilibrium, as given 

by Eq. (14.3), the oscillation is calledsimple harmonic motion (SHM). The acceleration 
2 / /x xa d x dt F m= =  of an object in SHM is 

 

 (14.4)

 

The minus sign means that, in SHM, the acceleration and 

displacement always have opposite signs. This acceleration is 

not constant, so don’t even think of using the 

constantacceleration equations from Chapter 2. We’ll see 

shortly how to solve this equation to find the displacement x as 

a function of time. An object that undergoes simple harmonic 

motion is called a harmonic oscillator.  

Why is simple harmonic motion important? Not all 

periodic motions are simple harmonic; in periodic motion in 

general, the restoring force depends on displacement in a more 

complicated way than in Eq. (14.3). But in many systems the 

restoring force is approximately proportional to displacement if 

the displacement is sufficiently small (Fig. 14.4). That is, if the 

amplitude is small enough, the oscillations of such systems are 

approximately simple harmonic and therefore approximately 

described by Eq. (14.4). Thus we can use SHM as an 

approximate model for many different periodic motions, such 

as the vibration of a tuning fork, the electric current in an 

alternating-current circuit, and the oscillations of atoms in 

molecules and solids. 

 

 

Circular Motion and the Equations of SHM 

 

To explore the properties of simple harmonic motion, 

we must express the displacement x of the oscillating object as 

a function of time, x(t). The second derivative of this function, 

d2x/dt2, must be equal to (-k/m) times the function itself, as 

required by Eq. (14.4). As we mentioned, the formulas for 

constant acceleration from Section 2.4 are no help because the 

acceleration changes constantly as the displacement x changes. 

Instead, we’ll find x(t) by noting that SHM is related to uniform 

circular motion, which we studied in Section 3.4. 

Figure 14.5a shows a top view of a horizontal disk of 

radius A with a ball attached to its rim at point Q. The disk 

rotates with constant angular speed   (measured in rad/s), so 

the ball moves in uniform circular motion. A horizontal light 

beam casts a shadow of the ball on a screen. The shadow at 

point P oscillates back and forth as the ball moves in a circle. 

We then arrange an object attached to an ideal spring, like the 

combination shown in Figs. 14.1 and 14.2, so that the object 

 

Figure 14.3 - An idealized spring exerts a 

restoring force that obeys Hooke’s law, 

 = -kx. Oscillation with such a 

restoring force is called simple harmonic 

motion 

 

 

Figure 14.4 - In most real oscillations 

Hooke’s law applies provided the object 

doesn’t move too far from equilibrium. In 

such a case small-amplitude oscillations 

are approximately simple harmonic 

xF
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oscillates parallel to the shadow. We’ll prove that the motions of the object and of the ball’s shadow are 

identical if the amplitude of the object’s oscillation is equal to the disk radius A, and if the angular 

frequency 2 f  of the oscillating object is equal to the angular speed   of the rotating disk. That is, 

simple harmonic motion is the projection of uniform circular motion onto a diameter. 

 

We can verify this remarkable statement by finding the acceleration of the shadow at P and 

comparing it to the acceleration of an object undergoing SHM, given by Eq. (14.4). The circle in which 

the ball moves so that its projection matches the motion of the oscillating object is called the reference 

circle; we’ll call the point Q the reference point. We take the reference circle to lie in the xy-plane, with 

the origin O at the center of the circle (Fig.14.5b). At time t the vector OQ from the origin to reference 

point Q makes an angle   with the positive x-axis. As point Q moves around the reference circle with 

constant angular speed  , vector OQ rotates with the same angular speed. Such a rotating vector is called 

a phasor. (This term was in use long before the invention of the Star Trek stun gun with a similar name).  

The x-component of the phasor at time t is just the x-coordinate of the point Q: 

 cosx A = . (14.5) 

This is also the x-coordinate of the shadow P, which is the projection of Q onto the x-axis. Hence 

the x-velocity of the shadow P along the x-axis is equal to the x-component of the velocity vector of point 

Q (Fig. 14.6a), and the x-acceleration of P is equal to the x-component of the acceleration vector of Q 

(Fig. 14.6b). Since point Q is in uniform circular motion, its acceleration vector 
Qa  is always directed 

toward O. Furthermore, the magnitude of 
Qa  is constant and given by the angular speed squared times the 

radius of the circle (see Section 9.3): 

 
2

Qa A= . (14.6) 

Figure 14.6b shows that the x-component of 
Qa  is cosx Qa a = − . Combining this with Eqs. (14.5) and 

(14.6), we get that the acceleration of point P is 

 
2cos cosx Qa a A  = − = −   or (14.7) 

 2

xa x= − . (14.8) 

The acceleration of point P is directly proportional to the displacement x and always has the opposite 

sign. These are precisely the hallmarks of simple harmonic motion.  

 

Figure 14.5 - (a) Relating uniform circular motion and simple harmonic motion. (b) The ball’s shadow 

moves exactly like an object oscillating on an ideal spring 
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Equation (14.8) is exactly the 

same as Eq. (14.4) for the acceleration 

of a harmonic oscillator, provided that 

the angular speed   of the reference 

point Q is related to the force constant k 

and mass m of the oscillating object by 

2 k

m
 =   or  

k

m
 =          (14.9) 

We have been using the same 

symbol   for the angular speed of the 

reference point Q and the angular 

frequency of the oscillating point P. The 

reason is that these quantities are equal! 

