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Abstract: Insurance to deal with prolonged drought periods in rural Africa requires a practical method to 

estimate accurate premium values that minimize economic losses.  We use non-parametric methods to determine 

the risk non-neutral insurer’s premium for drought insurance on rain-fed crops. Premium values are estimated 

on the basis of percentage of the expected yield losses over the potential yields. Expected yield losses are estimated 

based on data on the levels of rainfall, potential evapotranspiration and water-holding capacity of the soil, and 

water requirement of the crop. Maize crop in West Kenya, and rice crop in the Central High Plains of Madagascar 

are taken as case studies. To check if farmer’s choice of starting seasons affects the expected yields and the values 

of premium, we employ forecasted yields for two different sowing dates (October vs. November) for maize, and 

two different transplantation dates (November vs. December) for rice. The mean-variance (E-V), the First-Degree 

Stochastic Dominance (FSD), and the Second-Degree Stochastic Dominance (SSD) efficiency criteria are used 

to rank each pair of distributions.  Results show that an insurer for maize production in Western Kenya would 

require a premium value between 43 and 55% of the potential yields to fully cover the loss caused by lack of 

rainfall. Under E-V and FSD, the two yield distributions cannot be ranked, but under SSD the yield distribution 

of the October-sown maize dominates that of November.  For lowland rice in the Central High Plains of 

Madagascar, all three efficiency criteria indicate that the yield distribution of the December-transplanted rice 
dominates that of November and the premium values are less than 4 % of the potential yields. 
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1. Introduction 

Risk and uncertainty are inseparable to crop production. With climate change causing extreme weather conditions, 

the need to insure against production risks to boost agricultural revenue and improve food security is growing.  

Many African countries suffering from chronic food insecurity while experiencing extreme drought are in need 

of drought insurance to limit the negative impacts of insufficient rainfall on farm income and food availability.  

However, in rural Africa, because of incomplete and asymmetric information, setting a drought insurance with 

accurate and undistorted premium values that allow both contracting agents to benefit from the insurance has been 

difficult. 

The objective of this paper is to determine drought insurance premium based on the efficient uses of forecasted 

yield index.  The method involves a risk non-neutral insurer, and the premium values are estimated on the basis 

of the statistical distribution of the percentage of expected yield losses over the potential yields. Expected yields 

are estimated using data on the levels of rainfall, potential evapotranspiration and water-holding capacity of the 

soil, and water requirement of the crop.  Two main food crops from the largest production areas in two African 

countries are used as case studies: maize in Western Kenya, and lowland rice in the Central High Plains of 

Madagascar.  The results provide policy implications for premium determination in drought insurance for public 

and private insurers operating in rural areas. 

2. Literature review 

Crop Water Needs 

Water and irrigation play significant roles for crop growth. Lack of water affects plant’s growth due to stress, 

while excess humidity causes soil nutrient leaching and induces crop disease (Baldy and Stigter, 1997). As a 

result, both insufficient and excessive amounts of rainfall reduce crop yields and harvest. The amount, intensity, 

frequency, and timing of rainfall and irrigation, as well as farm practices are important in determining the 

effectiveness of any means of satisfying crop water needs (Mapp and Eidman, 1976; Hornbaker and Mapp, 1988; 

Talpaz and Mjelde, 1988; FAO, 1991, 1996; Admire, Ray and Hefner, 1997).   

Specifically, Hornbaker and Mapp (1988), employed simulation and recursive programming methods to conclude 

that timing of irrigation was important for sorghum crops for a profit maximizing farm.  They monitored irrigation 

on a daily basis and used weather and soil data. Similarly, Talpaz and Mjelde (1988) proposed an optimizing 

simulation method for scheduling crop irrigation and particularly corn irrigation in the High Plain area of Texas. 

They examined the importance of the frequency and quantity of water used for plants while varying the soil 

moisture.  Similarly, Admire, Ray and Hefner (1997) found that practices like the use of “side inlet irrigation 

system” field appeared to be more beneficial in reducing water management cost than the usual “cascade flood 

irrigation” system for irrigated rice production.  

Crop and rainfall insurances 

As the lack or excess of rainfall causes huge production risks, crop insurance has become highly necessary.  

However, establishing a crop insurance in developing countries has been difficult.  Early studies (e.g. Hazell, 

Pomerada and Valdes.1986; and Roberts and Dick, 1991) concluded that developing countries’ experiences on 

crop insurance showed mixed results. Ray (1974) and Quiggin (1991) concluded that the main difficulties of 

implementing crop insurance in developing countries stemmed from the lack of reliable data on crop and yields, 

wide variety of agricultural practices, and inadequate market infrastructure.  Additionally, the high monitoring 

cost to minimize moral hazard and adverse selection (Arnott and Stiglitz, 1991), and financial constraints have 

limited the use of crop insurance. 

