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Introduction 

In Finance and Operations, entropy is commonly regarded as a measure of randomness, uncertainty, and risk. 

Conversely, the synergic entropy does not rely on this physics approach at first, but rather is conceived 

depending on the output function and new parameters as synergy, critical input (scarce resources), and output 

acceleration. Thus, the current approach is born inside Finance and Operations, using synergy derived from 

combinations among inputs as the main engine. However, as the design relies on output deviations, 

randomness, and mergers of inputs, some commonalities with entropy should appear in the final solution. As 

expected, the particular case of the synergic entropy gives Shannon’s (1948) and Boltzmann-Gibbs entropies, 

which acknowledges synergy as closely related to entropy – the combined effect from mergers among inputs 

that is greater than the ordinary sum of the individual effects.  
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Figure 1. Theory Schematics 

Source: compiled by the author. 

X axis (𝑖𝑛𝑝𝑢𝑡) is the value from possible mergers among individuals or constituents in pairs, trios, and so 

forth. Y axis (𝑑_𝑜𝑢𝑡𝑝𝑢𝑡/𝑑𝑡) is the Flow derived from these combined constituents, which probable values are 

shown in gray dots. The reference axes in the differential equation are 𝑥𝑐𝑟𝑠 (constant returns to scale) and 𝜀 

(entropy), whose maximum entropy is +𝜀𝑚𝑎𝑥  and the minimum entropy is −𝜀𝑚𝑎𝑥 . Maximum entropy 

(±𝜀𝑚𝑎𝑥) is also regarded as the ±efficient frontier, which is a set formed by outputs sorted by maximum and 

minimum ordered derivatives with respect to 𝑥𝑐𝑟𝑠. The regions given by the label anti are either located at an 

outer cluster or not achievable in the current configuration (shaded area in the second quadrant). The 

projection of the intersection between the Y axis and the efficient frontier in 𝑥𝑐𝑟𝑠 is 𝑓𝑒𝑐𝑟𝑠,  which projection 

in 𝑥 is the first efficient unit of the cluster (𝑓𝑒) – the minimum number of constituents to ignite the cluster. 

Critical input is a constraint that gives the maximum number of constituents (inputs) available to gather in a 

cluster. 

The first insight in the novel theory is to defy the mainstream behavior of volatility as being stochastic. Rather 

than being purely stochastic, volatility could eventually be semi-deterministic under new parameters, such as 

synergy and critical input. Thus, the main question that arises is how to forge this semi-deterministic volatility, 

aiming at synergy as a new parameter for efficiency and risk.  

The second insight that emerges to solve this puzzle is that volatility can be bounded by maximum and 

minimum outputs, in a fashion similar to the efficient frontier given by DEA (Charnes et al. (1978)). 

Therefore, all the probable outputs are inside a container provided by the efficient and the inefficient frontier, 

which are the maximum and minimum entropy, respectively. This insight that provides an envelopment for 

volatility is the foundation of the schematics shown in Figure 1, a novel approach based on the output function. 

The third insight that comes to light is that these boundaries can be built by combining the most efficient and 

inefficient input units by their ranking position, rather than relying only on optimization procedures.  

The fourth and final insight is that input units share affinity-synergy among themselves, which is the main 

engine that boosts combinations. Hence, this definition implies that the greater the synergy, the greater the 
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outputs given by the efficient frontier; therefore, synergy is the parameter the model seeks to equate as a proxy 

for risk under scarce resources (critical input). As the merger procedure is the key to the main question, the 

reasoning is based on the output generated by possible mergers among input units (microconstituents) with 

affinity-synergy. These input units can be assets of a company, companies inside a sector, or another physical 

variable that is merged over time. These merged inputs generate an output flow, whose value can be a quarterly 

income, an energy stream, or another similar time-related parameter.   

The output function, the root of the current approach, has been discussed by economists since the late 1800s 

(Wicksteed (1894)). The most discussed approach is the one that relates output to capital and labor inputs, 

which is widely covered by literature (Cobb and Douglas (1928), Arrow et al. (1961)). After the seminal 

article from Arrow et al. (1961), which defined the Constant Elasticity of Substitution (CES), the research on 

the production function in economics began to decline after the seventies. Part of this fall was probably due 

to the article from Charnes et al. (1978), which presented DEA’s approach founded on Farrel’s (1957) 

proposals. Rather than only presenting an output function for labor and capital, DEA is a non-parametric 

technique that delivers an efficient frontier comprised of multiple inputs and outputs. The efficient frontier 

given by DEA is based on benchmarking peers from the same cluster, whose data for the model is 

straightforward. Thus, due to the broad scope and ease of use, several solutions were presented for many 

distinct cases in literature: high-tech industry in Feng et al. (2022); banks and finance systems in Silva et al. 

(2017), Fukuyama (2020) and Zhou et al. (2018); cities in Chen (2017); turbofan aero-engines in Kottas et al. 

(2011); airlines in Ngo and Tsui (2021); construction firms in Christopoulos et al. (2015); iron and steel 

industry in Wu et al. (2017); museums in Basso et al. (2017) and several other applications discussed in recent 

literature. Most of the applications above use an enhancement of DEA developed by Färe and Grosskopf 

(1996), known as the network model. In this approach, which was conceived primarily for studying the 

internal functions, the outputs from one stage are the inputs of a further stage. Likewise, the synergic entropy 

adopts the concept of reflux, which means that part of the output flow returns to the system by an input flow 

(see Theory’s Section).  

A typical criticism of the mainstream approaches has been the lack of time embedded in the models, though 

DEA addresses this issue through dynamic models, as seen in Zýková (2022) and Tone and Tsutsui (2014 and 

2010). Moreover, another essential constraint not commonly covered by literature is the finite number of 

resources, which is the novel critical input parameter. Conversely, both time and critical input are vital 

economic concepts that are the core of the current approach.  Furthermore, the typical economic output 

functions do not consider the efficiency among companies in a single model, which is the core of DEA and 

synergic entropy.  

As briefly mentioned, the particular case of the current theory leads to the entropies given by Shannon (1948) 

and Gibbs-Boltzmann12, which is explained in detail in Appendix B (Shannon’s Approach). In such theories, 

the probability of achieving higher values of entropy is lower, which is the same in the current approach: each 

occurrence of 𝜀 in Figure 1 is given by a possible range of inputs in 𝑥𝑐𝑟𝑠 axis, which interval decreases until 

critical/2 . As critical input is a constraint derived from scarce resources, it can also be acknowledged as the 

limited number of constituents available to gather in a cluster. Furthermore, at critical input, there is only one 

possible combination of microconstituents, which is the combination comprising all input units merged 

simultaneously. Hence, there is no randomness (zero entropy) at critical input because just one combination 

is possible (all inputs joined). Along with critical input, another novelty relies on the creation of the 

fundamental unit of the system, where efficiency is achieved for the first time – the first efficient point (𝑓𝑒𝑐𝑟𝑠) 

in Figure 1. This fundamental point can be acknowledged as the minimum number of constituents required to 

ignite the cluster. 

The practical question that arises is how to equate the phenomenon described in Figure 1 using these key 

concepts. This puzzle is solved in Theory’s Section using combined output acceleration as inputs are merged. 

The solution of the differential equation leads to the following formula: 

𝜀𝑚𝑎𝑥
2 =

3

𝑙𝑛 𝑐
. 𝜙2𝜎2

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑥𝑐𝑟𝑠,𝑡)𝑙𝑛 (
𝑐

𝑥𝑐𝑟𝑠
) | 𝑥𝑐𝑟𝑠  ≥  𝑓𝑒𝑐𝑟𝑠   (1) 

𝑖𝑓 𝐶𝑅𝑆 (𝑡𝑎𝑛 𝜃 = 𝜇𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑥,𝑡))  ≈ 0 ∶ 𝑥𝑐𝑟𝑠 = 𝑥; 𝜀𝑚𝑎𝑥  =  𝑌𝑚𝑎𝑥(𝑥,𝑡) − 𝜇𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑥,𝑡)𝑥 

 
12 Gibbs-Boltzmann and Shannon approaches for entropy can be regarded as mathematically equivalent. 
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In the above equation, the input given by 𝑥 is chosen as the quarterly total assets detained by each company, 

although other linear combination using multiple variables is suitable (Appendix C). The output flow given 

by 𝑌𝑚𝑎𝑥(𝑥,𝑡) (𝑑_𝑜𝑢𝑡𝑝𝑢𝑡/𝑑𝑡) is chosen in this article as the summed combined net incomes ranked by return, 

though any other flow measure can be applied as well; hence, 𝑌𝑚𝑎𝑥(𝑥,𝑡) is the sum of the combined net incomes 

ordered by returns on assets (ROA), being ROA the same as the derivative 𝑑𝑌(𝑥,𝑡)/𝑑𝑥 provided by each input 

unit. The weighted mean and the weighted variance of returns (ROA) is given by 𝜇𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑥,𝑡)  and 

𝜎2
𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑥,𝑡), respectively. 

Theory is based on the maximum fluctuations given by 𝜀𝑚𝑎𝑥
2 over the 𝑥𝑐𝑟𝑠 axis, which is the constant returns 

to scale axis (𝐶𝑅𝑆 = 𝜇𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑥,𝑡)). Hence, the whole data must be rotated counterclockwise until 𝐶𝑅𝑆 by 

an angle equal to 𝑡𝑎𝑛 𝜃 =  𝜇𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑥,𝑡) (Figure 1) as described in Appendix A. If 𝐶𝑅𝑆 is small enough 

(𝑡𝑎𝑛 𝜃 ≈  𝑠𝑖𝑛 𝜃),  𝜀𝑚𝑎𝑥 can be evaluated as 𝑌𝑚𝑎𝑥(𝑥,𝑡) − 𝜇𝑤(𝑥,𝑡)𝑥. The squared maximum entropy given by 

𝜀𝑚𝑎𝑥
2 depends on a longitudinal effect given by (𝜎2

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑥𝑐𝑟𝑠,𝑡)) along with a cross-sectional effect given 

by 𝑙𝑛 ( 𝑐
𝑥𝑐𝑟𝑠

). Hence, the cross-sectional effect is given by the natural logarithm of combinations among 

constituents up to critical input (𝑐) (Subsection 2.3). As opposed to critical input that measures the maximum 

number of constituents in a cluster, the first efficient constituent (𝑓𝑒𝑐𝑟𝑠) is the minimum required number of 

units to ignite the cluster in the 𝑥𝑐𝑟𝑠 axis. Finally, synergy (𝜙) can be defined as a constant derived from the 

effect given by merged input units with affinity over the absence of combinations, which higher values may 

amplify entropy providing more volatility; conversely, there are sectors whose synergy decreases volatility 

instead of providing more entropy. This shrinking phenomenon seems unreasonable, but synergy actually 

measures the summed effect derived from interactions among microconstituents, whose result can amplify or 

decrease volatility. 

As shown above, synergy can also be regarded as the strength of interactions among constituents, which is 

neglected in most of the entropy’s theories until the early 2000s. On the other hand, Beck and Cohen (2003) 

and Sattin (2006) presented a new interpretation of Tsallis’s (1988) entropy, where the coefficient 𝑞 could be 

acknowledged as a measure for these interactions among constituents. This new branch is commonly 

recognized as superstatistics. Besides superstatistics, there are other applications in literature based on the 

seminal approach from Tsallis, such as evaluating the stock market using structure entropy (Zhu and Wei 

(2021)). However, rather than relying primarily on statistics, the current approach is founded on operations 

and physics concepts developed a priori.  

As predicted by theory, a practical application for synergy must be a novel proxy for risk - values above one 

and below one for synergy expands and shrinks volatility, respectively. The tests regarding this hypothesis 

are done over the financial statements derived from the 11 sectors of the American Economy (2064 

companies), though most of the tests are done over the Consumer Cyclical Sector (324 companies). The results 

are significant for every sector except for the Healthcare cluster (as explained in Discussion, Healthcare should 

be broken up by its subsectors, setting apart drug producers from health plan providers). Beta CAPM (Sharpe 

(1964), Lintner (1965), and Mossin (1966)) tests for financial statements, conversely, do not present 

significance in any sector whatsoever. Hence, typical parametric approaches do not usually give the required 

significance for risk management – DEA and other machine learning tools have been widely used to address 

this issue, as seen in Ben Lahouel et al. (2022), whose research applies DEA in the banking industry aiming 

at liquidity risk and financial stability. Besides the new proxy for risk given by synergy, the current approach 

provides a new tool for valuation, which is a novel discount rate. This discount rate is conceived by 

multiplying synergy by the weighted standard deviation of returns, which proves to be stable and more suitable 

than typical betas. 

The remainder of the article is organized as follows. The Second Section contains the reasoning for the 

Synergic Entropy Theory. The Third Section contains the Methodology, explaining the application of the 

synergic entropy in Financial Data in several steps. The Fourth Section presents the Results of the financial 

statements. The Fifth Section contains the Discussion of the Results. The Sixth Section presents the 

Conclusion, and the Seventh Section is about the References. Finally, there are four Appendices, as follows: 

Appendix A is the Rotation Method over the CRS; Appendix B is Shannon’s Approach for the Synergic 

Theory; Appendix C is the Linear Combinations of Inputs; and Appendix D is the Ellipse Method, which is 

an estimate for critical input when the variable is unknown. 
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1. Theory 

1.1. Design of the Empirical Envelopment 

The Synergic Entropy relies on combinations among input units that lead to maximum and minimum 

entropies, which equal absolute value was previously defined as the maximum entropy. These maximum and 

minimum entropies can be regarded as the efficient and inefficient frontier from DEA theory, respectively. 

Before solving the maximum entropy equation, the first step is to build the empirical envelopment given by 

the boundaries of the gray ellipse in Figure 2 – the empirical data used to create Figure 2 is derived from 

financial statements retrieved from American companies in Consumer Cyclical Sector (better detailed in next 

section – Methodology). The “empirical envelopment” task is required because this numerical procedure is 

built by ordering and merging the available empirical data.  

 

Figure 2. Output Combinations related to Merged Inputs in the Consumer Cyclical Sector 

Source: compiled by the author. 

Figure 2 is derived from the 4Q2019 balance and income sheets from 324 companies in the Consumer Cyclical 

Sector (as seen in Methodology Section). The small gray dots and hexagons are single outputs or possible 

mergers among companies in the Consumer Cyclical Sector. X-axis (Input) is the Total Asset value from 

individuals or the sum of combined assets when companies are joined. Y axis (Output) is the Income derived 

from individuals and combined incomes from companies in pairs and trios (hardware limitations limit other 

combinations), which are shown as gray hexagons; and Y is also a set formed by outputs sorted by minimum 

and maximum returns, which is the envelopment of the maximum entropy – a gray ellipse with small gray 

dots. Bigger gray dots above the dashed line up to the maximum derivative are the result of the DEA VRS 

model (efficiency >97.5%), computed using the empirical frontier. The dashed slope is the weighted average 

return of the cluster (CRS). The black ellipse is the fitted model from the Synergic Entropy given by (1).  