If point Q makes one complete 

revolution in time T, then point P goes through one complete cycle of oscillation in the same time; hence 

T is the period of the oscillation. During time T the point Q moves through 2π radians, so its angular 

speed is 2 /T = . But this is the same as Eq. (14.2) for the angular frequency of the point P, which 

verifies our statement about the two interpretations of . This is why we introduced angular frequency in 

Section 14.1; this quantity makes the connection between oscillation and circular motion. So we 

reinterpret Eq. (14.9) as an expression for the angular frequency of simple harmonic motion: 

  (14.10) 

When you start an object oscillating in SHM, the value of   is not yours to choose; it is predetermined 

by the values of k and m. The units of k are N/m or kg/s2 , so k/m is in (kg/s2)/kg = s-2 . When we take the 

square root in Eq. (14.10), we get s-1, or more properly rad/s because this is an angular frequency  

(recall that a radian is not a true unit). According to Eqs. (14.1) and (14.2), the frequency f and period T 

are 

  (14.11) 

  (14.12) 

CAUTION! Don’t confuse frequency and angular frequency. You can run into trouble if you 

don’t make the distinction between frequency f and angular frequency 2 f = . Frequency tells you how 

many cycles of oscillation occur per second, while angular frequency tells you how many radians per 

second this corresponds to on the reference circle. In solving problems, pay careful attention to whether 

the goal is to find f or  . 

We see from Eq. (14.12) that a larger mass m will have less acceleration and take a longer time for 

a complete cycle (Fig. 14.7). A stiffer spring (one with a larger force constant k) exerts a greater force at a 

given deformation x, causing greater acceleration and a shorter time T per cycle. 

 

 

 

       
Figure 14.6 - The (a) x-velocity and (b) x-acceleration of the ball’s 

shadow P (see Fig. 14.5) are the x-components of the velocity and 

acceleration vectors, respectively, of the ball Q 
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Period and Amplitude in SHM 

 

Equations (14.11) and (14.12) show that the period and frequency of simple harmonic motion are 

completely determined by the mass m and the force constant k. In simple harmonic motion the period and 

frequency do not depend on the amplitude A. For given values of m and k, the time of one complete 

oscillation is the same whether the amplitude is large or small. Equation (14.3) shows why we should 

expect this. Larger A means that the object reaches larger values of 0 x 0 and is subjected to larger 

restoring forces. This increases the average speed of the object over a complete cycle; this exactly 

compensates for having to travel a larger distance, so the same total time is involved.  

The oscillations of a tuning fork are essentially simple harmonic motion, so it always vibrates with 

the same frequency, independent of amplitude. This is why a tuning fork can be used as a standard for 

musical pitch. If it were not for this characteristic of simple harmonic motion, it would be impossible to 

play most musical instruments in tune. If you encounter an oscillating object with a period that does 

depend on the amplitude, the oscillation is not simple harmonic motion. 

 

 

Displacement, Velocity, and Acceleration in  SHM 

 

We still need to find the displacement x as a function of time for a harmonic oscillator.  

Equation (14.4) for an object in SHM along the x-axis is identical to Eq. (14.7) for the x-coordinate of the 

reference point in uniform circular motion with constant angular speed /k m = . Hence Eq. (14.5), 

cosx A = , describes the x-coordinate for both situations. If at t = 0 the phasor OQ makes an angle   

(the Greek letter phi) with the positive x-axis, then at any later time t this angle is t  = + .  

We substitute this into Eq. (14.5) to obtain 

  

(14.13)

 

Figure 14.7 shows a graph of Eq. (14.13) for the 

particular case   = 0. We could also have written Eq. (14.13) 

in terms of a sine function rather than a cosine by using the 

identity cos sin( / 2)  = + . In simple harmonic motion 

the displacement is a periodic, sinusoidal function of time. 

There are many other periodic functions, but none so simple 

as a sine or cosine function.  

The value of the cosine function is always between -1 

and 1, so in Eq. (14.13), x is always between -A and A.  

This confirms that A is the amplitude of the motion.  

The cosine function in Eq. (14.13) repeats itself 

whenever time t increases by one period T, or when t +  

increases by 2  radians. Thus, if we start at time t = 0,  

the time T to complete one cycle is 

 2
k

T T
m

 = =   or  2
m

T
k

= ,  

which is just Eq. (14.12). Changing either m or k changes the period T (Figs. 14.8a and 14.8b), but T does 

not depend on the amplitude A (Fig. 14.8c). 

 

 

 

Figure 14.7 Graph of x versus t [see Eq. 

(14.13)] for simple harmonic motion. The 

case shown has  = 0 
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The constant   in Eq. (14.13) is called the phase 

angle. It tells us at what point in the cycle the motion was at t 

= 0 (equivalent to where around the circle the point Q was at t 

= 0). We denote the displacement at t = 0 by
0x . Putting t = 0 

and x = 
0x  in Eq. (14.13), we get 

                  
0 cosx A = .                                     (14.14) 

If   = 0, then
0 cos0x A A= = , and the object starts at 

its maximum positive displacement.  

If   =  , then 
0 cosx A A= = − , and the particle starts at its 

maximum negative displacement.  

If f / 2 = , then 
0 cos( / 2) 0x A = = , and the particle is 

initially at the origin. Figure 14.9 shows the displacement x 

versus time for three different phase angles.  

We find the velocity 
x  and acceleration 

xa  as functions of time for a harmonic oscillator by 

taking derivatives of Eq. (14.13) with respect to time: 

 sin( )x

dx
A t

dt
   = = − +   (velocity in SHM). (14.15) 

 
2

2

2
cos( )x

x

d d x
a A t

dt dt


  = = = − +   (acceleration in SHM). (14.16) 

The velocity 
x  oscillates between 

 
max A = +   and  

max A − = − ,  

and the acceleration 
xa  oscillates between 

 2

maxa A= +   and  2

maxa A− = −  

(Fig. 14.10). Comparing Eq. (14.16) with Eq. (14.13) and recalling that 2 /k m =  from Eq. (14.9), we 

see that 

 
2

max

k
a x x

m
= − = − ,  

which is just Eq. (14.4) for simple harmonic motion. This confirms that Eq. (14.13) for x as a function of 

time is correct.  

 
 

Figure 14.8 - Variations of simple harmonic motion. All cases shown have  = 0 [see Eq. (14.13)] 

 
Figure 14.9 - Variations of simple 

harmonic motion: same m, k, and A but 
different phase angles  




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We actually derived Eq. (14.16) earlier in a geometrical way by taking the x- component of the 

acceleration vector of the reference point Q. This was done in Fig. 14.6b and Eq. (14.7) (recall that 

). In the same way, we could have derived Eq. (14.15) by taking the x-component of the 

velocity vector of Q, as shown in Fig. 14.6b. We’ll leave the details for you to work out.  