Rainfall insurance is among crop insurances that have been employed to deal with crop production risks due to 

inadequate amount of rainfall in developing countries (Mishra, 1995).  Rainfall insurance like any other crop 

insurance has two general objectives at the farm level: to reduce the variability of farm income, and to ensure 

some subsistence level of living and debt repayments, particularly after a devastating drought or flooding.  

particularly attractive to farmers and insurers.  



  SocioEconomic Challenges, Volume 7, Issue 1, 2023 
ISSN (print) – 2520-6621, ISSN (online) – 2520-6214 

3 

Premium determination for crop insurance 

Hazell (1999) and Skees (2000) outlined the main advantages of rainfall insurance for developing countries.  The 

ease of monitoring and getting accessible information on rainfall measurement reduces moral hazard and adverse 

selection considerably and makes the use of rainfall insurance attractive (Hazell, 1992; Hazell, 1999).  But the 

complex computation of the premium, requiring precise data on soil and crop characteristics especially in the 

developing country context, has been the insurance’s main stumbling block. Several hints from crop insurance 

can shed lights into the difficult practices for setting premium.  For instance, Ray (1974) focused on insuring food 

grains in selected developed (such as the US and Japan) and developing countries (such as India and Sri-Lanka). 

He proposed the determination of insurance coverage and premium rates based on a two-stage actuarial method.   

Similarly, Hazell, Bassoco, and Arcia (1986), studying the Mexican crop insurance model shed more light into 

the practical methods of determining the premium. They presented three different schemes of premium setting 

and assumed that total premium would be equal to the total indemnity. The first scheme calculates premium based 

on indemnity equal to the proportion of yields shortfall (relative to the normal yields) times the amount of credit 

borrowed for the crop and augmented by the amount that had to be paid to the bank as administrative cost. Thus, 

indemnities were considered as a contribution to credit payments.  

The second scheme expresses premium as the simple difference between the actual and expected revenue. Those 

two premium designs refer to Gerber (1979)’s denomination as “loss principles”. The third scheme is a 

combination of the two principles. Again, the difficulty, especially with the first scheme is the ambiguity in setting 

the augmented amount to be paid to the bank.  Yet, another problem is the assumption that premium should be 

exactly the same amount as the indemnity in each case; it ignores the attitude of the insurer towards risk.  

A premium design like that for sugar cane insurance in Mauritius in the 70’s involves assigning a rank to each 

farmer, and setting a premium schedule based on the rank between two periods (Ray 1974).   The rank is inversely 

related to the ratio of total indemnity over total premium from last period. The lower the rank in the present period, 

the larger is the premium rate to be paid in the next period.  Moral hazard in this case is limited, because each 

year farmers are making efforts to reduce the ratio indemnity/total premium, and to improve their ranking in the 

next period. 

Moreover, compensation in the example of Mauritius sugar cane is calculated as the value of the total 

insurance coverage deducted by the first loss and by the actual harvest times the proportion of yield shortfalls 

and valued at the current price.  And for most of the reported studies (e.g. Schoney, Taylor and Hayward, 

1994; Schwanz 1997) calculation of the indemnity payments relies on the direct measure of the yield 

shortfalls, which subsequently distorts payment allocation due to moral hazard and adverse selection. Even 

in developed countries, monitoring directly the yields to determine premium and indemnity presents 

enormous difficulty, and is often costly (Gardner, 1994).  

Premium for rainfall and drought insurance 

For rainfall or drought insurance particularly, Skees, Black and Barnett. (1997) gave some insight into how rainfall 

index insurance might work and how premium and indemnity can be determined.1 They proposed three different 

methods of calculation.  The first method was called the “zero-one” contract, based on rainfall distribution and 

identified the premium rate as the probability that the level of rainfall would fall below certain value or strike 

level, at which the farmer wants to be insured.  

The second method was called a “layered contract” which was derived from the first method but with different 

brackets of level of rainfall. The third was called a “percentage contract”, obtained by developing payouts as a 

function of a rainfall amount below the strike level. In the latter method, the premium was expressed as some 

percentages to the total indemnity and obtained by taking the percentage of the difference between the actual 

amount of rainfall and the strike level over the strike level multiplied by the dollar amount of liability.   