In order to make the envelopment approach clearer, let the article provides a simple example derived from 

economics. In this theoretical example, a typical industrial plant, called Industry Co, has a classical production 

function depending on the labor for the short run. In this plant, the law of diminishing marginal returns holds 

when the building gets overcrowded by the rise of employees. Each employee has different productivity levels, 

which can be measured, and the number of employees (resources) available to hire in the industry market is 

limited (critical input). If one uses the typical approaches from literature, the output function might be 

regressed under labor. In standard practice, the first stage of the curve is a constant slope (constant returns to 
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scale), but the second stage presents a diminishing rate slope where the limit given by capital (physical space) 

is a constraint. 

However, the current approach aims at the most efficient employees from the whole sector (Industry Cluster) 

where Industry Co is classified. Hence, the current approach requires that the data for the entire sector 

concerning labor productivity be available. Therefore, the current approach is a benchmarking method in the 

cluster, rather than an individual assessment. The best company of the Industry’s Cluster, which only input 

variable is labor, is the one that has the best selection tools to pick the best-ranked professionals. Thus, if one 

makes a ranking for the best productivity professionals, the most efficient virtual company is the one that has 

all these star professionals until the labor amount required for its own needs. The same reasoning is applied 

to the most inefficient virtual company.  Therefore, the output production function has two boundaries: an 

upper limit formed by the best employees and a lower limit, created by the most unskilled employees. It seems 

reasonable that the upper limit is built by ordering the productivities from maximum to minimum, which is 

the same as ranking the professionals or ordering the derivatives (productivity). The same reasoning applies 

to the inefficient frontier (lower limit). Thus, after ordering the derivatives (labor productivity), the 

envelopment is the area formed by the upper and lower limit, which correspond to the efficient and inefficient 

frontier, respectively. This boundary of probable results is the frontier of the ellipse shown in Figure 1 - Figure 

2 and corresponds to the maximum entropy. 

Therefore, the curve of the output could be written as follows:  

∆𝑌𝑐 = 𝑟𝑗∆𝑥𝑐  , (2) 

where 𝑌𝑐 is the cumulative output flow, 𝑥𝑐 is the cumulative stock input and 𝑟𝑗 is the return from each input 

unit 𝑗 used in the cumulative process.  

For the given example, 𝑥𝑐 is the number of summed professionals (labor), 𝑌𝑐 is the income/time given by 𝑥𝑐 

and 𝑟𝑗 is the productivity from each professional. The order that the cumulative input units are gathered will 

derive different paths, which the best one is the efficient frontier (maximum entropy) given by the ordered 

ranked selection. 

In Figure 2, the empirical hexagons plotted inside the ellipse are the output combinations from individuals, 

pairs, trios, and so forth up to the 324 companies, which figure still needs to be fulfilled due to hardware 

limitations.  Notwithstanding, the current approach solves this issue using the ordered derivatives to build the 

envelopment, as seen in (3).  The fitted model from (1) is seen in Figure 2 as the black ellipse line around the 

gray envelopment (the empirical frontier). However, like DEA, the focus remains on the boundaries of the 

curve.  

If the evaluating cluster has enough number of individuals, (2) can be rewritten as:  

𝑑𝑌𝑐

𝑑𝑥𝑐
= 𝑟𝑗 (3) 

Therefore, the derivative of the cumulative output with respect to a given input is the return of each 

infinitesimal individual joined in the process. As aforementioned, the path of the cumulative function depends 

on the order of the combined input units. If one aims to design the boundaries of the curve in Figure 2 

(envelopment), the derivatives must be ordered following the rules below: 

➢  Efficient Frontier (maximum entropy) = Derivatives (Returns) in descending order 

➢  Inefficient Frontier (minimum entropy) = Derivatives (Returns) in ascending order 

As discussed above and presented in Subsection 2.12, multiple inputs instead of a single one can be used for 

𝑥𝑐 when the input is comprised of a linear combination of variables.  

2. Affinity and Anti-Cluster 

As the novel theory’s foundation relies on combinations, a central question arises: what is the main engine 

that drives input units to combine with each other? The first insight is that input units with affinity are merged 

by an irresistible desire to reach greater combined outputs. In other words, input units are merged because the 
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combined effect is greater than the sum of the individual effects from each input unit, which is the synergy’s 

definition.  

Unfortunately, this affinity among input units decreases as more input units are joined, because the probability 

of finding similar assets decays when cumulative input grows. In the current approach, the “affinity” force 

generates higher variable returns to scale and higher entropy (higher variance). 

A second effect happens when input units with affinity combine. The decaying probability of finding similar 

assets does not decay at the infinite, but rather is constrained by the available similar inputs in the cluster. This 

maximum number of available input units with affinity in a cluster is named critical input. It means, for 

instance, that one cluster has limited resources, which could be available matter, raw materials, customers and 

skilled labor. In the Industry Co. example, critical input is the sum of every professional available in the 

industry’s cluster. Suppose Industry Co. has become big enough to be the cluster itself. In that case, there is 

only one possible output: the sum of outputs from every professional of the cluster, without any other possible 

combinations in the outcome. Thus, at critical input, the deviation from the expected mean is zero, and the 

ranked selection is useless; thus, at critical input, there is no other choice for Industry Co. rather than hire all 

the available professionals from the market, without any efficiency advantage. 

In order to avoid the critical point, an anti-cluster force pushes the cluster to become another one, no longer 

limited by the critical input. In this new configuration, critical input is a value in a higher dimension that 

postpones the zero-deviation phenomenon. In this case, a potential and profitable merger exists with other 

input units in a new cluster configuration. Therefore, as the cluster follows the path to critical input, the chance 

of a cluster becoming another one is more significant due to the absence of higher returns above the mean. 

This new cluster configuration could merge from outer input units into the current one or collapse. If the 

cluster collapses, its input units can be combined in another greater system or scattered through multiple 

systems.  

3. Critical Input and First Efficient Point 

The First Efficient Point (𝒇𝑒𝑐𝑟𝑠), synergy (𝜙) and critical input (𝑐) are the key parameters for a cluster, which 

define its creation, behavior, and termination, respectively. Although the first efficient point is not present in 

the core of the equation given by (1),  its value is the first point of the domain: the beginning of the lifecycle. 

4. Critical Input 

A critical input in the current approach claims that input available to combine in a cluster is made from finite 

resources or limited individuals. These finite resources or limited individuals are a threshold given by a 

constant that can be known or unknown. Regardless of understanding the value from critical input (𝑐) 

previously, the essential feature is that there is only one possible combination at this critical point. The only 

one combination rule occurs because every input unit must be combined to achieve the value of critical input, 

not leaving a chance for other possible combinations.  Therefore, every known and unknown input unit is 

combined at critical input, leading to zero entropy or uncertainty (zero variance over the mean). 

There are systems in which the critical input is a trivial constant to retrieve, being a known value. The known 

critical input value in a sector can be the number of available employees to hire in a sector (as given by the 

example above), the amount of raw land in a country, the supply of a commodity, the limit of machinery in a 

cluster, and further on. On the opposite, there are systems in which critical input is an unknown value subject 

to investigation (by the behavior of the other parameters). 

In systems where critical input is a non-trivial value, its magnitude can be steady or non-steady. For systems 

with steady unknown critical inputs, the article presents the Ellipse Method described in Appendix D as a 

solution for estimating the parameter; furthermore, the same Ellipse Method can be applied to non-steady 

systems whether the variance of critical input is constant through time.  

For non-steady systems, the variance of critical input may occur due to random errors, which can lead to a 

constant variance through time. In this case, critical input can be evaluated by the Ellipse Method (Appendix 

D) whether having a constant variance derived from these nonsystematic errors. Conversely, whether the 

variance is not constant for critical input, the definition of the cluster itself must be changed.  This constant 

variance of critical input in non-steady systems should not be misunderstood with the zero output’s variance 

as aforementioned. An example of a non-steady system with unknown critical input is the one derived from 
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financial statements or other accounting figures, which values may contain random errors - critical input 

variance can be constant or not. 

Based on the previous assumptions, critical input can be summarized as follows: 

➢  Known Critical Input 

➢  Unknown Critical Input 

▪ Steady value through time. Ellipse Method in Appendix D can be used to evaluate critical input. 

▪ Non-steady value having constant variance through time. Critical input can also be evaluated through 

Ellipse Method. 

▪ Non-steady value with non-constant variance through time. If the critical input’s variance is not 

constant, the definition of the cluster itself must be changed. 

Evaluating critical input in empirical cases is a challenge. Even in cases where critical input is a known value, 

it is unlikely that every input unit of the cluster is available to join in a specific cross-sectional. Therefore, if 

one uses the known critical input value, the boundary condition (shown in the following sections) will not be 

met because the sum of the input units at an empirical cross-sectional will not equal the known critical input 

value.  

The solution for this puzzle is an approach where two instances of critical input are built: the cross-sectional 

critical input and the longitudinal critical input. The cross-sectional critical input is the sum of every available 

input unit at a cross-sectional (retrieved empirical data). In contrast, the longitudinal critical input is the sum 

of the seen (retrieved) and unseen input units in a cluster. This approach is used only for solving this empirical 

puzzle and does not change the shape of equation (1), in which critical input (𝑐)  - depending on the 

assessment - can be the cross-sectional or longitudinal.  

The cross-sectional critical input must be chosen whenever one wants to evaluate the efficient frontier 

comprising the available input units at a certain moment. Another possible use of cross-sectional critical input 

is to calculate synergy computed from cross-sectionals regressions. On the opposite, longitudinal critical input 

can be desirable whether one seeks the unobserved critical input of the system. This unobserved value is the 

edge of a system, a critical point where the system collapses or turns into another one. In this article, the 

symbol 𝑐 also refers to cross-sectional critical input, otherwise noted. Thus, the main features of the cross-

sectional and the longitudinal critical input are: 

I. Cross Sectional Critical Input 

a. Sum of the available input units in a cross-sectional 

b. Compute entropy (efficient frontier) from available input units in a cross-sectional. 

c. Calculate synergy from cross-sectionals regressions. 

II. Longitudinal Critical Input 

a. Sum of the available and unseen input units in a system 

b. Compute the critical value of the system, and where the system changes (Appendix D). 

Finally, the input can be comprised of a linear combination of variables, as seen in Subsection 2.12 and 

Appendix C (Linear Combination of Inputs). This set can be formed by constrained or unconstrained variables. 

The constrained variables have critical values, whereas the unconstrained variables have infinite input values. 

Thus, if any of the variables has unconstrained values, critical input will never be reached because there is an 

endless input source derived from this variable; therefore, there is no competition among input units because 

there is plenty of inputs. At last, the unconstrained inputs must be kept out of the function removing their 

values from the output. 

5. First Efficient Constituent (Fundamental Unit) 

In the early days of a cluster, the constituents are eager to gather to create the first unit of the system 

(fundamental unit), which must be efficient enough to ignite the cluster - this is the beginning of the lifecycle 
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of a cluster. The fundamental unit for some systems could be trivial because it is simply the number one (1): 

the first unit of the cluster. In other clusters, due to scale, discover the fundamental unit (𝒇𝑒𝑐𝑟𝑠) could be the 

objective of the research itself. In these cases, 𝒇𝑒𝑐𝑟𝑠 can be retrieved by computational methods and further 

statistical developments. 

6. Output Acceleration 

Retrieving the example for Industry Co. one more time, one can establish a simple output production given 

by the following equation: 

𝑌𝑓 = 𝑟𝑥 , (4) 

where 𝑌𝑓 is the output flow (income/time),  𝑥 is a stock variable that measures the level of inputs (number of 

professionals), and 𝑟 is the constant returns to scale (CRS), which is the productivity’s mean. Therefore, if the 

level of the input (the number of skilled workers) is increased by a certain amount, the increased output 

(incomes/time) is increased by the same amount in a CRS approach.  

As Industry Co wants to benefit from the economies of scale, the company reinvests part of the monetary 

output flow in the production, resulting in an increased input flow. Rather than only labor, part of the input 

flow could be due to other input variables like materials, machinery, and others. Therefore, this relation 

between input flow and output flow is established by the following equation: 

𝑋𝑓 = 𝑧𝑌𝑓 (5) 

where 𝑋𝑓 is the input flow and 𝑧 is the reinvestment coefficient. The variables presented in capital letters in 

further equations are flow variables, whereas lower-case letters correspond to stock variables.  

The output flow (𝑌𝑓) and the input flow (𝑋𝑓) for the infinitesimal period can be written as following, where 

𝑦 is the stock value from the output. 

𝑌𝑓 =
𝑑𝑦

𝑑𝑡
(6) 

𝑋𝑓 =
𝑑𝑥

𝑑𝑡
(7) 

If one plugs (6) and (7) in (4), one gets: 

𝑑𝑦

𝑑𝑡
= 𝑟𝑥 (8) 

𝑑𝑥

𝑑𝑡
= 𝑟𝑧𝑥 (9) 

Equation (9) can be better acknowledged if one simple finance example is provided. If one takes as input its 

invested capital in Treasury Notes, the output function could be the TNX yield for that period. If the yield 𝑟 

is totally reinvested (𝑧 = 1: total capital reinvested), solving (9) with respect to 𝑥 leads to: 𝑥(𝑡) = 𝑒𝑟𝑡. Thus, 

the reinvestment concept in the equations above applied in Finance is a well-known result for compounded 

returns. 

The reinvestment in input flow detaches from most typical approaches in the output function. Though it seems 

simple, all the following equations derive from this concept.  Retrieving the Treasury’s example, it is evident 

that the output flow is not constant when the input flow rate is directly related to the output. It is worth 

emphasizing this point: the output flow rate does not remain steady if part of the output flow is reintroduced 

in the system by an input flow. This reinvestment in input units is not a hypothetical premise: reinvestment is 

required if a company wants to move from its current production level (𝑥𝑐) to another. In closed physical 

systems, a significant part of the output flow (e.g.: energy) is kept inside the system, which is added to the 

input units themselves in a chain reaction.   

Furthermore, one can define the rate of the output function as the first derivative from (6), which turns out to 

be defined as the output acceleration (𝑔𝑦): 

𝑔𝑦 =
𝑑(𝑌𝑓)

𝑑𝑡
 =

𝑑²𝑦

𝑑𝑡²
 (10) 
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If one uses (10)  aiming at computing the output acceleration for (8): 𝐶𝑅𝑆 , one gets: 

𝑔𝑦 = 𝑟.
𝑑𝑥

𝑑𝑡
= 𝑟. 𝑟𝑧𝑥 = 𝑧𝑟2𝑥 (11) 

The simple result given by (11) plays an important role in the novel theory, as this is the start point for 

modeling the forces. Based on (11), it is intuitive to conceive that infinitesimal output acceleration variation 

(𝑑𝑎𝑦)  may depend on input infinitesimal variation.  