 

 

 

Figure 14.10 - Graphs of (a) x versus t,  

(b)  versus t, and (c)  versus t for an object in 

SHM. For the motion depicted in these graphs,

 

 

 
 

Note that the sinusoidal graph of displacement versus 

time (Fig. 14.10a) is shifted by one-quarter period from the 

graph of velocity versus time (Fig. 14.10b) and by one-half 

period from the graph of acceleration versus time  

(Fig. 14.10 c). Figure 14.11 shows why this is so. When the 

object is passing through the equilibrium position so that  

x = 0, the velocity equals either 
max  or 

max−  (depending on 

which way the object is moving) and the acceleration is zero. 

When the object is at either its most positive displacement, x 

= +A, or its most negative displacement, x = A− , the velocity 

is zero and the object is instantaneously at rest. At these 

points, the restoring force 
xF kx= −  and the acceleration of 

the object have their maximum magnitudes. At x = +A the 

acceleration is negative and equal to
maxa−  . At x = A−  the 

acceleration is positive:
maxxa a= + .  

Here’s how we can determine the amplitude A and 

phase angle   for an oscillating object if we are given its 

initial displacement 
0x  and initial velocity

0 x  . The initial 

velocity 
0 x  is the velocity at time t = 0; putting 

x  = 
0 x  and 

t = 0 in Eq. (14.15), we find 

 

0 sinx A  = − .                        (14.17) 

 

To find  , we divide Eq. (14.17) by Eq. (14.14). This 

eliminates A and gives an equation that we can solve for  : 

t  = +

x xa

/ 3 =

 

Figure 14.11 - How x-velocity  and  

x-acceleration  vary during one cycle of 

SHM 

x

xa
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0

0

sin
tan

cos

x A

x A

  
 



−
= = − , 

 0

0

arctan x

x






 
= − 

 
      (phase angle in SHM). (14.18) 

It is also easy to find the amplitude A if we are given 
0x and

0 x . We’ll sketch the derivation, and 

you can fill in the details. Square Eq. (14.14); then divide Eq. (14.17) by , square it, and add to the 

square of Eq. (14.14). The right side will be 2 2 2(sin cos )A  + , which is equal to A2. The final result is 

 

2
2 0
0 2

xA x



= +   (amplitude in SHM). (14.19) 

Note that when the object has both an initial displacement 
0x  and a nonzero initial velocity 

0 x , the 

amplitude A is not equal to the initial displacement. That’s reasonable; if you start the object at a positive 

0x  but give it a positive velocity 
0 x , it will go farther than 

0x  before it turns and comes back, and so  

A>
0x . 

 

 

PROBLEM-SOLVING STRATEGY 

14.1 Simple Harmonic Motion I: Describing Motion 

 

 

IDENTIFY the relevant concepts: 

An oscillating system undergoes simple harmonic motion (SHM) only if the restoring force is 

directly proportional to the displacement. 

 

 

SET UP the problem: 

• Identify the known and unknown quantities, and determine which are the target variables. 

• Distinguish between two kinds of quantities. Properties of the system include the mass m, 

the force constant k, and quantities derived from m and k, such as the period T, frequency f, and angular 

frequency  . These are independent of properties of the motion, which describe how the system behaves 

when it is set into motion in a particular way; they include the amplitude A, maximum velocity
max , and 

phase angle   f, and values of x, 
x , and 

xa  at particular times. 

• If necessary, define an x-axis as in Fig. 14.14, with the equilibrium position at x = 0. 

 

 

EXECUTE the solution: 

1. Use the equations given in Sections 14.1 and 14.2 to solve for the target variables. 

2. To find the values of x,  , and  at particular times, use Eqs. (14.13), (14.15), and 

(14.16), respectively. If both the initial displacement  and initial velocity  are given, determine  

and A from Eqs. (14.18) and (14.19). If the object has an initial positive displacement  but zero initial 

velocity (  = 0), then the amplitude is A =  and the phase angle is  = 0. If it has an initial positive 

velocity  but no initial displacement (  = 0), the amplitude is  and the phase angle is 

. Express all phase angles in radians. 

 

 

EVALUATE your answer: 

x xa

0x 0 x 

0x

0x 0x 

0 x 0x 0 /xA  =

/ 2 = −
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Make sure that your results are consistent. For example, suppose you used  and  to find 

general expressions for x and  at time t. If you substitute t = 0 into these expressions, you should get 

back the given values of  and . 

14.3 Energy in Simple Harmonic Motion 
 

We can learn even more about simple harmonic motion by using energy considerations. The only 

horizontal force on the object in SHM in Figs. 14.2 and 14.14 is the conservative force exerted by an ideal 

spring. The vertical forces do no work, so the total mechanical energy of the system is conserved. We also 

assume that the mass of the spring itself is negligible.  

The kinetic energy of the object is 21
2

K m=  and the potential energy of the spring is 21
2

K kx= , 

just as in Section 7.2. There are no nonconservative forces that do work, so the total mechanical energy E 

= K + U is conserved: 

 2 21 1
2 2

constantxE m kx= + = . (14.20) 

(Since the motion is one-dimensional, 2 2

x = ).  

The total mechanical energy E is also directly related to the amplitude A of the motion. When the 

object reaches the point x = A, its maximum displacement from equilibrium, it momentarily stops as it 

turns back toward the equilibrium position. That is, when x = A (or A−  ), 0x = . At this point the energy 

is entirely potential, and 21
2

E kA=  . Because E is constant, it is equal to 21
2
kA at any other point. 

Combining this expression with Eq. (14.20), we get 

  

(14.21)

 

We can verify this equation by substituting x and 
x  from Eqs. (14.13) and (14.15) and using 

2 /k m =  from Eq. (14.9): 

( ) ( )

( ) ( )

2 22 21 1 1 1
2 2 2 2

2 2 2 2 21 1 1
2 2 2

sin cos

sin cos

xE m kx m A t k S t

kA t kA t kA

     

   

= + = − + + +      

= + + + =
 

(Recall that 2 2sin cos 1 + = ).  