                                                      
1 See also Martin, Barnett and Coble (2001). 
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More recently, Muna, Purnaba and Setiawaty (2019) devised a rule for premium determination based on rainfall 

index for rice in Bongor, Indonesia. They designed a ‘trigger’ and an ‘exit’ to insurance benefit based on rainfall 

data. The trigger is the benchmark value of rainfall below which partial risk of crop failure may occur assigning 

the right to the policyholder to claim some partial benefit payment. When rainfall level is above the trigger level, 

farmers cannot claim any indemnity from the insurer.  The exit level is the critical value of rainfall below which 

total crop failure occurs and gives the right to the policyholder to submit full benefit claim.  In their model, the 

premium wss calculated based on the expected values of the claim (adding some administrative costs) using 

Bayesian probability approach and the distribution of the levels of rainfall for several years.  

It is worth noting that beside the assumption of zero profit or perfect competition in the insurance market, many 

of the past studies on either premium or indemnity setting did not put much emphasis on the role and attitude 

towards risk of the insurer. Insurers were often assumed to be part of a public institution and considered as risk-

neutral. In the modeling of risk management tools such as price stabilization and buffer stock, the assumption that 

the principal agent, the government, is risk neutral has been customary (Newbery, and Stiglitz, 1989; Herman, 

1993). But with the growing  number of insurers with various asset portfolios and attitudes towards risks, such an 

assumption is no longer tenable. Therefore, our model particularly assumes that insurers have some degrees of 

risk aversion. 

3. Theory  

In general, any premium calculation is a rule H(.), relating the indemnity to the farmers or payment S, a random 

variable, to the premium value p, which is a real number:  

)(SHp  .                                                                             (1) 

Therefore the distribution of S and the mathematical expression of H(.) have to be determined in order to obtain 

the premium p.   

The indemnity or payment S is directly related to another random variable B that affects the harvest or the yields.  

As our sole focus is on the impact of rainfall deficit, we temporarily assume that excess water can be managed to 

cause no damage to crop yields. In that regard, B represents the water balance or humidity stored in the soil.  The 

value of B depends mainly on the amount of rainfall, the water holding capacity of the soil, and the water 

requirement of the crop.   

The payment S is expressed as 

S = f (B),                                                                                (2) 

where f’ < 0, because payment or indemnity to the farmers decreases as more water from rainfall is stored in the 

soil for the benefit of the crop’s growth.  

To determine the expression of the rule H (.) in equation (1), two fundamental sets of assumptions are being made: 

(i) the insurer is not indifferent toward risk and has a constant coefficient of risk aversion with positive marginal 

utility of income, and (ii) the premium is set fairly.  Fairness is expressed under the principle of zero utility, as it 

is defined by Gerber (1979), for which the expected utility of return for the insurer is equal to the utility from the 

insurer’s initial wealth.  This is a plausible assumption especially when the insurance market is highly competitive.  

These two assumptions can be expressed as follows:  

aexU ax /)1()(                                                                  (3) 

)]([)( 00 SpxUExU                                                       (4) 

where U(.) indicates the insurer’s utility function, x is the return, a is the coefficient of risk aversion, x0 represents 

initial wealth, E is the expectation operator, and the quantity p - S (or premium charged minus payment) represents 

the random return of the insurer. Setting the initial return arbitrarily to x0= 0 and solving the system of equation 

(3) and (4) for p, we show in Appendix 1 that the premium can be expressed as:  
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])[ln(
1 aSeE
a

p                                                                         (5) 

The parameter a can be given different values in the reasonable range noting that the premium increases as the 

insurer’s risk aversion increases, as it is implied by the equation (5).  Alternatively, after making the substitution 

of (2) into (5), the latter can be rewritten as ])[ln(
1 )(BafeE
a

p  .  Also, it is important to note that in equation 

(5), the term inside the logarithm function is just the moment generation function of the distribution of S for 

smaller values of coefficient of risk aversion a. 

4. Method 

The Food and Agriculture Organization of the United Nations (FAO) has been using an index that represents the 

extent of yield loss due to water stress over the entire crop’s growth period, i.e. from the sowing and harvest times.  

The index measurement relies upon available information regarding soil and crop characteristics, crop growth 

stage, and the amount of rainfall (Dastane, 1974; FAO, 1991, 1996).  The method divides the growing period into 

several intervals of time (say, week or month).  The calculation follows a time discrete dynamic process and 

comprises of two steps.  

The first step consists of estimating the water balance in the soil and attaching a corresponding index to it at the 

end of each time period over the crop growing.  The water balance in the soil at a point in time t, denominated Bt, 

and available to the plant for the next time interval period between t and t+1 is calculated as the water balance 

requirement satisfaction in the current period t and the water retained in the soil from the last period: 

Bt = (PRat – Kt * PEt )+ Bt-1,                                                              (6) 

where PRat is the actual precipitation between t-1 and t ; Kt is called the “crop coefficient”2 which quantifies the 

crop’s water use at a period t and is both crop and growth-stage specific; PEt
3  is the potential evapotranspiration 

of the soil; and the variable Bt-1 is the amount of water retained in the soil at time t-1.  In equation (6), the quantity 

(Kt*PEt) represents the water requirement of the plant between time t-1 and t, which may or may not have been 

satisfied. 