Thus, (11) could be rewritten as: 

𝑑𝑔𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑧. 𝛼. 𝑑𝑥 (12) 

Where 𝛼 is the affinity which intends to capture the cross-sectional and longitudinal phenomena. One can 

notice that acceleration now has a subscript presenting the combination. It means that output’s acceleration is 

an effect derived from combinations derived from the input 𝑥. 

A simple solution for (12) gives: 

𝑔𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑧. 𝛼. 𝑥 + 𝐶 (13) 

Equation (13) states that the acceleration of production (output) increases as more input units are combined 

because part of the output flow is reintroduced in the system by reinvestment. Besides the financial example, 

other cases for this flow’s acceleration could be the growth of a bacterial colony, a city growth with limited 

resources, a chain reaction, and many other possible practical examples. 

7. Flattened Output Acceleration  

The foundations regarding output acceleration were previously presented, but the output acceleration that 

governs the phenomenon has yet to be shown.  As discussed before, the primary law for synergic entropy is 

that the forces of the phenomenon are flattened by the decreasing probability of finding similar input units 

with affinity. Therefore, the first approach is the flattened output acceleration (𝑔𝑓𝑙𝑎𝑡(𝑥,𝑡) ) given by the 

following based on (12) : 

𝑑𝑔𝑓𝑙𝑎𝑡(𝑥,𝑡) = 𝑧. 𝛼(𝑥,𝑡)

𝑑𝑥

𝑥
(14) 

A simple solution for (14) gives: 

𝑔𝑓𝑙𝑎𝑡(𝑥,𝑡) = 𝑧. 𝛼(𝑥,𝑡)𝑙𝑛(𝑥)  +  𝐶 , (15) 

where 𝛼(𝑥,𝑡) is the affinity coefficient that merges the cross-sectional and longitudinal effect.  

The first step to acknowledge (14) is to realize that infinitesimal variation of flattened output acceleration 

depends on successive increments of input units, just like (12). However, rather than stated by (12), the 

incremental is flattened by (𝑑𝑥/𝑥) due to the decreasing probability of finding similar input units with affinity. 

The flattening process is the main foundation of the novel reasoning: as the input grows, affinity decreases, 

inversely proportional to cumulative input. Therefore, equation (15) is the first step to design the forces above 

and below the CRS, which is the reference axis for the logic developed in this article. 

8. Affinity and Anti-Cluster Forces 

The previous subsection discussed the flattening process, turning the acceleration weaker as the input grows. 

As mentioned before, the acting forces act above or below the CRS, which is the reference axis. However, the 

accelerations are based on natural logarithmic, so their rate would be below the CRS’ rate if the CRS were 

not the reference axis. Therefore, forces are modeled above and below the dashed line (CRS) presented in 

Figure 1 and Figure 2. 

The main difference between the anti-cluster and the affinity force is that the latter depends on critical input, 

presenting decaying values as the input grows near to critical point. When input grows, affinity is affected by 

the proximity of the critical point. In contrast, the anti-cluster force acts to find a better cluster configuration 

(avoiding the lack of input units).  
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Given the theoretical reasoning, critical input does not constrain the anti-cluster force. Thus, it can be defined 

by the basic formulation equated in (16), where 𝑔𝑎𝑐 is the anti-cluster output acceleration:  

𝑔𝑎𝑐 (𝑥,𝑡) = 𝑧. 𝛼(𝑥,𝑡) 𝑙𝑛(𝑥) + 𝐶𝑎𝑐 (16) 

Though not affected by critical input, the anti-cluster force has the exact decaying probabilities of finding 

similar input units to achieve a new better cluster configuration – a flattened output acceleration. 

By contrast, the affinity force depends on critical input, which is the number of inputs available to combine 

in the cluster. Thus, affinity force must be solved considering critical input and its formulation is presented 

below.  

It is natural to infer that affinity gradually diminishes as the input grows, because the probability of finding 

similar input units decreases. Thus, as input increases, the bond among units loses its strength, reaching the 

maximum loss at critical input.  In other words, as the input gets closer to critical input (𝑐), the minor is the 

value of (𝑐 − 𝑥) and the greater is the loss of affinity. 

Therefore, before reaching the affinity formulation, one can make a summary of the premises already 

discussed: 

➢ As input grows, affinity decreases; on the opposite, the anti-cluster force increases.  

➢ Affinity depends on critical input; conversely, anti-cluster does not depend on a critical point, acting to 

achieve a better cluster configuration. However, both forces have the common law of diminishing 

available input units to gather. 

➢ As input grows, the incremental from input units generates an affinity loss. This is a negative flattening 

process. 

➢ As (𝒄 − 𝒙) becomes lower, loss of affinity becomes greater until reaching its maximum point at critical 

input. 

Based on premises from iii. to iv., equation (13) can be rewritten to formulate the affinity force (𝑔𝑎𝑓𝑓(𝑥,𝑡)):  

𝑑𝑔𝑎𝑓𝑓(𝑥,𝑡) = 𝑧. 𝛼(𝑥,𝑡)

−𝑑𝑥

(𝑐 − 𝑥)
 

𝑔𝑎𝑓𝑓(𝑥,𝑡) = 𝑧. 𝛼(𝑥,𝑡) 𝑙𝑛(𝑐 − 𝑥) + 𝐶𝛼  , (17) 

where 𝑐 is the critical input. 

The equations (16) and (17), present, respectively, the anti-cluster acceleration and the affinity acceleration. 

The following subsection will mount the differential equation based on these forces. 

9. Mounting the Differential Equation 

As the forces are established, it is time to build the differential equation, determining the behavior of the 

cluster. 

Even declining as input evolves, the affinity force is expected to be greater than the anti-cluster one at the first 

stages. If the opposite were true, the cluster would not begin any combination. Therefore, the differential 

equation is written based on the positive sign of the affinity acceleration, which is the opposite of the anti-

cluster force. So, the reference for the system’s output acceleration is based on the positive affinity force, or, 

in other words, the positive deviation of outputs.  

Another important point regarding the reference system is that the forces are designed using the CRS (constant 

returns to scale) as the reference axis for inputs. Therefore, the 𝑥 presented in the last equations will be 

replaced by 𝑥𝑐𝑟𝑠. Likewise, deviations for outputs above and below the mean are the system’s entropy given 

by 𝜀 (entropy). As the design of the model is based on the maximum entropies, the reference axis 𝑌 will be 

replaced by 𝜀𝑚𝑎𝑥. 

Finally, the terms are mounted to discover the final output acceleration of the cluster, already knowing the 

acting forces: 

𝑎𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑥,𝑡) = 𝑎𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦(𝑥,𝑡) − 𝑎𝑎𝑛𝑡𝑖−𝑐𝑙𝑢𝑠𝑡𝑒𝑟(𝑥,𝑡) (18) 
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Plugging in (10), (16) and (17) in (18): 

𝑑2𝑌𝑒𝑓𝑓

𝑑𝑡2
= 𝑧 (𝛼(𝑥,𝑡) 𝑙𝑛(𝑐 − 𝑥) +

𝐶𝛼

𝑧
− 𝛼(𝑥,𝑡) 𝑙𝑛(𝑥) −

𝐶𝑎𝑐

𝑧
) 

Translating the equation in the correct reference system given by the reasoning (CRS): 

𝑑2𝜀𝑚𝑎𝑥

𝑑𝑡2
= 𝑧 (𝛼( 𝑥𝑐𝑟𝑠,𝑡) 𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠) +

𝐶𝛼

𝑧
− 𝛼( 𝑥𝑐𝑟𝑠,𝑡) 𝑙𝑛( 𝑥𝑐𝑟𝑠) −

𝐶𝑎𝑐

𝑧
) 

where 𝑐 is critical input measured in CRS axis. 

From (5), having constants merged: 

𝑑2𝑥𝑐𝑟𝑠

𝑑𝑡2
= 𝑧² (𝛼(𝑥𝑐𝑟𝑠,𝑡) 𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠) − 𝛼(𝑥𝑐𝑟𝑠,𝑡)𝑙𝑛(𝑥𝑐𝑟𝑠) + 𝐶0) (19) 

If one multiplies every term of (19) by 𝑑𝑥 and integrate every part, one gets: 

∫
𝑑2𝑥𝑐𝑟𝑠

𝑑𝑡2
𝑑𝑥𝑐𝑟𝑠 = 𝑧² (∫ 𝛼(𝑥𝑐𝑟𝑠,𝑡) 𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠) 𝑑𝑥𝑐𝑟𝑠 − ∫ 𝛼(𝑥𝑐𝑟𝑠,𝑡) 𝑙𝑛(𝑥𝑐𝑟𝑠) 𝑑𝑥𝑐𝑟𝑠 + ∫ 𝐶0 𝑑𝑥𝑐𝑟𝑠)  

Solving this simple integral leads to the following: 

1

2
(

𝑑𝑥𝑐𝑟𝑠

𝑑𝑡
)

2

= 𝑧2(−𝛼(𝑥𝑐𝑟𝑠,𝑡)𝑥𝑐𝑟𝑠 𝑙𝑛(𝑥𝑐𝑟𝑠) − 𝛼(𝑥𝑐𝑟𝑠,𝑡)(𝑐 − 𝑥𝑐𝑟𝑠) 𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠) + 𝐶0 𝑥𝑐𝑟𝑠 +𝐶1)  

As we are interested in the Output, we can redefine the above equation using (5) : 

1

2
 (𝜀𝑚𝑎𝑥)2 = −𝛼(𝑥𝑐𝑟𝑠,𝑡)𝑥𝑐𝑟𝑠 𝑙𝑛(𝑥𝑐𝑟𝑠) − 𝛼(𝑥𝑐𝑟𝑠,𝑡)(𝑐 − 𝑥𝑐𝑟𝑠) 𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠) + 𝐶0 𝑥𝑐𝑟𝑠 +𝐶1 (20) 

where 𝜀𝑚𝑎𝑥 is the maximum entropy. 

One important point from the integration is that neither the affinity coefficient 𝛼(𝑥𝑐𝑟𝑠,𝑡), nor the critical input, 

which may depend on time (longitudinal effect), are affected by the integration over 𝑥𝑐𝑟𝑠. 

The equation (20)  could be daunting at first. However, the mathematical approximation given by the 

combinatorics approach (Subsection 2.10) gives the simplified version seen in (1). As the output flow given 

by (20) is the squared output flow, 𝜀𝑚𝑎𝑥  is the maximum entropy (efficient frontier); and −𝜀𝑚𝑎𝑥  is the 

minimum entropy (inefficient frontier). Moreover, the equation is built over the CRS line: 𝜀𝑚𝑎𝑥
2 is a squared 

value above or below the cluster’s mean, which is the concept of variance-entropy. Finally, it is worth 

remembering that (20) is designed for the CRS System (dashed line from Figure 1 and 2 with its orthogonal 

axis 𝜀). 

10. The Boundaries Conditions 

The boundaries defined by 𝐶0  𝑎𝑛𝑑 𝐶1 must be investigated to complete the final equation.  As mentioned in 

the previous section, the output flow above or below the CRS line will be regarded as the output deviation, 

becoming a new measure for maximum entropy. 

At first, the boundary around zero input is calculated. Then, if the input is zero or t𝑒𝑛𝑑𝑠 𝑡𝑜 𝑧𝑒𝑟𝑜, it is expected 

that the variance output will also approach zero – the reason is that there are no available input units to 

combine, nor exists a real cluster.  

As input approaches zero, the term −𝛼𝑥𝑐𝑟𝑠 ∗ ln(𝑥𝑐𝑟𝑠) tends to zero as well. Thus, the equation (19) can be 

rewritten to determine boundaries when input approaches zero. 

Thus, being 𝑥𝑐𝑟𝑠 = 0, follows: 

1

2
(𝜀𝑚𝑎𝑥)2 = 0 

Plugging in (20) the term (−𝛼(𝑥𝑐𝑟𝑠,𝑡)𝑥𝑐𝑟𝑠 ∗ 𝑙𝑛(𝑥𝑐𝑟𝑠)  =  0) leads to: 
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1

2
 (𝜀𝑚𝑎𝑥)2 = −𝛼(𝑥𝑥𝑐𝑟𝑠,𝑡)𝑥𝑐𝑟𝑠 𝑙𝑛(𝑥𝑐𝑟𝑠) − 𝛼(𝑥𝑐𝑟𝑠,𝑡)(𝑐 − 𝑥𝑐𝑟𝑠) 𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠) + 𝐶0 𝑥𝑐𝑟𝑠 +𝐶1 

1

2
(0)² =  0 − 𝛼(𝑥𝑐𝑟𝑠,𝑡)(𝑐) ∗ 𝑙𝑛(𝑐) + 𝐶0 ∗ 0 +𝐶1 

𝐶1 = 𝛼(𝑥𝑐𝑟𝑠,𝑡)𝑐 𝑙𝑛 𝑐 (21) 

Plugging in (21) in (20): 

1

2
(𝜀𝑚𝑎𝑥)2 = 𝛼(𝑥𝑐𝑟𝑠,𝑡)𝑐 𝑙𝑛 𝑐 − 𝛼(𝑥𝑐𝑟𝑠,𝑡)𝑥𝑐𝑟𝑠 𝑙𝑛(𝑥𝑐𝑟𝑠) − 𝛼(𝑥𝑐𝑟𝑠,𝑡)(𝑐 − 𝑥𝑐𝑟𝑠) 𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠) + 𝐶0 𝑥𝑐𝑟𝑠 (22)  

The other extreme boundary must be solved now. Looking at the extreme side of the curve, as the input 

approaches critical input, the advantages of the combination tend to disappear. As discussed, the number of 

possible combinations at critical input is just one, leaving no other possible combination (zero variance). 