Hence our expressions for displacement and velocity in SHM are consistent with energy 

conservation, as they must be.  

We can use Eq. (14.21) to solve for the velocity 
x  of the object at a given displacement x: 

 
2 2

x

k
A x

m
 =  − . (14.22) 

The   sign means that at a given value of x the object can be moving in either direction. For 

example, when x =  A/2, 

2

2 3

2 4
x

k A k
A A

m m


 
=  −  =  

 
. 

Equation (14.22) also shows that the maximum speed 
max  occurs at x = 0. Using Eq. (14.10), 

/k m = , we find that 

0x 0 x

x

0x 0 x
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 x

k
A A

m
 = = . (14.23) 

This agrees with Eq. (14.15): 
x  oscillates between A−  and A+  . 

 

Interpreting E, K, and U in SHM 

Figure 14.12 shows the energy quantities E, K, and U at x = 0, x = / 2A  , and x = A .  

Figure 14.13 is a graphical display of Eq. (14.21); energy (kinetic, potential, and total) is plotted 

vertically and the coordinate x is plotted horizontally. The parabolic curve in Fig. 14.13a represents the 

potential energy 21
2

U kx= . The horizontal line represents the total mechanical energy E, which is 

constant and does not vary with x. At any value of x between A−  and A, the vertical distance from the  

x-axis to the parabola is U; since E = K + U, the remaining vertical distance up to the horizontal line is K. 

Figure 14.13 shows both K and U as functions of x. The horizontal line for E intersects the potential-

energy curve at x = A−  and x = A, so at these points the energy is entirely potential, the kinetic energy is 

zero, and the object comes momentarily to rest before reversing direction. As the object oscillates 

between A−  and A, the energy is continuously transformed from potential to kinetic and back again. 
 

 

 
 

Figure 14.12 - Graphs of E, K, and U versus displacement in SHM. The velocity of the object is not 

constant, so these images of the object at equally spaced positions are not equally spaced in time 

 
 

Figure 14.13 - Kinetic energy K, potential energy U, and total mechanical energy E as functions of 

displacement for SHM. At each value of  x the sum of the values of K and U equals the constant 

value of E. Can you show that the energy is half kinetic and half potential at ? 1
2

x A= 
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Figure 14.13a shows the connection between the amplitude A and the corresponding total 

mechanical energy 21
2

E kA= . If we tried to make x greater than A (or less than A− ), U would be greater 

than E, and K would have to be negative. But K can never be negative, so x can’t be greater than A or less 

than A− . 

 

 

PROBLEM-SOLVING STRATEGY 

14.1Simple Harmonic Motion I: Describing Motion 

 

The SHM energy equation, Eq. (14.21), is a useful relationship among velocity, displacement, and 

total mechanical energy. If a problem requires you to relate displacement, velocity, and acceleration 

without reference to time, consider using Eq. (14.4) (from Newton’s second law) or Eq. (14.21) (from 

energy conservation). 

Because Eq. (14.21) involves x2 and , you must infer the signs of x and  from the situation. 

For instance, if the object is moving from the equilibrium position toward the point of greatest positive 

displacement, then x is positive and  is positive. 

 

 

14.4 Applications of Simple Harmonic Motion 
 

So far, we’ve looked at a grand total of one situation in which simple harmonic motion (SHM) 

occurs: an object attached to an ideal horizontal spring. But SHM can occur in any system in which there 

is a restoring force that is directly proportional to the displacement from equilibrium, as given by  

Eq. (14.3), 
xF kx= − . The restoring force originates in different ways in different situations, so we must 

find the force constant k for each case by examining the net force on the system. Once this is done, it’s 

straightforward to find the angular frequency  , frequency f, and period T; we just substitute the value of 

k into Eqs. (14.10), (14.11), and (14.12), respectively. Let’s use these ideas to examine several examples 

of simple harmonic motion. 

 

Vertical SHM 

 

Suppose we hang a spring with force constant k (Fig. 14.14a) and suspend from it an object with 

mass m. Oscillations will now be vertical; will they still be SHM? In Fig. 14.14b the object hangs at rest, 

in equilibrium. In this position the spring is stretched an amount ∆l just great enough that the spring’s 

upward vertical force k ∆l on the object balances its weight mg: 

 k l mg = .  

Take x = 0 to be this equilibrium position and take the positive x-direction to be upward. When the 

object is a distance xabove its equilibrium position (Fig. 14.14c), the extension of the spring is ∆l - x. The 

upward force it exerts on the object is then k(∆l – x), and the net x-component of force on the object is 

. 

that is, a net downward force of magnitude kx. Similarly, when the object is below the equilibrium 

position, there is a net upward force with magnitude kx. In either case there is a restoring force with 

magnitude kx. If the object is set in vertical motion, it oscillates in SHM with the same angular frequency 

as though it were horizontal, . So vertical SHM doesn’t differ in any essential way from 

horizontal SHM. The only real change is that the equilibrium position x = 0 no longer corresponds to the 

point at which the spring is unstretched. The same ideas hold if an object with weight mg is placed atop a 

compressible spring (Fig. 14.15) and compresses it a distance ∆l. 

 

2

x x

x

net ( ) ( )F k l x mg kx=  − + − = −

/k m =
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Figure 14.15 - If the weight mg compresses the spring 

by a distance ∆l,  the force constant is k = mg/∆l and the 

angular frequency for vertical SHM is  - 

the same as if the object were suspended from the spring 

(see Fig. 14.14) 

 
Angular SHM 

 

A mechanical watch keeps time based on the 

oscillations of a balance wheel (Fig. 14.16). The wheel has a 

moment of inertia I about its axis. A coil spring exerts a 

restoring torque 
z  that is proportional to the angular 

displacement   from the equilibrium position. We write

z = , where   (the Greek letter kappa) is a constant called 

the torsion constant. Using the rotational analog of Newton’s 

second law for a rigid body
2 2/z zI Id dt  = = , Eq. (10.7), 

we find 

 I − =   or  
2

2

d

dt I

 
= − . 