In general, the soil’s water supply that affects crop yields for the next period depends on the sign and values of Bt 

and the maximum water holding capacity of the soil, say, Rmax (a positive number).  Three different cases are to 

be considered to assign the FAO index, called It in percentile, representing the extent of water stress for the crop 

between time t-1 and t.  

Case 1: Bt > Rmax. It indicates that the water balance in the soil exceeds the maximum water holding capacity of 

the soil.  In this case, the requirement of the crop between t-1 and t was satisfied; additionally, there is an excess 

water (run-off) that corresponds to the quantity (Bt-Rmax).  which will be available to the crop for the next period.  

As it is assumed earlier, excess water can be managed (diverted or there is no crop damage from reasonable 

amount of excess water; so conventionally It =0 in this case. 

Case 2: 0<Bt<Rmax. It means that the crop water requirement between t-1 and t  was satisfied and a Bt amount of 

water is retained in the soil and will be used in the next period (plus, eventually, some future rainfall.)  So, as it is 

in the first case, there was no water stress during t-1 and t, and, again It  =0. 

Case 3: Bt<0.  It indicates that crop water requirement was not satisfied for the last time period and that would 

affect crop yield.  The water shortage is equivalent to the absolute value of Bt.  In this case, the FAO methods 

suggest the following: 

It = Bt x 100/ t(Kt PEt).                                                          (7) 

                                                      
2  Kt called the “crop coefficient” is defined as the ratio between maximum crop evapotranspiration and a reference crop potential evapotranspiration. 
3PEt is the maximum quantity of water evaporated and transpired by a uniform cover of short dense grass when the water supplied is not limited. 
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Equation (7) defines the extent of water stress as the percentage of the water deficit over the sum of the water 

requirement of the crop in the entire crop growth period. The second step consists of summing up all the It ’s for 

the entire growth period, so that the final index representing the extent of water stress on the crop is: 

If = t It     (%)                                                       (8)  

This index If is directly related to the payment variable S (in equation (2)), which is the payment to be made by 

the insurer (i.e. the benefit to be claimed by the farmer) due to the harvest loss caused by the drought. As it is 

implied by the definition of the index, the higher If, the higher the yield loss. The actual yield loss due to drought 

is, ceteris paribus, the index If multiplied by the potential yield. In other words, the expected yield in each season 

is 1- If times the potential yield. The potential yield is the ideal yield obtained when there was no water stress. For 

clarity, we express the expected yield and premium in percentage of the potential yield. 

5. Procedures and Data 

The values of the crop coefficient Kt for each growth stage are obtained from the FAO (1991, 1096) studies that 

reported the corresponding crop coefficient per growing period in Kenya and Madagascar (Table 1).  n Kenya, 

maize crop is generally planted in two seasons like many other grains.  The main season is the so-called winter 

maize sown in March-April and harvested in October-November. The second maize season is generally sown 

between October and November, and harvested in March-April. 

Table 1. Crop Coefficients Representing Water Needs for Maize and Rice 

 Month after sowing (maize) or transplantation (rice) 

 First Month Second Month Third Month Fourth Month 

Maize coefficient 0.6 1.1 1.1 0.67 

Rice coefficient 1.17 1.37 1.4 1.27 

Source: FAO (1991, 1996). 

Our empirical study focuses on Western Kenya’s second maize season during which drought is more frequent.  

For that second season of maize production, the most critical periods for the plant in terms of water needs are 

December and January, which are the second month and third month following the sowing dates respectively.  

Those critical periods correspond respectively to the pollination and grainfilling stages.  

Contrastingly, the lowland rice cycle in the high plains of Madagascar lasts generally 5 months; rice grains are 

sown on October-November and transplanted between November and January.  Rice harvest usually takes place 

on April-May.  The water requirement after transplantation is high especially during the second and third months. 

Our calculations of the water holding capacity of the soil use data and soil classifications from the FAO (1991, 

1996).  Values differ by locations but, for instance, the average water-holding capacities (measured as the 

equivalent level of precipitation) of the soils for maize crop near Eldoret and for rice near Antananarivo were 

about 60 mm and 100 mm.  Table 2 and Table 3 summarize examples of historical data between October and 

April and between the crop years 2006-07 and 2015-16 on average rainfall, evapotranspiration, and monthly 

rainfall for Eldoret (Western Kenya) and Antananarivo (Central High Plains of Madagascar).  