Thus, when cumulative input tends to critical input, we get: 

𝑥𝑐𝑟𝑠 → 𝑐 ∶ (𝜀𝑚𝑎𝑥)2 = 0 (23) 

As input approaches critical input, it leads to 𝑐 − 𝑥𝑐𝑟𝑠 → 0. Therefore, the following term −𝛼(𝑐 − 𝑥𝑐𝑟𝑠) ∗
𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠) tends to zero. Thus, plugging in (23) in (22) along with limit conditions at critical input, one 

gets: 

1

2
(0)2 = 𝛼(𝑥𝑐𝑟𝑠,𝑡)𝑐 𝑙𝑛 𝑐 − 𝛼(𝑥𝑐𝑟𝑠,𝑡)𝑐𝑙𝑛𝑐 + 0+ 𝐶0𝑐 

𝐶0 = 0 

Thus, the cross-sectional equation, after the boundaries are defined, is presented below, making the 0.5 

coefficient in the left as part of the affinity coefficient’s 𝛼(𝑥𝑐𝑟𝑠,𝑡) expectancy: 

𝜀𝑚𝑎𝑥
2 = 𝛼(𝑥𝑐𝑟𝑠,𝑡)(𝑐 𝑙𝑛 𝑐 − 𝑥𝑐𝑟𝑠 𝑙𝑛(𝑥𝑐𝑟𝑠) − (𝑐 − 𝑥𝑐𝑟𝑠) 𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠)) (24) 

The longitudinal effect has not been discussed so far. This topic is explained at Subsection 2.11, which 

establishes the affinity’s (𝛼(𝑥𝑐𝑟𝑠,𝑡)) expectancy depending on time.  

Another important topic to address in equation (24) is that it can be rewritten as a probability function of 𝑥 

with respect to 𝑐, given by 𝑝𝑥  =  𝑥𝑐𝑟𝑠/𝑐 - a measure of uncertainty.  In this approach, as seen in Appendix B, 

equation (24) is a Shannon’s entropy binary function. 

11. Rotating the Axes 

As discussed before, the correct system of reference at which the equation (24) is established is the line of 

CRS. Therefore, all data must be rotated in order to comply with equation (24). Thus, if one rotates 𝑥 and 𝑌 

making 𝑥 aligned with the vector which slope is the dashed line in Figure 1 and 2 (CRS), one gets the correct 

reference system now. After rotation given by 𝑡𝑎𝑛 𝜃 =  𝜇𝑤(𝑥,𝑡), the 𝑦 𝑎𝑥𝑖𝑠 which is orthogonal to 𝑥𝑐𝑟𝑠 is the 

𝜀 axis, which maximum value is the maximum entropy (𝜀𝑚𝑎𝑥
2). The rotation matrix and the explanation for 

𝑡𝑎𝑛 𝜃 =  𝜇𝑤(𝑥,𝑡) is described in Appendix A (Rotation Method). 

For systems with low CRS (𝜇𝑤(𝑥,𝑡) = 𝑡𝑎𝑛 𝜃 ≈  𝑠𝑖𝑛 𝜃), the equation (24) becomes (deducted in Appendix 

A):  

(𝑌𝑚𝑎𝑥 (𝑥,𝑡) − 𝑥𝜇𝑤(𝑥,𝑡))
2

= 𝛼(𝑥,𝑡)(𝑐 𝑙𝑛 𝑐 − 𝑥 𝑙𝑛(𝑥) − (𝑐 − 𝑥) 𝑙𝑛(𝑐 − 𝑥)) (25) 

where 𝜀𝑚𝑎𝑥 = 𝑌𝑚𝑎𝑥(𝑥,𝑡) − 𝑥𝜇𝑤(𝑥,𝑡);  𝑥 =  𝑥𝑐𝑟𝑠  

12. A Combinatorics Approach 

The mathematical link between the novel theory and combinatorics is discussed in this subsection. As theory 

relies on combinations of inputs to develop its reasoning, one must expect that (24)  may have some 

connection with combinatorics. Trying to establish the connection between (24) and combinatorics, the 

Sterling Approximation (26) is applied to the natural logarithmic of combinations (𝑙𝑛(𝑐
𝑥

)): 
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𝑆𝑡𝑒𝑟𝑙𝑖𝑛𝑔: 𝑙𝑛(𝑥!) = 𝑥𝑙𝑛(𝑥) − 𝑥 (26) 𝑙𝑛(𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠(𝑐, 𝑥)) = 𝑙𝑛 (
𝑐

𝑥
) (58) 

Plugging in Sterling Approximation (26)  to 𝑙𝑛(𝑐
𝑥

),  one gets the following expression after algebraic 

simplification: 

𝑙𝑛 (
𝑐

𝑥
) = 𝑐 𝑙𝑛(𝑐) − 𝑥 𝑙𝑛(𝑥) − (𝑐 − 𝑥)𝑙𝑛(𝑐 − 𝑥) (27) 

Equation (27) is exactly the right part of equation (24) multiplied by the affinity coefficient (𝛼(𝑥𝑐𝑟𝑠,𝑡)), which 

leads to a Sterling approximation of the exact form: 

𝜀𝑚𝑎𝑥
2 = 𝛼(𝑥𝑐𝑟𝑠,𝑡) 𝑙𝑛 (

𝑐

𝑥𝑐𝑟𝑠
) (28) 

The last part of equation (28) given by 𝑙𝑛 ( 𝑐
𝑥𝑐𝑟𝑠

) does not depend on time, as proved by the solution of the 

differential equation over 𝑑𝑥𝑐𝑟𝑠 : one could claim that the cross-sectional effect is given by the combinations 

among 𝑥 input units, which threshold is 𝑐. 

13. Evaluating Time in the Affinity Coefficient 

14. Foundations 

The affinity coefficient has been named so far as 𝛼(𝑥𝑐𝑟𝑠,𝑡) to keep in mind that time needs to be evaluated, 

which is addressed now. However, it is worth remembering that time was not assessed so far because the 

solution of the integral given by (19) does not depend on time, but rather holds only for the cross-sectional. 

Therefore, the longitudinal effect must be equated. 

If one retrieves the solution from (19), it is natural to infer that the affinity coefficient must be formed by two 

effects: one constant effect in 𝑥𝑐𝑟𝑠 , due to the cross-sectional solution from the integral; and another 

component derived from the variable longitudinal effect given by time. Moreover, their effect is multiplicative 

instead of an additive one because a sum inside 𝛼(𝑥𝑐𝑟𝑠,𝑡) would change the solution from the integral. Based 

on this premise, the affinity coefficient 𝛼(𝑥𝑐𝑟𝑠,𝑡) could be written as: 

𝛼(𝑥𝑐𝑟𝑠,𝑡) =  𝛼(𝑥𝑐𝑟𝑠)
2. 𝛼(𝑡)

2 (29) 

where 𝛼(𝑡)
2 is a time-dependent variable and 𝛼(𝑥𝑐𝑟𝑠) is the affinity constant. 

In order to assess 𝛼(𝑡)
2, the cross-sectional effect is frozen by letting 𝑥𝑐𝑟𝑠 constant in a slice of the Figure 1, 

which is taken at 𝑥𝑐𝑟𝑠 = 1 for theoretical purposes (ease of computing the efficient frontier). It is worth 

mentioning that even at the point 𝑥𝑐𝑟𝑠 = 1 the cluster is being merged with affinity and synergy among input 

units.  

It seems unreasonable to assess the efficient frontier at 𝑥𝑐𝑟𝑠 = 1 when there are so many individuals with so 

different input values. However, each input unit, before the envelopment, is formed by several input units 

which sum is its own value for 𝑥𝑐𝑟𝑠. Thus, these statements are described below: 

𝜀𝑖 (𝑥𝑐𝑟𝑠=𝑖)  =  𝑓(𝑥𝑐𝑟𝑠𝑖
) 

𝑟𝑖(𝑥𝑐𝑟𝑠=1) =
𝑓(𝑥𝑐𝑟𝑠𝑖

)

𝑥𝑐𝑟𝑠𝑖

(30) 

𝜀𝑖 (𝑥𝑐𝑟𝑠=𝑖) = 𝑟𝑖(𝑥𝑐𝑟𝑠=1). 𝑥𝑐𝑟𝑠𝑖
(31) 

where 𝑟𝑖 is the return for each input unit. 

Equation (31) seems a simple approach, though it explains that for a given input 𝑥𝑐𝑟𝑠𝑖
 there are 𝑥𝑐𝑟𝑠 input 

units with the same output at 𝑥𝑐𝑟𝑠  = 1, which is 𝑟𝑖 . A simple numerical example can explain this approach: 

a single input unit that has 100 inputs generating five outputs can be regarded as a sum of 100 input units with 

the same return (5%) at 𝑥𝑐𝑟𝑠  = 1.  
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Therefore, the probability 𝑝𝑖 of occurrence for each input unit at 𝑥𝑐𝑟𝑠  = 1 leads to: 

𝑝𝑖 (𝜀𝑖 (𝑥𝑐𝑟𝑠=1)) =
𝑥𝑐𝑟𝑠𝑖

∑ 𝑥𝑐𝑟𝑠𝑖

𝑛
𝑖=1

 (32) 

where 𝑛 is the number from individuals in the cluster. 

15. Maximum Entropy given by Combinatorics 

After main foundations, it is time to retrieve (28), making 𝑥𝑐𝑟𝑠 = 1: 

𝜀𝑚𝑎𝑥
2 = 𝛼(𝑥𝑐𝑟𝑠,𝑡) 𝑙𝑛 (

𝑐

1
) 

𝜀𝑚𝑎𝑥
2 = 𝑙𝑛(𝑐) 𝛼(𝑥𝑐𝑟𝑠)

2. 𝛼(𝑡)
2 (33) 

Thus, the maximum entropy at 𝑥 = 1 depends only in a variable term given by (33), which is the time-effect 

(𝛼(𝑡)
2) being equated. One could argue again why the time effect is assessed at 𝑥 = 1, rather than other 

sections. However, the main reason was given above, explaining that data provided by individuals is already 

available, without requiring computing the envelopment at the very first moment; however, the envelopment 

at 𝑥 = 1 exists, being computed in the following subsection. 

16. A uniform distribution for the Maximum Entropy 

The size of the maximum entropy given by 𝜀𝑚𝑎𝑥 in (28) is based on the natural log of the combinations for 

each slice - each slice can be regarded as 𝑥𝑐𝑟𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Hence, each slice is a gathering from multiple 

possibilities ranging from  −𝜀𝑚𝑎𝑥  to +𝜀𝑚𝑎𝑥 . At this slice, each occurrence has the same probability of 

happening as the others; therefore, it can be regarded as a uniform distribution from −𝜀𝑚𝑎𝑥 to +𝜀𝑚𝑎𝑥. This 

insight allows estimating the maximum entropy from another approach rather than the one given by (33).  

Thus, in this subsection, the occurrences within the envelopment (the small gray hexagons in Figure 2) are 

compared against its extreme boundaries given by the maximum entropy (±𝜀𝑚𝑎𝑥). Finally, given a specific 

slice of 𝑥𝑐𝑟𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  the occurrences inside the envelopment are named as 𝜀, which are equally probable 

values in the 𝜀  axis. Therefore, any deviation inside the envelopment is ±𝜀 , which boundaries are the 

maximum entropies (±𝜀𝑚𝑎𝑥). 

Therefore, the variance given by the uniform distribution (𝑝(𝜀) = 0.5𝜀𝑚𝑎𝑥) is given by: 

𝜎² = ∫
(𝜀 − 𝜇𝜀)2

2𝜀𝑚𝑎𝑥

𝜀𝑚𝑎𝑥

−𝜀𝑚𝑎𝑥

𝑑𝜀 

As 𝜀 is orthogonal to 𝑥𝑐𝑟𝑠, 𝜇𝜀  =  0. Solving the above equation, leads to: 

𝜀𝑚𝑎𝑥
2  =  3𝜎2 (34) 

The problem now relies on estimating 𝜎2, which is solved at first by estimating the variance from discrete 

individuals at 𝑥𝑐𝑟𝑠 = 1.  If one uses this variance from individuals at 𝑥𝑐𝑟𝑠 = 1, synergy is not computed 

because there are several possible combinations given by (𝑐
1
) (see (33)). Therefore, there is already affinity-

synergy among input units at this location, which effect gives the maximum entropy. Thus, in order to correct 

this discrepancy, the effect derived from combinations must be computed by applying a factor over the 

variance from individuals.  

In the following, there is a summary of the above statements: 

➢ First, the variance inside the envelopment is estimated using the variance from discrete individuals, a 

known parameter. 

➢ Second, a factor must amplify (or decrease) the discrete variance from individuals to achieve maximum 

entropy. This factor is derived from the power of possible combinations given by 𝑐 at 𝑥𝑐𝑟𝑠 = 1. 

Therefore, one can conclude from the above statements: 

𝜎2 = 𝜙2. 𝜎𝑖𝑛𝑑
2 (35) 
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where 𝜎𝑖𝑛𝑑
2 is the variance given by discrete individuals without combinations and 𝜙 is a multiplicative 

constant – the synergy effect provided by the power of combinations, which could amplify or decrease the 

weighted variance of individuals. 

Thus, derived from (35) and previous assumptions, the synergy effect derived from combinations among 

input units is a multiplicative effect over the variance given by discrete individuals. From (34) and (35): 

𝜀𝑚𝑎𝑥
2 = 3𝜙2𝜎𝑖𝑛𝑑

2 (36) 

Thus, for 𝑥𝑐𝑟𝑠 = 1, the estimated discrete variance from 𝜎𝑖𝑛𝑑
2 is: 

𝜎𝑖𝑛𝑑
2 = ∑(𝑟𝑖 (𝑥𝑐𝑟𝑠,𝑡) − 𝜇𝑤(𝑥𝑐𝑟𝑠,𝑡))

2
. 𝑝(𝑖)

𝑛

i=1

(37) 

where 𝑛 is the number of individuals and 𝑝(𝑖) is the probability for each individual.  

Plugging (32) in (37) leads to: 

𝜎𝑖𝑛𝑑
2 = ∑

𝑥𝑐𝑟𝑠𝑖
(𝑟𝑖 (𝑥𝑐𝑟𝑠,𝑡) − 𝜇𝑤(𝑥𝑐𝑟𝑠,𝑡))

2

∑ 𝑥𝑐𝑟𝑠𝑖

𝑛
𝑖=1

=  𝜎2
𝑤(𝑥𝑐𝑟𝑠,𝑡)

𝑛

i=1

 

𝜎𝑖𝑛𝑑
2 =  𝜎2

𝑤(𝑥𝑐𝑟𝑠,𝑡)  

where 𝜎2
𝑤(𝑥𝑐𝑟𝑠,𝑡) is the weighted variance, 𝑥𝑐𝑟𝑠𝑖

 is the weight given by the input value of each individual and 

𝑟𝑖 (𝑥𝑐𝑟𝑠,𝑡) is the return (𝜀/𝑥𝑐𝑟𝑠𝑖
) of each individual.  

As 𝜀 is orthogonal to 𝑥𝑐𝑟𝑠, 𝜇𝑤(𝑥𝑐𝑟𝑠,𝑡)  =  0. 