This equation is exactly the same as Eq. (14.4) for 

simple harmonic motion, with x replaced by   and k/m replaced 

by / I . So we are dealing with a form of angular simple 

harmonic motion. The angular frequency   and frequency f are given by Eqs. (14.10) and (14.11), 

respectively, with the same replacement: 

  (14.24) 

/k m =

 

Figure 14.14 - An object attached to a hanging spring 

 

Figure 14.16 - The balance wheel of a 

mechanical watch. The spring exerts a 

restoring torque that is proportional to the 

angular displacement , so the motion is 

angular SHM 


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The angular displacement   as a function of time is given by 

 cos( )t  =  + ,  

where ϴ (the capital Greek letter theta) plays the role of an angular amplitude. 

It’s a good thing that the motion of a balance wheel is simple harmonic. If it weren’t, the 

frequency might depend on the amplitude, and the watch would run too fast or too slow as the spring ran 

down. 

 

 

Vibrations of Molecules 

 

The following discussion of the vibrations of molecules uses the binomial theorem. If you aren’t 

familiar with this theorem, you should read about it in the appropriate section of a math textbook. 

When two atoms are separated by a few atomic diameters, they can exert attractive forces on each 

other. But if the atoms are so close that their electron shells overlap, the atoms repel each other. Between 

these limits, there can be an equilibrium separation distance at which two atoms form a molecule. If these 

atoms are displaced slightly from equilibrium, they will oscillate. 

Let’s consider one type of interaction between atoms called the van der Waals interaction. Our 

immediate task here is to study oscillations, so we won’t go into the details of how this interaction arises. 

Let the center of one atom be at the origin and let the center of the other atom be a distance r away  

(Fig. 14.17a); the equilibrium distance between centers is 
0r R= . Experiment shows that the van der 

Waals interaction can be described by the potential-energy function 

 

12 6

0 0
0 2

R R
U U

r r

    
= −    

     

, (14.25) 

where 
0U  is a positive constant with units of joules. When the two atoms are very far apart, U = 0; when 

they are separated by the equilibrium distance 
0r R= , 

0U U= − . From Section 7.4, the force on the 

second atom is the negative derivative of Eq. (14.25):  

 

13 712 6

0 0 0 0 0
0 13 7

0

12 6
2 12r

R R U R RdU
F U

dr r r R r r

      
= − = − = −      

       

. (14.26) 

Figures 14.17b and 14.17c plot the potential energy and force, respectively. The force is positive 

for r <
0R  and negative for r >

0R  , so it is a restoring force. 

 

 

 

Figure 14.17 - (a) Two atoms with centers separated by r. (b) Potential energy U, and (c) Force   

in the van der Waals interaction 

rF
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Let’s examine the restoring force 
rF  in Eq. (14.26). We let x represent the displacement from 

equilibrium: 

 0x r R= − , so  0r R x= + .  

In terms of x, the force 
rF  in Eq. (14.26) becomes 

 
( ) ( )

13 7

0 0 0 0

13 7

0 0 0 0 0 0

1 1
12 12

1 / 1 /
r

U R R U
F

R R x R x R x R x R

      
 = − = −    

+ + + +         

. (14.27) 

This looks nothing like Hooke’s law, 
xF kx= − , so we might be tempted to conclude that 

molecular oscillations cannot be SHM. But let us restrict ourselves to small-amplitude oscillations so that 

the absolute value of the displacement x is small in comparison to 
0R  and the absolute value of the ratio 

0/x R  is much less than 1. We can then simplify Eq. (14.27) by using the binomial theorem: 

 
2 3( 1) ( 1)( 2)

(1 ) 1 ...
2! 3!

n n n n n n
u nu u u

− − −
+ = + + + +  (14.28) 

If u  is much less than 1, each successive term in Eq. (14.28) is much smaller than the one it follows, and 

we can safely approximate ( )1
n

u+  by just the first two terms. In Eq. (14.27), u is replaced by 
0/x R  and 

n equals -13 or -7, so 

 13

013
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1
(1 / ) 1 ( 13)

(1 / )

x
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+
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07
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1
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x
x R
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−= +  + −
+

,  

 0 0
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0 0 0 0

72
12 1 ( 13) 1 ( 7)r

U Ux x
F x

R R R R

      
 + − − + − = −      

      

. (14.29) 

This is just Hooke’s law, with force constant 2

0 072 /k U R= . (Note that k has the correct units, J/m2 

or N/m). So oscillations of molecules bound by the van der Waals interaction can be simple harmonic 

motion, provided that the amplitude is small in comparison to 
0R  so that the approximation 0/ 1x R  

used in the derivation of Eq. (14.29) is valid.  

You can also use the binomial theorem to show that the potential energy U in Eq. (14.25) can be 

written as 21
2

U kx C + , where 
0C U= −  and k is again equal to 2

0 072 /U R . Adding a constant to the 

potential-energy function has no effect on the physics, so the system of two atoms is fundamentally no 

different from a mass attached to a horizontal spring for which 21
2

U kx . 

 

 

14.5 The Simple Pendulum 
 

A simple pendulum is an idealized model consisting of a point mass suspended by a massless, 

unstretchable string. When the point mass is pulled to one side of its straightdown equilibrium position 

and released, it oscillates about the equilibrium position. Familiar situations such as a wrecking ball on a 

crane’s cable or a person on a swing can be modeled as simple pendulums. 
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The path of the point mass (sometimes called a pendulum bob) is not a straight line but the arc of a 

circle with radius L equal to the length of the string (Fig. 14.18). We use as our coordinate the distance x 

measured along the arc. If the motion is simple harmonic, the restoring force must be directly 

proportional to x or (because  ) to  . Is it? 

 

Figure 14.18 shows the radial and tangential components of the forces on the mass. The restoring 

force F
 is the tangential component of the net force: 

sinF mg = − . (14.30) 

Gravity provides the restoring force F
; the tension T merely acts to make the point mass move in an arc. 