Table 2. Potential Evapotranspiration and Precipitation Near Eldoret (in West Kenya) 

Month Potential Normal Average  
Yearly Actual 
Precipitation 

     

 
Evapotranspiration

* 
Precipitation *          

 (mm) (mm)   (mm)        

   2015-16 
2014-

15 

2013-

14 

2012-

13 

2011-

12 

2010-

11 

2009-

10 

2008-

09 

2007-

08 

2006-

07 

October 109 41 85 14 140 128 41 21 59 59 39 9 

Novembe

r 
112 54 70 100 40 39 54 620 41 130 130 10 

December 112 30 23 50 160 12 160 30 30 3 3 45 

January 122 27 27 0 0 63 30 38 45 15 46 61 
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Table 2 (cont.). Potential Evapotranspiration and Precipitation Near Eldoret (in West Kenya) 

Month Potential Normal Average  
Yearly Actual 

Precipitation 
     

 
Evapotranspiration

* 
Precipitation *          

 (mm) (mm)   (mm)        

February 132 30 55 36 5.8 30 30 30 66 46 9 67 

March 132 35 180 850 96 68 13 129 156 121 36 72 

April 112 n.a n.a 193 188.5 24 178 n.a 128 159 192 118 

May 97 113 70 54 10 111 87 490 122 152 41 273 

             

Sources: FAO and US Department of Commerce (various years), The Weather Bureau (various years) 

*: Average figures are obtained by a fifty-year average (1960-2010) of  evapotranspiration and rainfall at each period 

Table 3. Potential Evapotranspiration and Precipitation Near Antananarivo (in Central High Plains of 

Madagascar) 

Month Potential Normal Average  Yearly Actual Precipitation   

 Evapotranspiration Precipitation        

 (mm) (mm)   (mm)     

   2015-16 2014-15 2010-11 2009-10 2008-09 2007-08 2006-07 

October 107 49 49 128 49 1 63 44 311 

November 109 179 54 17 187 186 115 75 118 

December 102 318 395 201 176 389 305 68 246 

January 102 254 731 680 81 189 191 363 500 

February 104 211 170 211 244 71 287 232 281 

March 89 220 543 203 247 48 66 109 314 

April 84 60 2 107 79 82 40 58 85 

May 69 18 3 13 15 5 159 9 0 

          

Sources: FAO and US Department of Commerce (various years), The Weather Bureau (various years). 

*: Average figures are obtained by fifty-year averages (1960-2010) of potential evapotranspiration  and rainfall at each period. 

Each year, the percentage of the expected or forecasted yields loss (i.e. S) due to insufficient rainfall is based on 

the estimated yield loss index It derived earlier in the first step. Furthermore, it is assumed that appearance of each 

yearly forecasted yield is equally likely. Values of premium were calculated using equation (5) and  also expressed 

in terms of percentage over potential yields. Because of uncertainties on planting season, estimation of the 

forecasted yields based on rainfall situation were conducted for two different dates of starting season: October vs. 

November for maize in Eldoret, West Kenya, and November vs. December for lowland rice in the Central High 

Plains region of Madagascar.  

The distributions of forecasted yields were compared using non-parametric statistical method, and especially First-

Degree Stochastic Dominance (FSD) and the Second-Degree Stochastic Dominance (SSD) (Hanoch and Levy, 1969; 

Hadar and Russel, 1969, 1971; Kuosmanen, 2004; Chakrabarty and  Swamy, 2014) ordering while maintaining the 

assumption that the appearances of the forecast values are equally likely during the observation periods. 

5. Results 

The distributions of the forecasted yields in terms of percentage over the potential yields for the two different 

starting seasons for maize and rice are presented respectively in Table 4 and Table 5.  Overall, the impact of the 

lack of rainfall on forecasted maize yields in Eldoret (Western Kenya) is highly significant, representing a loss of 

approximately half of the potential yields if irrigation of the maize crops relies only on rainfall.  Contrastingly, on 

average, the loss is only limited, between 4 and 9% of the potential yields, for the lowland rice near Antananarivo 

(Central High Plains of Madagascar). A fairly good amount and an adequate distribution of rainfall in combination 
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with high water retention capacity of the rice field are probably the main reasons. However, for both crops, a 

comparison of the means and variances of yields between the two different seasons reveals that because of rainfall 

distribution, sowing dates for maize and transplantation dates for rice appear to affect yields significantly. 