Replacing 𝜎𝑖𝑛𝑑
2 by 𝜎2

𝑤(𝑥𝑐𝑟𝑠,𝑡) in (36) leads to: 

𝜀𝑚𝑎𝑥
2 = 3𝜙2𝜎2

𝑤(𝑥𝑐𝑟𝑠,𝑡) (38) 

17. Matching the Frontiers 

Making equivalent both frontiers given by (33) and (38) leads to: 

3𝜙2𝜎2
𝑤 = 𝑙𝑛(𝑐) 𝛼(𝑥𝑐𝑟𝑠)

2. 𝛼(𝑡)
2  

𝛼(𝑥𝑐𝑟𝑠)
2. 𝛼(𝑡)

2 =
3

𝑙𝑛 𝑐
. 𝜙2. 𝜎2

𝑤(𝑥𝑐𝑟𝑠,𝑡) (39) 

As every term from (39) is constant with exception from 𝜎2
𝑤(𝑥𝑐𝑟𝑠,𝑡), the conclusion is that the time-effect 

component is derived from the weighted variance of returns. Therefore: 

𝛼(𝑡)  = 𝜎2
𝑤(𝑥𝑐𝑟𝑠,𝑡) 

𝛼(𝑥𝑐𝑟𝑠)
2 =

3

𝑙𝑛 𝑐
. 𝜙2 (40) 

One can realize that the affinity constant given by 𝛼(𝑥𝑐𝑟𝑠)
2 is replaced by another constant term directly 

proportional to squared synergy (𝜙2) and inversely proportional to critical input’s logarithm. Therefore, the 

affinity is boosted by synergy and constrained by critical input. Therefore, from (35) and (40), squared 

synergy (𝜙2) is an effect over the weighted variance of individuals derived from the affinity-synergy among 

their combinations, compared to the absence of mergers. Thus, higher values given by synergy amplify 

entropy (the efficient frontier). On the opposite, whether synergy is below 1, the combined effect from mergers 

shrinks the weighted variance of individuals – this is a defensive or nuclear system.  

Another important conclusion follows. As stated by (29), the affinity coefficient 𝛼(𝑥𝑐𝑟𝑠,𝑡) is the squared 

affinity constant 𝛼(𝑥𝑐𝑟𝑠)
2 multiplied by the weighted variance of returns 𝜎2

𝑤(𝑥𝑐𝑟𝑠,𝑡). If the weighted variance 

of returns is zero, all the returns are the same. It means, in other words, that there is just one individual in the 

cluster and there is no envelopment. Without at least two different individuals, there is no affinity-synergy in 
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combinations. Therefore, the affinity constant 𝛼(𝑥𝑐𝑟𝑠) must be zero because its numerator given by synergy is 

null whether there is only one individual; on the other hand, critical input is not zero because its value 

corresponds to the value of the single input itself. Hence, the equation (29), whose independent parameter is 

𝜎𝑤(𝑡)
2, is a regression without intercept. 

Therefore, the final complete equation is given by (41): 

𝜀𝑚𝑎𝑥
2 =

3

𝑙𝑛 𝑐
. 𝜙2𝜎2

𝑤(𝑥𝑐𝑟𝑠,𝑡)(𝑐 𝑙𝑛 𝑐 − 𝑥𝑐𝑟𝑠 𝑙𝑛(𝑥𝑐𝑟𝑠) − (𝑐 − 𝑥𝑐𝑟𝑠) 𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠)) (41) 

Equation (41) can be rewritten using the combinatorics approach, leading to the shorter version given by (1): 

𝜀𝑚𝑎𝑥
2 =

3

𝑙𝑛 𝑐
. 𝜙2𝜎2

𝑤(𝑥𝑐𝑟𝑠,𝑡)𝑙𝑛 (
𝑐

𝑥𝑐𝑟𝑠
) (1) 

18. Multiple Inputs with Constant Returns to Scale 

As given by foundations from theory, the solution of the integral given by (24) is over the constant returns to 

scale (CRS). Hence, the model holds whether the mean of returns is kept constant regardless of the value from 

combinations. This is a straightforward application for the linear combination of inputs where the coefficients 

(partial derivatives) are constant (hyperplanes). Besides the regular linear combination of inputs, the current 

approach still holds when using constant elasticities transformed by a log operation (linear parameters). 

In multiple inputs, an important topic to address concerns critical input. As discussed before, if any of the 

variables has infinite resources (unconstrained) compared to other inputs with scarce resources, these variables 

are regarded as not owing a critical input themselves - they must be kept out of the model. Finally, critical 

input for multiple variables is a linear combination of the constrained variables belonging to the set.  Further 

explanations regarding multiple inputs are better detailed in Appendix C (linear combination of inputs). 

19. Synergy’s Discount Rate 

One of the essential variables in valuation methods is the discount rate for cash flows. The mainstream 

methods based on cash flows rely on Beta CAPM for obtaining the cost of capital (ROE). However, the beta 

market risk (SP&500) is unstable and often provides negative values; furthermore, the beta in emerging 

markets does not present the significance obtained in developed markets. Hence, in some emerging countries, 

the discount rate that is effectively used is imported from the sectors derived from the American Market. 

Conversely, as discussed in this subsection, the Synergic Entropy provides a more stable and suitable discount 

rate. 

At first, if one intends to measure the cost of capital and debt simultaneously, the inputs could be a linear 

combination of Equity and Debt, respectively. This approach is described below: 

𝑥 = 𝑏𝑑𝑥𝑑 + 𝑏𝑒𝑥𝑒 (42) 

where 𝑑 is debt and 𝑒 is equity and the coefficients 𝑏𝑑/𝑏𝑒 are estimated under a OLS regression. However, 

this article keeps computing the Return on Assets (ROA) instead of splitting equity and debt into two separate 

variables. Appendix C (Multiple Inputs) better explains using multiple variables instead of one. 

After choosing the proper input variables (or a single one), the second step is to compute the synergy constant 

for the whole sector. As the synergy constant is the effect over the weighted variance from individuals, it is 

possible to use (35) in order to define a new estimate for risk: 

𝑟𝜙 = 𝑟𝑐 +  𝜙. 𝜎𝑤(𝑥,𝑡) (43) 

where 𝑟𝜙 is the discount rate for the cluster based on synergy (𝜙); 𝜎𝑤(𝑥,𝑡) is the weighted standard deviation 

of returns among companies in the same sector; and 𝑟𝑐 is the minimum required return for each cluster (𝑟𝑐), 

depending on stakeholders’ decisions. In this article, the algorithm sets  𝑟𝑐  to zero because the minimum 

required return depends on each investor’s risk appetite. 

As synergy is a longitudinal and cross-sectional parameter, its value should not change over time. On the other 

hand, 𝜎𝑤(𝑥,𝑡) could be subject to evolve through time; hence, the discount rate given by (43) presents a 

relative deviation (RSD) through time. It is important to notice that the weighted mean of returns (CRS) is not 

included in (43) for each cross-sectional, because it should not be misunderstood as a parameter for risk - its 
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values can be either positive or negative and risk is evaluated around CRS axis. Therefore, rather than relying 

on a specific level of weighted returns (as CAPM), the risk is based on the synergic fluctuations around the 

several levels (weighted returns) provided by each cross-sectional. 

The variance’s fluctuation over time given by 𝜎𝑤(𝑥,𝑡)  in (43) could undermine the synergy’s discount rate. 

Fortunately, for financial statements, this weighted variance of returns when accrued for large windows (>=3 

years) presents more stability. The reason probably relies on accounting performance, which makes some 

companies postpone or anticipate results to achieve best figures in financial statements; however, these 

deviations are commonly melted when the accounting figures for more than 2 years are joined. Conversely, it 

is worth remembering that the synergy parameter, rather than the synergy’s discount rate, does not have an 

issue regarding the weighted variance of returns (the fluctuating values from 𝜎𝑤(𝑥,𝑡) are filtered out from the 

estimation). 

Finally, if the subject is the company itself rather than the cluster it belongs, the cluster must be the company 

itself without its peers on the market. Therefore, all the input variables and output variables within a company 

must be evaluated, which could be the collection of its assets and their respective returns. 

20. Methods and Data 

The data used to evaluate the model are the financial statements (balance and income sheets) from the 11 

sectors in America (2064 companies). However, the figures and tables are from the Consumer Cyclical Sector 

(324 companies). The 11 sectors used in this article, which classification criteria by company are provided in 

the dataset, are the following: Basic Materials; Business Services; Consumer Cyclical; Consumer Defensive; 

Energy; Financial Services; Healthcare; Industrials; Real State; Technology; and Utilities.  The dataset 

containing all financial statements was retrieved from the following site belonging to the company SimFin: 

https://simfin.com/data/bulk. The SimFin’s dataset and the files in R containing the algorithm are available 

for download at https://osf.io/ax4ny/?view_only=476431405b 9f4f9894200cd5d9ebef97.  

The financial statements used are the quarterly incomes and balance sheets from January 2015 up to December 

2019 (5 years). Due to the COVID-19 pandemic, there was significant volatility in results regarding 2020 and 

2021; hence, these years are removed from the data to filter this effect. The variables used in the article are 

net incomes and total assets, which are the flow output and input, respectively. As the total assets’ variable is 

used as an employment from equity and debt, there is no need for unlever net incomes. Therefore, the article 

uses returns on assets (ROA) instead of returns on equity (ROE) as the proxy for returns. Total assets are 

brought to future value (last quarter from data) by the Treasury Yield for ten years, using the code TNX from 

Yahoo Finance; and returns for each quarter are subtracted from the treasure yield accrued for three months - 

decreasing net income by the risk-free rate. 

After retrieving net income, total assets and return for every company classified by sector, the following steps 

are required: 

a) Establish the reference axes. 

The reference axes must be built as explained in Subsection 2.9 and Appendix A, using 𝜺𝒎𝒂𝒙 and 𝒙𝒄𝒓𝒔 as the 

orthogonal axes for any operation that follows. The 𝒙𝒄𝒓𝒔  axis is rotated counterclockwise by the angle 

𝒕𝒂𝒏 𝜽 =  𝝁𝒘(𝒙𝒄𝒓𝒔,𝒕)  over 𝒙 (cumulative inputs). As 𝜺𝒎𝒂𝒙  is orthogonal to 𝒙𝒄𝒓𝒔 , 𝜺𝒎𝒂𝒙  is also rotated 

counterclockwise by the same angle over 𝒀(𝒙,𝒕) (cumulative outputs). The 𝝁𝒘(𝒙𝒄𝒓𝒔,𝒕) is the weighted average 

return, using 𝒙𝒄𝒓𝒔 𝒊 as the weight from individuals.  

As data from the article is comprised of small returns on assets (ROA), one can use the approximation given 

in Appendix A: 

𝑖𝑓 𝐶𝑅𝑆 (𝑡𝑎𝑛𝜃 = 𝜇𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑥,𝑡)) ≈ 0 

𝑥𝑐𝑟𝑠 = 𝑥 ; 𝜀𝑚𝑎𝑥 = 𝑌(𝑥,𝑡) − 𝑥𝜇𝑤(𝑥,𝑡) 

https://simfin.com/data/bulk
https://osf.io/ax4ny/?view_only=476431405b%209f4f9894200cd5d9ebef97
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b) Build an efficient envelopment. 

The cumulative vectors made from joined outputs (𝜺𝒎𝒂𝒙) and merged inputs (𝒙𝒄𝒓𝒔) are derived from two 

laws of accrual: the first one accrues the outputs sorted from maximum to minimum returns, which is the 

maximum entropy: +𝜺𝒎𝒂𝒙; and the second one accrues the outputs sorted from minimum to maximum 

returns, which is the minimum entropy: −𝜺𝒎𝒂𝒙.  

c) For each cross-sectional, estimate and store 𝜶(𝒙𝒄𝒓𝒔,𝒕) given by (𝟐𝟗): 

𝜺𝒎𝒂𝒙
𝟐 = 𝜶(𝒙𝒄𝒓𝒔,𝒕) 𝒍𝒏 (

𝒄

𝒙𝒄𝒓𝒔
) 

where:  

𝑥𝑐𝑟𝑠 = 𝑥 for small returns (data used in this article); and 

𝒄 = 𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒊𝒏𝒑𝒖𝒕 : total of inputs at each cross-sectional, as described in Subsection Cross-sectional 

critical input. 

d) For each cross-sectional, store the weighted variance of returns 𝝈𝟐
𝒘(𝒙𝒄𝒓𝒔,𝒕) from individuals and the cross-

sectional critical input computed for that cross-sectional. 

e) Estimate Synergy (𝝓) by regressing the affinity coefficient 𝜶(𝒙𝒄𝒓𝒔,𝒕) for every cross-sectional depending 

on the weighted variance and critical input stored from last step. From (𝟑𝟗): 

𝛼(𝑥𝑐𝑟𝑠,𝑡) = 𝜙2.
3

𝑙𝑛 𝑐
𝜎2

𝑤(𝑥𝑐𝑟𝑠,𝑡)  

√𝛼(𝑥𝑐𝑟𝑠,𝑡) = 𝜙√
3

𝑙𝑛 𝑐
𝜎𝑤(𝑥𝑐𝑟𝑠,𝑡) (44) 

Finally, Synergy (𝝓) is the angular coefficient derived from (𝟒𝟒) after joining √
𝟑

𝒍𝒏 𝒄
 and 𝝈𝒘(𝒙𝒄𝒓𝒔,𝒕) in one 

independent term. As discussed above, cross-sectional critical input (𝒄) is a constant.  

f) After estimating Synergy (𝝓), the Synergy’s discount rate (𝒓𝝓) given by (𝟒𝟑) is computed for olling 

windows of 3 years (12 quarters of compounded returns).  