Since F
 is proportional to sin , not to  , the motion is not 

simple harmonic. However, if angle   is small, sin u is very 

nearly equal to   in radians (Fig.14.19). (When 0.1 =  rad, 

about 6°, sin 0.0998 = . That’s only 0.2% different). With 

this approximation, Eq. (14.30) becomes 

 

x mg
F mg mg x

L L
 = − = − = − . (14.31) 

The restoring 

force is then 

proportional to 

the coordinate for 

small 

displacements, 

and the force 

constant is

/k mg L=  . 

From Eq. (14.10) 

the angular frequency   of a simple pendulum with 

small amplitude is 

 (14.32) 

The corresponding frequency and period relationships are 

(14.33) 

                                 (14.34) 

x L= 

 
 

Figure 14.18 - The dynamics of a simple 

pendulum. An idealized simple pendulum 

 

 

Figure 14.19 - For small angular 

displacements , the restoring force 

 on a simple pendulum is 

approximately equal to ; that is, it 

is approximately proportional to the 

displacement . Hence for small angles 

the oscillations are simple harmonic 


sinF mg = −

mg−


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These expressions don’t involve the mass of the particle. That’s because the gravitational restoring 

force is proportional to m, so the mass appears on both sides of F ma=  and cancels out. (The same 

physics explains why objects of different masses fall with the same acceleration in a vacuum). For small 

oscillations, the period of a pendulum for a given value of g is determined entirely by its length. 

Equations (14.32) through (14.34) tell us that a long pendulum (large L) has a longer period than a 

shorter one. Increasing g increases the restoring force, causing the frequency to increase and the period to 

decrease. 

The motion of a pendulum is only approximately simple harmonic. When the maximum angular 

displacement ϴ (amplitude) is not small, the departures from simple harmonic motion can be substantial.  

In general, the period T is given by 

.                                 (14.35) 

We can compute T to any desired degree of precision by taking enough terms in the series. You can 

confirm that when ϴ = 15°, the true period is longer than that given by the approximate  

Eq. (14.34) by less than 0.5 %.  

A pendulum is a useful timekeeper because the period is very nearly independent of amplitude, 

provided that the amplitude is small. Thus, as a pendulum clock runs down and the amplitude of the 

swings decreases a little, the clock still keeps very nearly correct time. 

 

 

14.6 The Physical Pendulum 
 

A physical pendulum is any real pendulum that uses an 

extended object, in contrast to the idealized simple pendulum 

with all of its mass concentrated at a point. Figure 14.20 shows 

an object of irregular shape pivoted so that it can turn without 

friction about an axis through point O. In equilibrium the center 

of gravity (cg) is directly below the pivot; in the position shown, 

the object is displaced from equilibrium by an angle u, which 

we use as a coordinate for the system. The distance from O to 

the center of gravity is d, the moment of inertia of the object 

about the axis of rotation through O is I, and the total mass is m. 

When the object is displaced as shown, the weight mg causes a 

restoring torque. 

 
( )( sin )z mg d = − . (14.36) 

The negative sign shows that the restoring torque is clockwise 

when the displacement is counterclockwise, and vice versa. 

When the object is released, it oscillates about its 

equilibrium position. The motion is not simple harmonic 

because the torque 
z  is proportional to sin  rather than to u 

itself. However, if   is small, we can approximate sin  by   in 

radians, just as we did in analyzing the simple pendulum. Then the motion is approximately simple 

harmonic. With this approximation, 

 ( )z mgd = − .  

From Section 10.2, the equation of motion is z zI =  so  

2 2 2
2 4

2 2 2

1 1 3
2 1 sin sin ...

2 2 2 4 2

L
T

g


  
= + + + 

 

 

Figure 14.20 - Dynamics of a physical 

pendulum 
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2

2
( ) z

d
mgd I I

dt


 − = =

,
  

 

2

2

d mgd

dt I


= −

. (14.37) 

Comparing this with Eq. (14.4), we see that the role of (k/m) for the spring-mass system is played 

here by the quantity (mgd/I). Thus the angular frequency is 

  

(14.38)

 

The frequency f is 1/2π times this, and the period T is 1>f : 

  

(14.39)

 

Equation (14.39) is the basis of a common method for experimentally determining the moment of 

inertia of an object with a complicated shape. First locate the center of gravity by balancing the object. 

Then suspend the object so that it is free to oscillate about an axis, and measure the period T of small-

amplitude oscillations. Finally, use Eq. (14.39) to calculate the moment of inertia I of the object about this 

axis from T, the object’s mass m, and the distance d from the axis to the center of gravity. Biomechanics 

researchers use this method to find the moments of inertia of an animal’s limbs. This information is 

important for analyzing how an animal walks, as we’ll see in the second of the two following examples. 

 

 

14.7 Damped Oscillations 
 

The idealized oscillating systems we have discussed so far are frictionless. There are no 

nonconservative forces, the total mechanical energy is constant, and a system set into motion continues 

oscillating forever with no decrease in amplitude.  

Real-world systems always have some dissipative forces, however, and oscillations die out with 

time unless we replace the dissipated mechanical energy. A mechanical pendulum clock continues to run 

because potential energy stored in the spring or a hanging weight system replaces the mechanical energy 

lost due to friction in the pivot and the gears. But eventually the spring runs down or the weights reach the 

bottom of their travel. Then no more energy is available, and the pendulum swings decrease in amplitude 

and stop. 