Table 4.  Distribution of the Percentage of Rainfall-Based Forecasted Yields over the Potential Yields of Maize 
for Two Different Sowing Time Near Eldoret (in West-Kenya): A Non-Parametric Comparison 

          

Crop Calendar 
Year 

October- 
Sown Rank 

November- 
Sown Rank 

Absolute 
Deviations 

Rank of the 
Absolute 

Absolute 
Deviations 

Rank of the 
Absolute 

 
Maize 

Yield (%) 
 

Maize Yield 
(%) 

 
Oct.- Sown  

Yield 
Deviation 

Nov.- Sown  
Yield 

Deviation 

  Xi R(Xi) Yi R(Yi) |Xi-Xhati| R(|Xi-Xhati|) |Yi-Yhati| R(|Yi-Yhati|) 

15-16 52.2 12 42.4 4 4.2 9 4.9 11 

14-15 41.7 3 45.1 9 14.7 16 2.2 3 

13-14 82.8 20 49.9 11 26.4 20 2.6 5 

12-13 60.9 16 34.9 2 4.5 10 12.4 14 

11-12 72.5 19 66.4 17 16.1 17 19.1 18 

10-11 69.2 18 54.5 14 12.8 15 7.2 12 

09-10 44.5 7 44.1 5 11.9 13 3.2 7 

08-09 52.7 13 46.3 10 3.7 8 1 2 

07-08 55.5 15 44.9 8 0.9 1 2.4 4 

06-07 31.8 1 44.4 6 24.6 19 2.9 6 

Sum Ta = 124  86     

Average 56.4  47.3  Tb = 1946.000   

Standard 
Deviation 0.154   0.0838           

Source: Author’’ s calculations. 
a: Ta is the sum of rank, used as test statistics; Ho: E(X)=E(Y) vs.  
Ha: E(X)>E(Y); p-value=0.08.     

b: Tb is the sum of the squared rank, used as test statistics; Ho: var(X)=varE(Y) vs. 
varE(X)>varE(Y); p-value=0.038.    

Table 5.  Distribution of the Percentage of Rainfall-Based Forecasted Yields over the Potential Yields of 
Lowland Rice for Two Different Transplantation Time Near Antananarivo  
(in the Central High-Plains of Madagascar): A Non-Parametric Comparison    

Crop Calendar 
Year 

Nov. 
Transplanted 

Rank 
Dec. 

Transplanted 
Rank 

Absolute 
Deviations 

Rank of the 
Absolute 

Absolute 
Deviations 

Rank of the 
Absolute 

 
Rice Yield 

(%) 
 

Rice Yield 
(%) 

 
Nov. 

Transplanted 
Rice 

Deviation 
Dec. 

Transplanted 
Rice 

Deviation 

 Xi R(Xi) Yi R(Yi) Xi-Xhati R(|Xi-Xhati|) Yi-Yhati R(|Yi-Yhati|) 

15-16 86.4 3 100 11.5 4.9 6 3.2 3.5 

14-15 79.5 2 100 11.5 11.8 13 3.2 3.5 

10-11 100 11.5 99.7 8 8.7 10.5 2.9 1 

09-10 100 11.5 90.2 5 8.7 10.5 6.6 8 

08-09 97.6 6 100 11.5 6.3 7 3.2 3.5 

07-08 77.1 1 87.4 4 14.2 14 9.4 12 

06-07 98.2 7 100 11.5 6.9 9 3.2 3.5 

Sum Ta= 42  63     

Average 91.3  96.8  Tb = 751.500   

Standard 
Deviation 

0.098  0.055      

Source: Author’s calculations. 
a: Ta is the sum of rank, used as test statistics; Ho: E(X)=E(Y) vs. 
Ha:E(X)>E(Y); p-value>>0.1. 

    

b: Tb is the sum of the squared rank, used as test statistics; Ho: var(X)=varE(Y) vs. 
varE(X)>varE(Y); p-value=0.021. 
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Non Parametric Testing  

Non parametric statistical tests are used to allow comparison between each pair of distributions of forecasted 

yields over two different periods. The advantage of such a method is that it does not require restrictive conditions 

such as normality (and no need to test for it either) in comparing the two distributions. Assuming that the two 

samples are mutually independent and are random samples from their respective population, the Mann-Whitney 

method is used to see if one of the means is significantly greater than the other (Ho: E(x)=E(y) vs. Ha: E(x)>E(y)).  

Basically, the Mann-Whitney test pools together the forecasted yields for the two different seasons, ranks them 

from smallest to highest value, and uses the sum of the ranks in either one of the distributions as a test statistic 

when there are no or only few ties in the ranks. The value of the test statistic is compared to the values on the 

Mann-Whitney Quantiles table in order to obtain the p-value.4  

Similarly, a “squared rank-test for variance” method is used to see whether the two variances from the two 

different seasons differ (Ho: var(x)=var(y) vs. Ha: var(x)>var(y).). The “squared rank-test for variance” looks at 

the absolute deviations of the yearly forecasted yields from the average for each season, rank them from the 

smallest to largest values and uses the sum of the squared rank for either one of the two distributions as a test 

statistics. A table for the quantile of the “squared ranks test statistics” is used to find the rejection region.   