21. Results 

Table 1. Regressed Model for the Consumer Cyclical Sector 

The (x,t) and w (x,t) are the weighted mean and weighted standard deviation from the entire cluster, 

respectively (weights are the values from inputs of individuals).  The fitted model for the affinity coefficient 

(√𝛼(x,t)) is from (28), using Total Assets from each cross-sectional as an estimate for critical input. *** = p-

value < 3.09E-287. 1CAPM Beta p-value is computed over the financial statements using the whole Consumer 

Cyclical Sector against all market (2064 companies) with 1 year of rolling windows 

 

Section 

U$ Billions 

Total Assets 

%/quarter 

(t) 

%/quarter 

w (t) 

Synergic Model 
CAPM Beta1 

p-value √𝛼(x,t) t-stat R² 

2015 Q1 2152.04 0.90% 4.62% 4.17%*** 69.5 89.1% NA 

2015 Q2 2286.76 0.99% 2.25% 3.84%*** 86.6 92.6% NA 

2015 Q3 2271.68 0.82% 2.03% 3.36%*** 181.4 98.2% NA 

2015 Q4 2351.23 1.01% 2.67% 4.30%*** 153.0 97.4% 0.56 

2016 Q1 2393.12 0.79% 1.52% 3.05%*** 174.4 98.0% 0.47 

2016 Q2 2432.34 0.91% 1.98% 3.10%*** 283.7 99.2% 0.43 

2016 Q3 2479.04 1.07% 1.74% 3.45%*** 167.4 97.8% 0.87 

2016 Q4 2509.09 0.96% 3.42% 5.19%*** 99.0 93.8% 0.88 

2017 Q1 2535.67 0.62% 1.59% 3.22%*** 165.2 97.7% 0.78 

2017 Q2 2627.52 0.55% 2.01% 3.77%*** 217.0 98.6% 0.79 

2017 Q3 2674.66 0.62% 2.64% 4.81%*** 245.7 98.9% 0.85 

2017 Q4 2696.81 0.72% 3.26% 6.71%*** 252.1 99.0% 0.90 
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2018 Q1 2710.14 0.70% 2.20% 4.52%*** 140.2 96.8% 0.91 

2018 Q2 2620.27 0.80% 2.00% 4.04%*** 146.2 97.0% 0.93 

2018 Q3 2654.40 0.81% 2.43% 4.27%*** 254.0 99.0% 0.93 

2018 Q4 2673.39 0.55% 2.51% 4.46%*** 238.5 98.9% 0.43 

2019 Q1 2869.13 0.50% 1.68% 3.64%*** 164.4 97.7% 0.52 

2019 Q2 3022.82 0.90% 3.45% 5.55%*** 154.4 97.3% 0.46 

2019 Q3 2970.58 0.75% 2.13% 4.14%*** 189.3 98.2% 0.51 

2019 Q4 3015.25 0.55% 2.33% 4.64%*** 221.4 98.7% 0.55 

Source: compiled by the author. 

  

Figure 3a: 1Q 2019. 𝝈𝒘 = 𝟏.𝟔𝟖% ; 𝒄 = 𝟐𝟖𝟔𝟗 Figure 3b: 2Q 2019. 𝝈𝒘 = 𝟑.𝟒𝟓%; 𝒄 = 𝟑𝟎𝟐𝟑 

  

  
Figure 3c: 3Q 2019. 𝝈𝒘 = 𝟐.𝟏𝟑%; 𝒄 = 𝟐𝟗𝟕𝟏 Figure 3d: 4Q 2019. 𝝈𝒘 = 𝟐.𝟑𝟑%; 𝒄 = 𝟑𝟎𝟏𝟓 

Figure 3. Longitudinal and Cross-Sectional Effects 

Source: compiled by the author. 

X axis (Input) is the Total Asset value from individuals or the sum from combined assets of joined companies. 

Y axis (Output) is the Income Generated by the maximum and minimum ordered returns (gray ellipse). The 

black ellipse is the fitted model from (28).  𝜎𝑤(𝑡) is the weighted standard deviation from input units at each 

cross-sectional, given by Table 1. 𝑐 is the critical input computed as the sum of every input unit at the cross-

sectional (step iii in Method). 
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Figure 4. Synergy Model for Consumer Cyclical Sector 

Source: compiled by the author. 

Y Axis is the square root of the Affinity Coefficient (√𝛼(𝑥,𝑡)) from (28) shown in Table 1; X Axis is the 

weighted standard deviation of returns (𝜎𝑤(𝑥,𝑡))  multiplied by the square root of the constant (3/𝑙𝑛 𝑐). 

Synergy (𝜙) is the angular coefficient given by (44). 

Table 2. Synergy Discount Rate (r𝜙) for Consumer Cyclical in rolling windows 

Synergy (𝜙) is the angular coefficient computed by (44). Synergy’s discount rate (𝑟𝜙) is computed for rolling 

windows of 3 years multiplying Synergy (𝜙) by the weighted standard deviation of returns using (43) ; 𝜇 (𝑟𝜙) 

is the mean of 𝑟𝜙 through time and RSD is the relative standard deviation given by the variance of 𝑟𝜙 through 

time given by 𝜎𝑟𝜙
/ 𝜇𝑟𝜙

. The weighted return in the second column is the CRS axis for the rolling window, but 

it is not part of the Synergy’s discount rate (𝑟𝜙). 

 

Section 

 Synergy 𝜙  = 1.54 

Weighted Return 

%/year 

Weighted Standard 

Deviation 

%/year 

Synergy’s rate 𝑟𝜙 

%/year 

2015 Q1 - 2017 Q4 3.22% 5.24% 8.07% 

2015 Q2 - 2018 Q1 3.20% 5.69% 8.77% 

2015 Q3 - 2018 Q2 3.11% 5.91% 9.10% 

2015 Q4 - 2018 Q3 3.13% 5.95% 9.17% 

2016 Q1 - 2018 Q4 3.05% 5.92% 9.13% 

2016 Q2 - 2019 Q1 3.13% 6.05% 9.32% 

2016 Q3 - 2019 Q2 3.29% 6.14% 9.45% 

2016 Q4 - 2019 Q3 3.06% 6.23% 9.60% 

2017 Q1 - 2019 Q4 2.92% 6.14% 9.46% 

  𝜇 𝑟𝜙 9.12% 

  RSD 𝑟𝜙 5.09% 

Source: compiled by the author. 

Table 3. Synergy (𝜙) and r𝜙 for All Sectors 

Synergy is the angular coefficient estimated by (44). *** = p-value < 0.001 ; ** = p-value < 0.01. Synergy’s 

discount rate (%/year) is computed using (43) in rolling windows of 3 years. RSD is the relative standard 

deviation given by the variance of 𝑟𝜙 through time given by 𝜎𝑟𝜙
/ 𝜇𝑟𝜙

.1Cheniere Energy Partners (CQH) is 

removed from Energy Cluster due to abnormal results over 1000% in 2017Q4, 2018Q1 and 2018Q2. 

 
Sector t-stat R² Synergy 𝜙  Synergy’s rate 𝑟𝜙 RSD 𝑟𝜙 

Basic Materials 
8.02 75.98% 0.78 *** 

3.57% 5.39% 

Business Services 7.42 72.97% 1.10 *** 4.41% 7.48% 
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Table 3 (cont.). Synergy (𝜙) and r𝜙 for All Sectors 

Consumer Cyclical 7.23 71.96% 1.54 *** 9.12% 5.09% 

Consumer Defensive 9.99 83.16% 1.21 *** 6.57% 6.83% 

Energy1 8.48 78.01% 1.09 *** 5.42% 15.39% 

Financial Services 30.19 97.85% 1.20 *** 6.83% 2.93% 

Healthcare 0.464 1.12% 0.01 NA NA 

Industrials 2.77 25.04% 0.98 ** 4.49% 4.35% 

Real State 
8.63 78.60% 0.52 *** 

1.54% 2.03% 

Technology 
15.84 92.59% 2.09 *** 

15.51% 7.22% 

Utilities 
6.18 65.03% 0.84 *** 

1.56% 10.99% 

Source: compiled by the author. 

Discussion 

The empirical results show clear frontiers for maximum entropy, signaling a driven phenomenon, rather than 

a pure stochastic combination among companies. Furthermore, some envelopments are not entirely 

symmetrical due to imperfections related to cluster definition and other issues derived from accounting and 

publishing procedures (as seen in Figure 3). 

As expected by the current approach, the cross-sectionals regressions are significant for every time slice (Table 

1). In contrast, the typical beta for financial statements did not present any significance (tough beta from the 

stock market is significant as widely covered by literature). The longitudinal regressions prove that the affinity 

constant (𝛼𝑥)  , which derives synergy ( 𝜙) , is significant and stable for every sector (Table 2).  The 

longitudinal result in Table 3 is plotted for Consumer Cyclical Sector in Figure 4. The outlier in Figure 4 is 

due to an abnormal income loss from Amazon Inc. and Hertz Co. in 2015Q1, two of the major companies in 

the sector. All the regressions are made without the intercept, for which reasons are presented as follows (topic 

briefly discussed in theory). At first, the cross-sectionals regressions cannot have an intercept because output 

deviation must be zero whether the input is zero. A similar approach is valid for longitudinal regressions: 

whether the weighted variance of returns is zero, there is no envelopment because all outputs are located at 

CRS; hence, the output deviations are zero. Therefore, whether squared deviations and variance are zero and 

inputs are not zero (there is at least one input unit to compute the weighted variance), the null term in (28) 

can only be derived from the affinity coefficient (𝛼(𝑥,𝑡)). 

Comparing the sections in Figure 3, it is possible to understand better the longitudinal and cross-sectional 

effects of the deducted phenomenon. For example, in section 3Q2019 and section 4Q2019, which have almost 

the same critical input (U$ 3 trillion), the difference regarding the shape between them is given by the 

longitudinal volatility of each section (𝜎𝑤(𝑡)). Now, suppose one compares the shapes from 1Q2019 and 

2Q2019. In that case, there are two size effects in entropy: the first effect is the cross-sectional one generated 

from the greater inputs (𝑥) and critical input (𝑐), deriving a proportional increase in squared entropy given by 

linearity (homogeneity in Appendix D); and the second effect is the longitudinal one provided by the greater 

(𝜎𝑤(𝑡)), which squared value also derives a proportional increase in squared entropy. 

The synergy, as discussed before, is the effect derived from combined inputs with affinity compared to the 

effect without mergers. Therefore, it is expected that occurs greater values for riskier sectors and lower values 

for defensive sectors, which common belief is confirmed by Technology (2.09) and Real State (0.52), 

respectively. One important threshold for synergy is the unitary value: clusters with synergy beyond one 

generate deviations above the weighted variance from individuals when there is combination; conversely, 

clusters with synergy below 1 means that their affinity is a defensive-nuclear one, decreasing the weighted 

variance of returns when inputs are merged. If synergy is below one, one could claim that it is not synergy, 

because the combined effect is lower than the sum of the individual effects; however, this anti-synergy 

behavior is a significant phenomenon that shrinks volatility and should not be misunderstood with clusters 

that do not present any affinity among its members. 

Regarding clusters without affinity or cohesion, the synergy among their input units should have insignificant 

levels. This fact truly happened for the Healthcare Sector, which does not present a significant value for 

synergy. The reasons for not achieving significance are related to the proper classification criteria of the 



 Financial Markets, Institutions and Risks, Volume 7, Issue 1, 2023     
ISSN (online) – 2521-1242 ISSN (print) – 2521-1250 

61 
 

cluster. In Healthcare, for example, there are heterogeneous companies without strong commonalities: some 

companies manufacture drugs (e.g.: Gilead, Pfizer and Johnson & Johnson); others provide medical devices 

and equipment (e.g.: Medtronic, Becton Dickinson and Bard); some companies offer medical diagnostics and 

research (e.g: Danaher and Thermo); and finally, some companies are health care providers (e.g: 

UnitedHealth, CVS and HCA Holdings). As the Healthcare sector is highly heterogeneous, the best approach 

is to compute synergy for each subsector. On the other hand, one could argue that there are other 

heterogeneous sectors in the economy, like Consumer Cyclical; however, the effect derived from discretionary 

consumption in this sector is more dominant than the opposite one given by the heterogeneity between its 

companies. 

On the other hand, the Finance Sector is the one that presents the highest significance for synergy. Due to the 

liquidity and correlation of financial assets compared to real assets, the mergers among financial assets are 

more efficient and synergic than other sectors with real assets. At last, the Industrial Sector is the cluster that 

presents the lowest significance for synergy (p-value < 0.01) compared to the values achieved by other sectors 

(p-value < 0.001); as discussed above, whether one changes the classification criteria in proper subsectors, 

the significance must get higher. 

The rationale that computes the synergy’s discount rate (𝑟𝜙) is shown in Table 2, which is the one built for 

Consumer Cyclical Sector. The rate 𝑟𝜙 is not constant through time due to the fluctuating weighted variance 

of returns, as explained in the 2.13 subsection. The final rate 𝑟𝜙 is the mean of the rates computed for each 

cross-sectional, and RSD is the relative squared deviation of these values. As shown in Table 3, 𝑟𝜙 is also 

computed for all sectors, presenting stable values with low RSD. The magnitude of 𝑟𝜙 regarding each sector 

seems suitable whether one picks the rule of thumb that gives market risk a value of 6% - the finance sector, 

which is the one most alike the stock market’s behavior, presents 𝑟𝜙 very similar to the stock’s market risk: 

6.83%. Technology and Consumer Cyclical, as expected, are the ones that present the riskiest behavior, 

achieving 15.51% and 9.12%, respectively. Conversely, there are risk-averse sectors, such as Utilities and 

Real State with rates around 1.5% yearly over the Treasury yield for ten years. 

Other input variables rather than the one used in this article, which is “total assets”, can be eventually evaluated 

as seen in Subsection 2.12. and Appendix C (linear combination of inputs). For example, other inputs such as 

debt (leverage), equity, liquidity ratio, working capital, labor and operational profitability can be evaluated 

together compounding input 𝑥.  

Conclusion 

As discussed, the theory aims to design a semi-deterministic approach for volatility (entropy), whose objective 

calls into question the usual stochastic behavior found in the literature. The foundation for this objective is 

based on the causal relationship between joined inputs and merged outputs, which combined output may be 

bounded inside an envelopment. This envelopment that removes the stochastic behavior can be acknowledged 

as similar to the efficient frontier given by DEA, shown in the seminal article from Charnes et al. (1978).  

The boundaries of the envelopment in the current approach are given by the maximum and minimum ordered 

derivatives (returns), rather than the optimization procedure (objective function) found in DEA. Furthermore, 

the model for the envelopment is built under an approach based on time, combinations and novel parameters, 

such as critical input (scarce resources), synergy and the first efficient constituent. Some of these parameters 

and variables are well known in Economics, but the current theory establishes the relationship between them 

in a single model over time; even time itself is neglected in most economic theories, because these approaches 

are hardly interested in the longitudinal effect. 

A theoretical achievement is the Critical Input variable embedded in the model. This is the name theory gives 

for the concept related to scarce resources. It is widely accepted that most of the inputs in a system are limited 

by constrained resources, such as the maximum number of skilled engineers, current oil reserves, available 

capital to invest and further on. Physical systems, which can also lead to further empirical research in their 

respective fields, comprise a limited number of forests, a limited number of available matter or even the 

maximum number of people infected by a virus. Critical input can be trivial for some systems but unknown 

for others. Critical input is the cause that makes the curve from the novel theory become an ellipse rather than 

a common logarithmic curve. Besides critical input, another point of interest is the first efficient constituent. 

This is the first real point in the ellipse that entropy is maximum for a given level of combinations – this is the 

minimum number of constituents required to ignite the cluster.  
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The strength of the interactions among constituents in a cluster is defined by a constant named synergy, in 

which higher values amplify entropy (volatility) and lower values below one shrink entropy; in the case that 

synergy is below one, the sector has a defensive (nuclear) behavior, which could lead synergy to be named as 

anti-synergy. The puzzle for solving synergy is derived from its definition: a comparison between the effect 

without mergers against the boosted effect provided by the interactions (combinations) among its constituents. 