The decrease in amplitude caused by dissipative forces is called damping (not “dampening”), and 

the corresponding motion is called damped oscillation. The simplest case is a simple harmonic oscillator 

with a frictional damping force that is directly proportional to the velocity of the oscillating object. This 

behavior occurs in friction involving viscous fluid flow, such as in shock absorbers or sliding between oil-

lubricated surfaces. We then have an additional force on the object due to friction, 
x xF b= −  , where 

/x dx dt =  is the velocity and b is a constant that describes the strength of the damping force. The 

negative sign shows that the force is always opposite in direction to the velocity. The net force on the 

object is then 

 x xF kx b= − − , (14.40) 

and Newton’s second law for the system is 
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x xkx b ma− − =   or  

2

2

dx d x
kx b m

dt dt
− − = . (14.41) 

Equation (14.41) is a differential equation for x; it’s the same as Eq. (14.4), the equation for the 

acceleration in SHM, but with the added term -bdx/dt. We won’t go into how to solve this equation; we’ll 

just present the solution. If the damping force is relatively small, the motion is described by 

  

(14.42)

 

 

The angular frequency of these damped oscillations is given by 

  

 (14.43)

 

You can verify that Eq. (14.42) is a solution of Eq. (14.41) by calculating the first and second 

derivatives of x, substituting them into Eq. (14.41), and checking whether the left and right sides are 

equal.  

The motion described by Eq. (14.42) differs from the undamped case in two ways. First, the 

amplitude ( /2 )b m tAe−  is not constant but decreases with time because of the exponential factor ( /2 )b m te− . 

Figure 14.21 is a graph of Eq. (14.42) for 0 = ; the larger the value of b, the more quickly the amplitude 

decreases.  

Second, the angular frequency '  , given by Eq. (14.43), is 

no longer equal to /k m =  but is somewhat smaller. It 

becomes zero when b becomes so large that 

2

2
0

4

k b

m m
= =   or  b km= . (14.44) 

When Eq. (14.44) is satisfied, the condition is called 

critical damping. The system no longer oscillates but returns to 

its equilibrium position without oscillation when it is displaced 

and released.  

CAUTION! When frequencies are imaginary. Note that 

when there is overdamping and b is greater than 2 km , the 

argument of the square root in Eq. (14.43) is negative and the 

angular frequency of oscillation   is an imaginary number. This 

is a mathematical clue that there is no oscillation in this case. 

If b is greater than 2 km , the condition is called overdamping. Again there is no oscillation, but 

the system returns to equilibrium more slowly than with critical damping. For the overdamped case the 

solutions of Eq. (14.41) have the form 

1 2

1 2

a t a t
x C e C e

− −
= + ,

 

where 
2C  and 

2C  are constants that depend on the initial conditions and 
1a  and 

2a  are constants 

determined by m, k, and b.  

 

Figure 14.21 - Graph of displacement 

versus time for an oscillator with little 

damping [see Eq. (14.42)] and with 

phase angle . The curves are for 

two values of the damping constant b 

0 =
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When b is less than the critical value, as in Eq. (14.42), 

the condition is called underdamping. The system oscillates 

with steadily decreasing amplitude. 

In a vibrating tuning fork or guitar string, it is usually 

desirable to have as little damping as possible. By contrast, 

damping plays a beneficial role in the oscillations of an 

automobile’s suspension system. The shock absorbers provide a 

velocity-dependent damping force so that when the car goes 

over a bump, it doesn’t continue bouncing forever (Fig.14.22). 

For optimal passenger comfort, the system should be critically 

damped or slightly underdamped. Too much damping would be 

counterproductive; if the suspension is overdamped and the car 

hits a second bump just after the first one, the springs in the 

suspension will still be compressed somewhat from the first 

bump and will not be able to fully absorb the impact. 

 

 

Vibrations of Molecules 

 

In damped oscillations the damping force is 

nonconservative; the total mechanical energy of the system is 

not constant but decreases continuously, approaching zero after 

a long time. To derive an expression for the rate of change of 

energy, we first write an expression for the total mechanical 

energy E at any instant: 

 2 21 1
2 2xE m kx= +

.
  

To find the rate of change of this quantity, we take its time derivative: 

 x
x

ddE dx
m kx

dt dt dt


= + .  

But /x xd dt a =  and / xdx dt =  , so 

 ( )x x

dE
ma kx

dt
= + .  

From Eq. (14.41), /x xma kx b dx dt b+ = − = − , so 

 
2( )x x x

dE
b b

dt
  = − = −  (damped oscillations).                                    (14.45) 

The right side of Eq. (14.45) is negative whenever the oscillating object is in motion, whether the  

x-velocity x  is positive or negative. This shows that as the object moves, the energy decreases, though 

not at a uniform rate. The term 2 ( )x x xb b  − = −  (force times velocity) is the rate at which the damping 

force does (negative) work on the system (that is, the damping power). This equals the rate of change of 

the total mechanical energy of the system.  

Similar behavior occurs in electric circuits containing inductance, capacitance, and resistance. 

There is a natural frequency of oscillation, and the resistance plays the role of the damping constant b.  

 

 

14.7 Forced Oscillations and Resonance 

 

Figure 14.22 - An automobile shock 

absorber. The viscous fluid causes a 

damping force that depends on the 

relative velocity of the two ends of the 

unit 
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A damped oscillator left to itself will eventually stop moving. But we can maintain a constant-

amplitude oscillation by applying a force that varies with time in a periodic way. As an example, consider 

your cousin Throckmorton on a playground swing. You can keep him swinging with constant amplitude 

by giving him a push once each cycle. We call this additional force a driving force. 

 

 

Damped Oscillation with a Periodic Driving Force 

 

If we apply a periodic driving force with angular frequency 
d  to a damped harmonic oscillator, 

the motion that results is called a forced oscillation or a driven oscillation. It is different from the motion 

that occurs when the system is simply displaced from equilibrium and then left alone, in which case the 

system oscillates with a natural angular frequency '  determined by m, k, and b, as in Eq. (14.43). In a 

forced oscillation, however, the angular frequency with which the mass oscillates is equal to the driving 

angular frequency 
d . This does not have to be equal to the natural angular frequency ' . If you grab the 

ropes of Throckmorton’s swing, you can force the swing to oscillate with any frequency you like.  