First for maize production in Eldoret (Western Kenya), Table 4 indicates that maize sown in October has higher 

expected forecasted yields but has higher standard deviation than maize sown in November. The Mann-Whitney 

test shows that at a significance level =0.1 the October-sown maize has indeed higher expected yield, however, 

at =0.05, the null hypothesis of equality of means is still maintained. The non-parametric test of equality of 

variance shows that the null hypothesis is rejected at =0.05, meaning that yields of the November-sown maize 

are less variable than of the October -sown. 

Second, for rice grown near Antananarivo in the Central High Plains of Madagascar, Table 5 indicates that the 

December-transplanted rice produces higher yield mean and lower yield variance than the November-transplanted 

rice. The Mann-Whitney test concludes that the null hypothesis cannot be rejected at any reasonable significance 

level (p-value far greater than 0.1), meaning that, statistically, there is no significant difference between the means 

of the two distributions.  However, the “squared variance ranks” test that at =0.05, the December-transplanted 

rice yields are less variable than those from rice transplanted in November.  

Values of the Premium under Different Assumptions  

If the risk averse insurer assumes that farmers are risk averse too, and if information on rainfall-based forecast 

yield is available to both parties, then the decision about premium calculation of the drought insurance will depend 

on the choice of the starting season (sowing for maize, and transplantation for rice) which generate two 

distributions of yields for each crop. The results so far reveal the key parameters of and the compare the yield 

distributions but remain inconclusive, especially for maize crop, in determining on which crop season shall the 

premium be determined. Therefore, we use three different criteria to rank the two different seasons for each crop. 

The first is the mean-variance (E-V), criterion which assumes that farmers are risk averse and have approximately 

a quadratic utility function). The E-V criterion indicates that a distribution with higher mean and lower variance 

will be preferred to a distribution with lower mean and higher variance (Hadar and Russel, 1969; Levy and 

Markowitz, 1979).  

The two other criteria are the First-Degree Stochastic Dominance (FSD) and the Second-Degree Stochastic 

Dominance (FSD) (Hanoch and Levy 1969; Hadar and Russel, 1969, 1971; Kuosmanen, 2004; Chakrabarty and 

Swamy 2014).  The FSD assumes positive marginal utility of money and states that for a random variable, say, 

yield Y, a distribution with a cumulative probability density function (cdf) F(Y) first-degree stochastically 

dominates another distribution with cdf G(Y) if and only if F(Y) ≤ G(Y). It implies that the cdf curve F(Y) must 

always lie below the cdf G(Y). On the other hand, SSD assumes that a distribution with cdf F(Y) second-degree 

stochastically dominates another distribution with a cdf G(Y) if  

                                                      

4 See Connover (1980). 
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i.e. if within the range of the observed yield values, the area below the cdf F(Y) is smaller than the area below the 

cdf G(Y). Under both FSD and SSD, the expected value of the yield Y of the stochastically dominant distribution 

is always higher than that of the non-dominant distribution.  

Results of the implications for premium calculation using the non parametric and stochastic dominance ordering 

methods are summarized in Table 6.  

Table 6. Estimated Premium Values for Drought Insurance for Maize and Rice 

Methods of Ranking Maize Crop Rice Crop 

Efficiency 
Criteria 

Assumptions Efficient Set  Values of the Premium * 
(in % of potential yield) 

a = 0.01          a = 0.0001  

Efficient Set Values of the Premium * 
(in % of potential yield) 

a = 0.01          a=0.0001 

E-V -Quadratic utility 

function 

-Risk averse insurer 

=0.05:  

Nov.-Sown. 

=0.1: 
Oct.-Sown 

 Nov.-Sown  

53.0 52.7 

44.7                   43.6 

53.0                   52.7 

Dec.-Transplanted 3.4                     3.2 

FSD -Positive marginal 

utility for wealth 

Oct.-Sown 

 Nov.-Sown 

44.7                   43.6  

53.0                   52.7 

Dec.-Transplanted 3.4                     3.2 

SSD -Risk averse insurer Oct-Sown 53.0                   52.7 Dec.-Transplanted 3.4                     3.2 

Source: Author’s calculations. 

*Parameter a = 0.01, 0.0001 are the coefficients of risk aversion.  

i. For maize production in Eldoret, Western Kenya, the EV criterion, at least for =0.05, designates 

November as the appropriate time for sowing since the corresponding distribution has lower variance. 