Therefore, the deducted equation has the effect of interactions embedded in its formulation, which is neglected 

in most mainstream approaches for entropy until Tsallis (1988).  However, rather than the statistical approach 

in Tsallis (1988), the current theory is based on economical-physical reasoning established a priori whose 

foundations are the variables and parameters discussed above. Furthermore, the cross-sectional special case 

of Synergic Entropy is the entropy given by Gibbs-Boltzmann and Shannon (Appendix B). The general 

relationship between the output flow and its input can be applied in other physical systems, such as 

hadronization. As hadronization is conceived by an influx of energy, the input flow (ℎ𝑎𝑑𝑟𝑜𝑛𝑠/𝑡𝑖𝑚𝑒) can be 

established as given by (5). Moreover, the fundamental particle of a system (the first efficient constituent) can 

be indirectly estimated whether one has already computed the other parameters, which precise procedures are 

subject to further research. 

The results presented in this article for economic clusters have shown that synergy is stable, significant and 

constant through time. These synergy advantages confirm its adequacy as a good proxy for risk, whose values 

above one mean risky sectors and values below one corresponds to defensive-nuclear sectors (which anti-

synergy shrinks volatility). Therefore, based on its significance and adequacy, synergy is the core of a novel 

approach for valuation that does not depend on the return of overall market risk, like SP&500. Rather than 

relying on a market index that can be either positive or negative, the new discount rate is obtained by 

multiplying synergy by the weighted standard deviation of returns. This practical formula for synergy’s 

discount rate proves to be adherent to the perceived risk regarding each sector. Besides that, the subjectivity 

that exists in selecting portfolios in CAPM (Sharpe (1964), Lintner (1965) and Mossin (1966)) is removed by 

synergy, because the significance of the selection is tested against the proper definition of the cluster (𝜙 𝑝 −
𝑣𝑎𝑙𝑢𝑒) .  

Optimization procedures can classify systems in future research, whose tasks can be done by fine-tuning the 

significance of synergy. Further research can also investigate the survival of a system, in which ignition is 

played by the first efficient constituent (fundamental unit), and the termination is given by critical input.  
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Appendix A: Rotation of Reference Axes 

A.1. General 

As required by theory, input (𝑥) and output (𝑌𝑓)  axes must be rotated counterclockwise by an angle 𝜃 until 

the input axis gets aligned with the CRS (Constant Returns to Scale) axis. Therefore, it is necessary to 

determine the rotation angle 𝜃, which defines the CRS. At first, it is worth remembering that the inputs and 

outputs are cumulative figures in both axes. The first point of the line that defines the CRS is (0,0) because 

cumulative outputs do not emerge when cumulative inputs remain without input units. The second point which 

finally establishes the line of the cumulative CRS is at critical input (𝑐, 𝑌𝑓(𝑐)). One could argue why the second 

point of CRS is defined as critical input. The answer is that theory establishes critical input at the point where 

all input units are joined with only one possible outcome: the total outputs combined. As there is only one 

possible output, the cumulative CRS must be located at this point without any other possibility around critical 

input. It is important to notice that critical input for multiple constrained inputs is shown in Appendix C (linear 

combination of inputs).  Slope between (0,0) and (𝑐, 𝑌𝑓(𝑐)): 

𝑡𝑎𝑛𝜃 =
 𝑌𝑓(𝑐)

𝑐
(𝐴. 1)  

As explained before, critical input can be known or unknown. If critical input is unknown, 𝑡𝑎𝑛𝜃 can be 

estimated by retrieving the definition of CRS – the constant mean of returns. In this case, one must compute 

the total outputs and inputs from known individuals in the cluster to estimate the mean of returns. This is the 

same as estimating the weighted mean of returns, which must have approximately the same slope that connects 

(0,0) and (𝑐, 𝑌𝑓(𝑐)).  

Thus, from the above statements:  

𝑡𝑎𝑛𝜃 =
∑ 𝑌𝑓 𝑎𝑙𝑙

𝑖=𝑛
𝑖=0

∑ 𝑥𝑖
𝑖=𝑛
𝑖=0

 

𝑡𝑎𝑛𝜃 =
∑ 𝑟𝑖. 𝑥𝑖

𝑖=𝑛
𝑖=0

∑ 𝑥𝑖
𝑖=𝑛
𝑖=0

 ;  𝑟𝑖  =  
𝑌𝑓 𝑖

𝑥𝑖

(𝐴. 2) 

𝑡𝑎𝑛𝜃 = 𝜇𝑤 (𝐴. 3) 

where 𝑟𝑖 is the return of each input unit, 𝑛 is the number of companies in the cluster and 𝜇𝑤 is the weighted 

return. Rather than using the cumulative input in the 𝑥 axis, one can use the average output given by CRS in 

the 𝑥 axis. In this case, as seen in Multiple Inputs in Appendix C, 𝑡𝑎𝑛𝜃 = 1.   

Being defined the rotation angle, it is possible to present the transformation matrix for a 𝑥𝑦 plane which will 

be rotated to 𝑥′𝑦′.  The 𝑥′𝑦′ plane is formed by orthogonal vectors and 𝑥′ is a vector rotated 𝑎𝑟𝑐 𝑡𝑎𝑛𝜃 

counterclockwise from 𝑥. The 𝑥′𝑦′ plane is the solution given by (24) where 𝑥′ =  𝑥𝑐𝑟𝑠 and 𝑦′ =  𝜀𝑚𝑎𝑥 

[
𝑥′

𝑦′] = [
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃

−𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃
] [

𝑥
𝑦]  

𝑥𝑐𝑟𝑠 = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃 (A. 4) 

𝜀𝑚𝑎𝑥 = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃 (A. 5) 

A.2. Rotation for Small Returns 

For systems having small returns, the return ( 𝜇𝑤  = 𝑡𝑎𝑛𝜃)  is commonly a small number compared to 

cumulative inputs. Thus, some properties can be used: 

𝑐𝑜𝑠𝜃 ≈ 1 (A. 6) 

https://doi.org/10.1016/j.physa.2021.126036
https://doi.org/10.1007/s10100-021-00777-y
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𝑠𝑖𝑛𝜃 ≈ 𝑡𝑎𝑛𝜃 (A. 7) 

It is important to emphasize that this approach is not valid for systems with multiple linear combinations of 

inputs, nor systems using elasticities as variables. 

Therefore, if one applies (𝐴. 6) and (𝐴. 7) to (𝐴. 4), one gets the first equation for transformed axis 𝑥𝑐𝑟𝑠: 

𝑥𝑐𝑟𝑠 = 𝑥. 1 + 𝑦(𝑠𝑚𝑎𝑙𝑙 𝑡𝑜 𝑥′). 𝑠𝑖𝑛𝜃(𝑠𝑚𝑎𝑙𝑙 𝑡𝑜 𝑥′) (A. 8) 

The second term of  (A. 8) tends to minimum significance, as both 𝑦 and 𝑠𝑖𝑛 𝜃 are small numbers compared 

to 𝑥.  

Therefore, one gets: 

𝑥𝑐𝑟𝑠 = 𝑥 (𝐴. 9) 

Making the same approach for Y axis in (A. 5), one gets: 

𝜀𝑚𝑎𝑥 = 𝑦 − 𝑥𝜇𝑤 (A. 10) 

Finally, plugging (𝐴. 9) and (𝐴. 10) in (24), one gets equation (25) with rotated axes:  

(𝑌𝑚𝑎𝑥(𝑥,𝑡) − 𝑥𝜇(𝑥,𝑡))
2

= 𝛼(𝑥,𝑡)(𝑐 𝑙𝑛 𝑐 − 𝑥 𝑙𝑛(𝑥) − (𝑐 − 𝑥) 𝑙𝑛(𝑐 − 𝑥)) (25) 

It is important to notice that the approximation given by (25) is only valid for small returns. However, when 

the scale of outputs is similar to the one given by inputs, the rotation matrix must be applied – this is the case 

for the linear combination of inputs and elasticities. 

 

Appendix B: Shannon’s Entropy 

In this Appendix the commonalities between the current approach and Shannon’s Entropy are presented. 

Likewise, the same comparison can be applied to Gibbs-Boltzmann’s equation due to the commonalities 

between their mathematical formulation. In (B. 1), Shannon’s entropy seminal equation is reproduced: 

𝐻 =  − ∑ 𝑝𝑖

𝑛

𝑖=1

𝑙𝑜𝑔𝑏𝑥 (B. 1) 

Assuming that: 

𝑙𝑖𝑚
𝑝→0+

𝑝𝑙𝑜𝑔(𝑝) = 0 (B. 2) 

The assumption in (𝐵. 2) was the same previously taken to define the boundaries conditions around 𝛼𝑥𝑙𝑜𝑔(𝑥) 

and 𝛼(𝑐 − 𝑥)𝑙𝑜𝑔(𝑐 − 𝑥) (See Subsection 2.8). 

Shannon’s entropy was conceived for multiple different states of 𝑥 in (𝐵. 1).   It means, for example, that 𝑥 

could be any of the 26 letters (states) of an English word in a transmitted message, in which some letters have 

more probability of occurring than others. However, Shannon’s entropy in this article can be acknowledged 

as having only two states: the first one is the certainty (+cl) about the unit (particle) being part of the cluster; 

and the second state is the certainty about the particle being part of another cluster (−cl), not belonging to the 

current one. Thus, equation (𝐵. 1), written for two possible states, that are the cluster (+cl) and the anti-cluster 

one (−cl), becomes: 

𝐻 =  − 𝑝𝑖=1 𝑙𝑜𝑔2 𝑝𝑖=+cl  − 𝑝𝑖=−1 𝑙𝑜𝑔2 𝑝𝑖=−cl 

If one changes the logarithm’s base in the above equation, one gets a new equation rewritten for natural 

logarithm: 

𝐻 =
1

𝑙𝑜𝑔2
(−𝑝𝑖=1𝑙𝑜𝑔𝑝𝑖=+cl − 𝑝𝑖=−1𝑙𝑜𝑔𝑝𝑖=−cl) (B. 3) 

As the two possible events are complementary, the probabilities of each one can be written as follows: 

𝑝𝑖=cl = 𝑝 (𝐵. 4) 
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𝑝𝑖=−cl = 1 − 𝑝 (𝐵. 5) 

Plugging (𝐵. 4) and (𝐵. 5) in (𝐵. 3) one gets: 

𝐻 =
1

𝑙𝑜𝑔2
(−𝑝𝑙𝑜𝑔𝑝 − (1 − 𝑝)𝑙𝑜𝑔(1 − 𝑝)) (B. 6) 

Equation (𝐵. 6) is the entropy binary function for two possible complementary states. As the first state is the 

cluster force, one can realize that the greater the 𝑝 the greater the certainty of that particle belongs to the 

current cluster. The scalar (
1

𝑙𝑜𝑔2
) was necessary to make a base adjustment, though other adjustments might 

be necessary to calibrate the correct entropy measure. Thus, equation (𝐵. 6) can be rewritten again: 

𝐻 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∗ (−𝑝𝑙𝑜𝑔𝑝 − (1 − 𝑝)𝑙𝑜𝑔(1 − 𝑝)) (B. 7) 

Now, it is time to adapt and adjust the novel approach for the cross-sectional given by (24). The first 

adjustment is to transform input in a probabilistic function, having critical input as the possible threshold for 

input. When the input is equal to critical input, the chance of that level of the particle (input) belonging to a 

certain cluster is maximum. The reason for maximum certainty at critical input is that one can only be entirely 

sure whether a particle actually belongs to a cluster or not whether the level of that particle is the entire cluster 

itself, which is the value of critical input. Besides critical input, the other constant that defines a cluster is 

synergy – however, synergy remains constant for the cross-sectional given by (24). Thus, if one takes input 

and transforms its scale in a unit-based normalization allowed by linearity given by (𝐷. 4), one gets: 

𝑥𝑐𝑟𝑠
∗ = 𝑥𝑐𝑟𝑠/𝑐 (𝐵. 8) 

Thus, 

𝑥∗  =  1, 𝑓𝑜𝑟 𝑥 = 𝑐 

Applying unit-normalization given by (𝐵. 8) in (24), one gets: 

             𝜀𝑚𝑎𝑥
2 = 𝛼(𝑥𝑐𝑟𝑠,𝑡)1 𝑙𝑛 1 − 𝛼(𝑥𝑐𝑟𝑠,𝑡)𝑥𝑐𝑟𝑠

∗ 𝑙𝑛(𝑥𝑐𝑟𝑠
∗) − 𝛼(𝑥𝑐𝑟𝑠,𝑡)(1 − 𝑥𝑐𝑟𝑠

∗) 𝑙𝑛(1 − 𝑥𝑐𝑟𝑠
∗)   

As 𝑥𝑐𝑟𝑠
∗ is the chance of achieving critical point as input increases, ranging from zero to 1, one can define 

𝑥𝑐𝑟𝑠
∗as an input’s (particle) density probability. Therefore, one gets: 

𝑥𝑐𝑟𝑠
∗ =  𝑝𝑥   

𝜀𝑚𝑎𝑥
2 = 𝛼(𝑥𝑐𝑟𝑠,𝑡)(−𝑝𝑥 𝑙𝑛(𝑝𝑥) − (1 − 𝑝𝑥)𝑙𝑛(1 − 𝑝𝑥)) (𝐵. 9) 

When equations (𝐵. 9) and (𝐵. 7) are compared, one realizes that both approaches are equivalent: 𝜀𝑒𝑓𝑓
2 can 

be acknowledged as a measure for entropy; the constant in (𝐵. 7) is the affinity coefficient given by 𝛼(𝑥𝑐𝑟𝑠,𝑡); 

and the other terms of the equation are equivalent. 

Appendix C: Linear Combination of Inputs 

C.1. Simple Linear Combination 

As discussed in Subsection 2.12, the theory holds if the input defined by 𝑥 is a linear combination of several 

inputs, as seen below: 

𝑥 = 𝑏1𝑥1 + 𝑏2𝑥2 + . . . 𝑏𝑛𝑥𝑛 (𝐶. 1) 

When 𝑥 =  𝑐, it comes: 

𝑐 = 𝑏1𝑐1 + 𝑏2𝑐2 +. . . 𝑏𝑛𝑐𝑛 (𝐶. 2) 

where 𝑛 is the number of constrained parameters in input. 