Suppose we force the oscillator to vibrate with an angular frequency 
d  that is nearly equal to the 

angular frequency '  it would have with no driving force. What happens? The oscillator is naturally 

disposed to oscillate at ' = , so we expect the amplitude of the resulting oscillation to be larger than 

when the two frequencies are very different. Detailed analysis and experiment show that this is just what 

happens. The easiest case to analyze is a sinusoidally varying force—say, 
max( ) cos dF t F t= . If we vary 

the frequency 
d  of the driving force, the amplitude of the resulting forced oscillation varies in an 

interesting way (Fig. 14.23). When there is very little damping (small b), the amplitude goes through a 

sharp peak as the driving angular frequency 
d  nears the natural oscillation angular frequency ' . When 

the damping is increased (larger b), the peak becomes broader and smaller in height and shifts toward 

lower frequencies.  

Using more differential equations than we’re ready for, we could find an expression for the 

amplitude A of the forced oscillation as a function of the driving angular frequency. Here is the result: 

 

Figure 14.23 - Graph of the amplitude A of forced oscillation as a function of the angular frequency  of 

the driving force. The horizontal axis shows the ratio of  to the angular frequency  of an 

undamped oscillator. Each curve has a different value of the damping constant b 

 

d

d /k m =
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(14.46)

 

When 2 0dk m− =  , the first term under the radical is zero, so A has a maximum near /d k m =  . The 

height of the curve at this point is proportional to 1/b; the less damping, the higher the peak. At the low-

frequency extreme, when 0d = , we get 
max /A F k= . This corresponds to a constant force 

maxF  and a 

constant displacement 
max /A F k=  from equilibrium, as we might expect. 

 

 

Resonance and Its Consequences 

 

The peaking of the amplitude at driving frequencies close to the natural frequency of the system is 

called resonance. Physics is full of examples of resonance; building up the oscillations of a child on a 

swing by pushing with a frequency equal to the swing’s natural frequency is one. A vibrating rattle in a 

car that occurs only at a certain engine speed is another example. Inexpensive loudspeakers often have an 

annoying boom or buzz when a musical note coincides with the natural frequency of the speaker cone or 

housing. In Chapter 16 we’ll study examples of resonance that involve sound. Resonance also occurs in 

electric circuits, as we’ll see in Chapter 31; a tuned circuit in a radio receiver responds strongly to waves 

with frequencies near its natural frequency. This phenomenon lets us select one radio station and reject 

other stations.  

Resonance in mechanical systems can be destructive. A company of soldiers once destroyed a 

bridge by marching across it in step; the frequency of their steps was close to a natural frequency of the 

bridge, and the resulting oscillation had large enough amplitude to tear the bridge apart. Ever since, 

marching soldiers have been ordered to break step before crossing a bridge. Some years ago, vibrations of 

the engines of a particular type of airplane had just the right frequency to resonate with the natural 

frequencies of its wings. Large oscillations built up, and occasionally the wings fell off.  

 

CHAPTER 14: SUMMARY 

Periodic motion: Periodic 

motion is motion that repeats itself 

in a definite cycle. It occurs 

whenever an object has a stable 

equilibrium position and a restoring 

force that acts when the object is 

displaced from equilibrium. Period 

T is the time for one cycle. 

Frequency f is the number of cycles 

per unit time. Angular frequency    

is 2π times the frequency  

1
f

T
=

1
T

f
=  

2
2 f

T


 = =  

 

Simple harmonic motion: 

If the restoring force 
xF  in periodic 

motion is directly proportional to 

the displacement x, the motion is 

called simple harmonic motion 

(SHM). In many cases this 

condition is satisfied if the 

displacement from equilibrium is 

small. The angular frequency, 

frequency, and period in SHM do 

 

xF kx= −  

x
x

F k
a x

m m
= = −  

k

m
 =  

1

2 2

k
f

m



 
= =  
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not depend on the amplitude but on 

only the mass m and force constant 

k. The displacement, velocity, and 

acceleration in SHM are sinusoidal 

functions of time; the amplitude A 

and phase angle   of the oscillation 

are determined by the initial 

displacement and velocity of the 

object  

1
2

m
T

f k
= =  

cos( )x A t = +  

Energy in simple 

harmonic motion: Energy is 

conserved in SHM. The total 

energy can be expressed in terms of 

the force constant k and amplitude 

A  

2 21 1
2 2

21
2

constant

xE m kx

kA

= +

= =
 

 

Angular simple harmonic 

motion: In angular SHM, the  

frequency and angular frequency 

are related to the moment of inertia 

I and the torsion constant   

I


 =     and 

1

2
f

I




=  

 
Simple pendulum: A 

simple pendulum consists of a point 

mass m at the end of a massless 

string of length L. Its motion is 

approximately simple harmonic for 

sufficiently small amplitude; the 

angular frequency, frequency, and 

period then depend on only g and L, 

not on the mass or amplitude  

g

L
 =  

1

2 2

g
f

L



 
= =  

2 1
2

L
T

f g





= = =  

 
Physical pendulum:A 

physical pendulum is any object 

suspended from an axis of rotation. 

The angular frequency and period 

for small-amplitude oscillations are 

independent of amplitude but 

depend on the mass m, distance d 

from the axis of rotation to the 

center of gravity, and moment of 

inertia I about the axis  

mgd

I
 =  

2
I

T
mgd

=  

 

Damped oscillations: 

When a force 
x xF b= −  is added to 

a simple harmonic oscillator,  

the motion is called a 

damped oscillation. If 2b km  

(called underdamping), the system 

oscillates with a decaying 

amplitude and an angular frequency 

'  that is lower than it would be 

without damping. If 2b km=  

(called critical damping) or 

( /2 ) cos( ' )b m tx Ae t −= +  

2

2
'

4

k b

m m
 = −  
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2b km  (called overdamping), 

when the system is displaced it 

returns to equilibrium without 

oscillating 

Forced oscillations and 

resonance: When a sinusoidally 

varying driving force is added to a 

damped harmonic oscillator, the 

resulting motion is called a forced 

oscillation or driven oscillation. 

The amplitude is a function of the 

driving frequency 
d  and reaches a 

peak at a driving frequency close to 

the natural frequency of the system. 

This behavior is called resonance 

max

2 2 2 2( )d d

F
A

k m b 
=

− +
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