Under E-V criterion, and for =0.1, the two cannot be ranked. Figure 1 shows that under SSD criterion, 

October is the preferred sowing time that leads to higher yields, since the area beneath its cdf is smaller 

than that of November sowing. However, the two distributions cannot be ranked under FSD criterion 

because their two cdf cross each other.  

ii. For rice crop near Antananarivo, Central High Plains of Madagascar, all three efficiency criteria indicate 

that transplantation of rice should take place in December if satisfaction of the water needs relies solely 

on rainfall (Figure 2). 

 

Figure 1. Cumulative Distribution Functions of Forecasted Maize Yields (in % of Potential Yield) for 

Two Sowing Dates 

Source: Author’ s estimations. 
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Figure 2. Cumulative Distribution Functions of Forecasted Rice Yields (in % of Potential Yield) for Two 

Transplantation Dates 

Source: Author’s estimations. 

More important, Table 6 indicates that the values of the premium calculated for maize production at the two 

different values of risk aversion coefficient, are much higher compared to the premium values for rice. A risk 

averse insurer for maize production in Western Kenya would require a premium value between 43 and 55% of 

the potential (or normal) yields to fully cover the loss caused by lack of rainfall.  Contrastingly, farmers in lowland 

rice in the Central High Plains of Madagascar may only pay less than 4 % of their yields per unit of land to insure 

against lack of rainfall.  These results are robust to the changes in the risk aversion parameters of the insurer. 

6. Conclusion and Discussion  

This study aims to contribute to solving the difficult problem of determining crop insurance premium to deal with 

the risks due to drought. The method we presented shows that establishing a drought insurance implies 

investigating a complex relationship between the amount of rainfall on the one hand, and the crop’s growth stage, 

and the soil’s ability to retain humidity on the other hand. Premium estimation is based on forecasting yield loss 

due to water stress with a risk non-neutral insurer. 

Implementing the proposed method on maize in Western Kenya and rice in Central High Plains of Madagascar, 

we find that the productivity of maize culture in Western Kenya would continue to suffer from the adverse impacts 

of lack of rainfall without establishing drought insurance. Higher productivity requires a continuing amelioration 

of the soil’s texture and structure so that the soil can improve its ability to retain humidity and to make water 

available to crops when needed. But even if other conditions to produce good harvest (including fertilization, and 

pest control) were met, significant improvement in irrigation technology would still be required.  

More important, as drought becomes more frequent in many places in Africa, irrigation technology has its limits 

and the use of risk management tools (such as drought and rainfall insurances) that help stabilize farm production 

and income is unavoidable. But the high estimates of premium values (more than half of the potential harvest) for 

maize show how insuring against drought can be costly. Efforts to help drought-stricken farmers afford such high 

premium value must be considered.   

Contrastingly, lowland rice production in the Central High Plains of Madagascar still, at least during the 

observation periods, benefits from relatively favorable amount and distribution of rainfall and from the higher 

water retention of the lowland soil. Unfortunately, such a situation may be about to change. Rice farmers have 

lately complained that the rainy season has been more and more delayed, and often cumulated in a few months of 

heavy torrential rains spaced by weeks of high temperature and severe droughts. The worrying situation requires 

close monitoring of the variations in soil humidity and prompts the use of risk management tools. 
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The accuracy of our results can be improved in several ways.  If data on rainfall, evapotranspiration, and other 

soil conditions are available at farm level or by field parcel location, throughout the year, a more precise 

calculation of differentiated premium values could be performed. Similarly, because farmers often grow diverse 

crops on the same land at the same time or at different periods of the year, a comprehensive premium package 

based on revenue loss per season due to drought has to be considered. Additionally, we employed non-parametric 

methods to compare and estimate some efficient sets of premium values, but when key data and parameters for 

longer periods are available, other methods such as time-series analysis and simulations to study the long run 

relationships among soil’s conditions, rainfall amount and crop yields for premium estimation will be more 

effective. 

When information on key variables (such as soil conditions, crop water needs, amount of rainfall and other climate 

related parameters) becomes more accessible to the public, the method we presented to set premium values shows 

that problems such as moral hazard and incomplete and asymmetric information can be overcome. With more 

accurate and transparent information on premium values, the availability and access to drought insurance 

benefitting both insurers and farmers will certainly increase. 
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Appendix I 

The utility of the insurer is the expected utility from his initial wealth, x and the increased wealth from the 

insurance activity, which is the amount of premium, P, subtracted by the indemnity S. 

)]([)( SPxuExu                                                                       (9) 

At one point in time, and for x=0, a new function (.)û is introduced in order to represent solely the utility from 

the insurer’s gain, which under the assumption of “fairness” is equal to the utility from the initial wealth, set 

arbitrarily to be zero. 
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If the utility function is of the form aexu ax /)1()(  , then 
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Solving for P,  
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where M(.) is the moment generating function of the random variable S. 

  