The unconstrained variables are out of the set because they do not provide causality relations between their 

magnitude and the variance given by the current approach. For example, suppose one uses an unconstrained 

variable as a single parameter. In that case, this approach gives the same result as the one provided by a pure 

CRS approach with random errors, an OLS with homoscedasticity. As the companies or input units do not 

need to compete themselves for inputs, because there is plenty of them, there is no difference regarding 
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efficiency among them – the envelopment does not exist for this single unconstrained variable. In this case, 

there is no theoretical variance driven by a phenomenon – however, due to random errors, a constant variance 

derived from OLS might happen. In order to avoid this constant variance at critical input, whose variance 

must be zero, the unconstrained variables must be kept out from the variance’s prediction model. Hence, the 

unconstrained variables must be subtracted from the output flow, keeping only the constrained ones. 

As the single input 𝑥  is compounded by a linear combination of several inputs 𝑥1. . . 𝑥𝑛 , its coefficients 

(𝑏1, 𝑏2, . . . 𝑏𝑛) can be estimated by an OLS multiple linear regression, as given by (𝐶. 3) below. As defined 

before, this is a regression without intercept because there is no output when zero input units are available to 

combine. 

Therefore, the coefficients 𝑏1, 𝑏2, . . . 𝑏𝑛 are estimated by: 

Ŷ𝑓 = 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ 𝑏𝑛𝑥𝑛 (𝐶. 3) 

𝑥 = Ŷ𝑓 (𝐶. 4) 

One can argue that replacing 𝑥 by Ŷ𝑓 in the input axis destroys the relationship between output and input. 

However, instead of the CRS itself, the novel theory provides the variance (entropy) over the CRS. Thus, the 

reasoning that predicts the fluctuations above and below CRS is not changed whether one replaces 𝑥 by Ŷ𝑓. 

As the axes are formed by cumulative values, 𝑥 is replaced by the cumulative values from the individuals 

(Ŷ𝑓) in (𝐶. 4) and 𝑌𝑓 remains the cumulative values from outputs. Thus, equation (3) for the ordered returns 

that build the envelopment becomes:  

𝑑𝑌𝑓(𝑖)

𝑑Ŷ𝑓(𝑖)

= 𝑟𝑖 (𝐶. 5) 

Therefore, the derivatives built in ascending and descending order can be calculated using the same definition 

provided by (3) mirrored for more dimensions as stated by (C. 5).  

Therefore, the axis 𝑥 is formed by cumulative fitted values from output (Ŷ𝑓) and the 𝑦 axis is the cumulative 

actual data from output (𝑌𝑓). The envelopment for this data will show an ellipse around a CRS which slope is 

450 (𝑦 = 𝑥 ). This 450 CRS is derived from the line that connects the points (0,0) and (𝑐, 𝑌𝑓(𝑐)) , which was 

explained in Appendix A. Therefore, 𝑡𝑎𝑛𝜃 can be derived directly from (𝐴. 1) and (𝐶. 2): 

𝑡𝑎𝑛𝜃 =
𝑌𝑓(𝑐)

𝑐
 

 

𝑡𝑎𝑛𝜃 =
𝑌̂𝑓(𝑐)

∑ 𝑏1𝑐1 + ∑ 𝑏2𝑐2 +. . . ∑ 𝑏𝑛𝑐𝑛 
 

𝑡𝑎𝑛𝜃 =
𝑌̂𝑓(𝑐)

𝑌̂𝑓(𝑐)

= 1 (𝐶. 6) 

where 𝑌𝑓(𝑐) =  𝑌̂𝑓(𝑐) is derived from the definition of critical input as detailed in Appendix A. At critical input, 

there are no deviations between the envelopment (𝑌𝑓(𝑐)) and the CRS (𝑌̂𝑓(𝑐)). 

C.2 CES Production Function and Other Output Functions 

The CES production function is a first-degree homogeneous equation. Therefore, the CES production function 

from Arrow et al. (1961) can be used as a CRS baseline for the current approach. Furthermore, the current 

approach holds for other functions whether a log transformation gives a linear combination of elasticities. 

Therefore, output functions like Cobb-Douglas (1927) can be used as CRS baselines in (1) when applying 

the proper log transformation. 
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Appendix D: Ellipse Method 

This section presents a method for estimating longitudinal critical input when its value is unknown, and its 

variance is steady throughout time (better detailed in 2.3.1). Before describing the ellipse method, some 

important properties and definitions must be addressed: the maximum point of deviation and linearity. 

D.1 Maximum Point of Deviation 

The maximum deviation is another practical assessment given by the deducted equation, allowing the 

maximum output estimation. This value is deducted below to compute the 𝑦 axis required from the Ellipse 

Method. In order to get the maximum point, the first derivative of (24) is shown below: 

𝜀𝑚𝑎𝑥 =  √𝛼(𝑥𝑐𝑟𝑠,𝑡)(𝑐 𝑙𝑛 𝑐 − 𝑥𝑐𝑟𝑠 𝑙𝑛(𝑥𝑐𝑟𝑠) − (𝑐 − 𝑥𝑐𝑟𝑠) 𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠)) 

𝑑𝜀𝑚𝑎𝑥

𝑑𝑡
= 

𝛼(𝑥𝑐𝑟𝑠,𝑡) (𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠)  − 𝑙𝑛(𝑥𝑐𝑟𝑠))

√𝛼(𝑥𝑐𝑟𝑠,𝑡)(𝑐 𝑙𝑛 𝑐 − 𝑥𝑐𝑟𝑠 𝑙𝑛(𝑥𝑐𝑟𝑠) − (𝑐 − 𝑥𝑐𝑟𝑠) 𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠))

(D. 1)
 

The root for this equation might be at half of critical input, because the curve is symmetric. At 
𝑐

2
 , the numerator 

of equation (𝑆. 1) turns out to be zero, proving that this is actually the root. Therefore,  

𝑅𝑜𝑜𝑡𝑠(D. 1) =
𝑐

2
(D. 2) 

Considering the root as 
𝑐

2
, 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑥 𝜀𝑚𝑎𝑥

2, 𝑏𝑒𝑐𝑜𝑚𝑒𝑠: 

𝑚𝑎𝑥 𝜀𝑚𝑎𝑥
2 =  𝛼(𝑥𝑐𝑟𝑠,𝑡) (𝑐 𝑙𝑛(𝑐) −

𝑐

2
𝑙𝑛 (

𝑐

2
) − (𝑐 −

𝑐

2
) 𝑙𝑛 (𝑐 −

𝑐

2
)), which leads to: 

𝑚𝑎𝑥 𝜀𝑚𝑎𝑥
2 = 𝛼(𝑥𝑐𝑟𝑠,𝑡)𝑐𝑙𝑛(2) (𝐷. 3) 

D.2  Linearity 

An important property of the cross-sectional equation given by (28) is that the multiplication of 𝑐 and 𝑥 by 

the same constant 𝑘 leads to multiplication of 𝜀𝑚𝑎𝑥
2 by the same constant. Thus, multiplying every term from 

the right side from (28) by 𝑘: 

𝜀𝑚𝑎𝑥
2 = 𝛼(𝑥𝑐𝑟𝑠,𝑡)(𝑘𝑐 𝑙𝑛 𝑘𝑐 − 𝑘𝑥𝑐𝑟𝑠 𝑙𝑛(𝑘𝑥𝑐𝑟𝑠) − (𝑘𝑐 − 𝑘𝑥𝑐𝑟𝑠) 𝑙𝑛(𝑘𝑐 − 𝑘𝑥𝑐𝑟𝑠)) 

If one uses logarithmic properties and some simple algebraic manipulation, the above equation is equal to: 

𝜀𝑚𝑎𝑥
2 = 𝑘𝛼(𝑥𝑐𝑟𝑠,𝑡) [𝑐 𝑙𝑛 𝑐 − 𝑥𝑐𝑟𝑠 𝑙𝑛(𝑥𝑐𝑟𝑠) − (𝑐 − 𝑥𝑐𝑟𝑠) 𝑙𝑛(𝑐 − 𝑥𝑐𝑟𝑠)] (D. 4) 

Another important parameter that gives a linear effect for the squared deviations is inside the affinity 

coefficient given by 𝛼(𝑥𝑐𝑟𝑠,𝑡), which is 𝜎2
𝑤(𝑥𝑐𝑟𝑠,𝑡): 

𝛼(𝑥𝑐𝑟𝑠,𝑡) =
3

𝑙𝑛 𝑐
. 𝜙2𝜎2

𝑤(𝑥𝑐𝑟𝑠,𝑡) (44) 

Finally, linearity is derived from a proportional increase in the squared deviations given by: 

➢ a proportional increase in input units in the cross-sectional, which also leads to a proportional increment 

in cross-sectional critical input; and 

➢ a proportional increase in the weighted variance of returns. 

An issue regarding linearity could arise from 
3

𝑙𝑛 𝑐
 in equation (1), because 𝑙𝑛 𝑐 should be multiplied by 𝑘 

leading to 
3

𝑙𝑛 𝑘 + 𝑙𝑛 𝑐
. However, as seen in the equalization procedure, the 𝑘 parameter is given by 𝑘𝑗 =

𝑐𝑙𝑎𝑠𝑡

𝑐𝑗
, 

leading to: 

𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (
3

𝑙𝑛 𝑐𝑗
) = 

3

𝑙𝑛 (𝑘.𝑐𝑗)
 = 

3

𝑙𝑛 (
𝑐𝑙𝑎𝑠𝑡

𝑐𝑗
.𝑐𝑗)

 = 
3

𝑙𝑛 𝑐𝑙𝑎𝑠𝑡
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  
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Thus, the term 
3

𝑙𝑛 𝑐
 does not present any effect over the pooled regression, remaining constant. 

D.3 The Ellipse Method 

The geometric model given by (24) resembles an ellipse. An ellipse has two focus of convergence, which has 

a parallel with the conflicting affinity and anti-cluster forces. Retrieving the equation of the ellipse, one gets: 

(𝑦′ − 𝑐2)2

𝑏2
+

(𝑥′ − 𝑐1)2

𝑎2
= 1 (D. 5) 

If one replaces the ellipse variables given by (D. 5) with the following variables, an ellipse can be drawn as 

an approximation for (24). 

𝑦′  : 𝜀𝑚𝑎𝑥 

𝑥′  : 𝑥𝑐𝑟𝑠 

𝑐1  : 𝑐/2 (center of the ellipse shifted from x’) 

𝑐2  : 0 (center of the ellipse shifted from y’) 

𝑎  : 𝑐/2 (major axis) 

𝑏  : √𝑙𝑛2𝛼𝑐 , from (D. 3) (minor axis) 

Thus, using the above variables, (25) is rewritten using (D. 5): 

𝜀𝑚𝑎𝑥
2

𝑙𝑛2𝛼𝑐
+ 

(𝑥 −
𝑐
2)2

(
𝑐
2

)2
 =  1 

This ellipse routine must be used after the rotation of the system (Appendix A).  

Solving algebraically, leads to: 

𝜀𝑚𝑎𝑥
2 =  4𝛼𝑙𝑛2𝑥 (1 −  

𝑥

𝑐
) 

Dividing both sides by 𝑥, leads to: 

𝜀𝑚𝑎𝑥
2

𝑥
= 4𝛼𝑙𝑛2 (1 − 

𝑥

𝑐
) (𝐷. 6) 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡: 4𝛼(𝑥𝑐𝑟𝑠,𝑡)𝑙𝑛2  

𝑆𝑙𝑜𝑝𝑒: −
4𝛼(𝑥𝑐𝑟𝑠,𝑡)𝑙𝑛2

𝑐
 

Finally, using a regression model based on the Ellipse Approach given by (𝐷. 6), the result leads to an estimate 

of longitudinal critical input: 

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑖𝑛𝑝𝑢𝑡(𝑐) = −
𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡

𝑆𝑙𝑜𝑝𝑒
(D. 7) 

D.4 Data Preparation 

The ellipse method requires a pooled regression using all cross-sectionals together. In order to prepare data 

for use in the Ellipse Method, every cross-sectional must be prior equalized using the following properties: i. 

linearity given by (𝐷. 4); and ii. the linear effect given by the weighted variance of returns; Therefore, the 

following variables and parameters must be scaled to provide proper equalization: 

➢ Inputs (𝑥);  

➢ Squared deviations (𝜀𝑚𝑎𝑥
2). 

The equalization is required because every cross-sectional has different levels of inputs and weighted variance 

of returns, which leads to different levels of deviations (𝜀𝑚𝑎𝑥
2).  Therefore, in the equalization procedure, 

each cross-sectional must be scaled up to the level of the last cross-sectional (𝑙𝑎𝑠𝑡) using linear effects. These 
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linear effects in empirical data are shown in Figure 3 and explained in Discussion. Finally, after the proper 

equalization, the pooled regression with all cross-sectionals together can be computed.  

From linearity given by (𝐷. 4), the first step in equalization concerns the input values (𝑥). This approach is 

described in (𝐷. 8), where 𝑐𝑗 is the sum of every input unit (𝑥) at a given cross-sectional (𝑗) , which is the 

cross-sectional critical input; 𝑐𝑙𝑎𝑠𝑡 is the  𝑐𝑗 value for the last cross-sectional; and 𝑘𝑗 is the scalar value for 

equalization under linearity mentioned in (𝐷. 4): 

 

𝑘𝑗 =
𝑐𝑙𝑎𝑠𝑡

𝑐𝑗

(𝐷. 8) 

The same procedure can be done for the weighted variance of returns, replacing 𝑘𝑗 by 𝑤𝑗: 

𝑤𝑗 =
𝜎2

𝑤(𝑙𝑎𝑠𝑡) 

𝜎2
𝑤(𝑗)

(𝐷. 9) 

 

Finally, every input 𝑥 for each cross-sectional 𝑗 must be multiplied by 𝑘𝑗 to compare every 𝑥 at the same level 

when all cross-sectionals are joined in a pooled regression. Simultaneously, as given by (D. 4), the squared 

entropy from section 𝑗 must also be multiplied by 𝑘𝑗. Furthermore, the weighted variance of returns also gives 

a linear effect on squared entropies (adjusted by 𝑤𝑗). Thus, the proper equalization for both 𝜀𝑚𝑎𝑥
2 and 𝑥𝑐𝑟𝑠 

for each cross-sectional is: 

𝜀𝑚𝑎𝑥𝑗𝐸𝑄𝑈𝐴𝐿𝐼𝑍𝐸𝐷
2 = 𝜀𝑚𝑎𝑥𝑗

2. 𝑘𝑗. 𝑤𝑗 (𝐷. 10) 

 

𝑥𝑐𝑟𝑠𝑗 𝐸𝑄𝑈𝐴𝐿𝐼𝑍𝐸𝐷 = 𝑥𝑐𝑟𝑠𝑗
. 𝑘𝑗 (𝐷. 11) 

 

 

 


