
 

D8 MECHANICAL ENGINEERING: Dynamics and Strength of Machines 

 

JOURNAL OF ENGINEERING SCIENCES 

Volume 10, Issue 1 (2023) 

 

Voropay A. V., Menshykov O. V., Povaliaiev S. I., Sharapata A. S., Yehorov P. A. (2023). 

Modeling a viscoelastic support considering its mass-inertial characteristics during non-

stationary vibrations of the beam. Journal of Engineering Sciences, Vol. 10(1), pp. D8-D14, 

doi: 10.21272/jes.2023.10(1).d2 
 

Modeling a Viscoelastic Support Considering Its Mass-Inertial Characteristics  

During Non-Stationary Vibrations of the Beam 

Voropay A. V.1[0000-0003-3396-8803], Menshykov O. V.2[0000-0003-2869-3307], Povaliaiev S. I.1[0000-0001-9027-0132],  

Sharapata A. S.1[0000-0003-0823-9262], Yehorov P. A.1[0000-0001-6616-9966] 

1 Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo St., 61002 Kharkiv, Ukraine;  
2 School of Engineering, University of Aberdeen, AB243UE Scotland, United Kingdom 

Article info: 

Submitted: 

Received in revised form: 

Accepted for publication: 

Available online: 

 

February 27, 2023 

May 10, 2023 

May 16, 2023 

May 19, 2023 

*Corresponding email: 

voropay.alexey@gmail.com 

Abstract. Non-stationary loading of a mechanical system consisting of a hinged beam and additional support 

installed in the beam span was studied using a model of the beam deformation based on the Timoshenko hypothesis 

with considering rotatory inertia and shear. The system of partial differential equations describing the beam 

deformation was solved by expanding the unknown functions in the Fourier series with subsequent application of the 

integral Laplace transform. The additional support was assumed to be realistic rather than rigid. Thus it has linearly 

elastic, viscous, and inertial components. This means that the effect of a part of the support vibrating with the beam 

was considered such that their displacements coincide. The beam and additional support reaction were replaced by an 

unknown concentrated external force applied to the beam. This unknown reaction was assumed to be time-dependent. 

The time law was determined by solving the first kind of Volterra integral equation. The methodology of deriving the 

integral equation for the unknown reaction was explained. Analytic formulae and results of computations for specific 

numerical parameters were given. The impact of the mass value on the additional viscoelastic support reaction and 

the beam deflection at arbitrary points were determined. The research results of this paper can be helpful for 

engineers in designing multi-span bridges. 

Keywords: Timoshenko multi-span beam, additional viscoelastic support, non-stationary vibration, concentrated 

mass, Volterra integral equation. 

1 Introduction 

In engineering and construction, there are many 

complex mechanical systems consisting of a large 

number of elements. The approach based on the choice of 

the central element of the study and taking into account 

the influence of objects interacting with it using 

concentrated or distributed forces can be used to build a 

model of the system in this case. 

It is not always known in advance which system 

parameters significantly influence the stress-strain state, 

especially under dynamic loading [1]. Therefore, the 

maximum number of parameters, which at the same time 

do not overcomplicate the model, should be taken into 

account. 

Thus, in this paper, the Timoshenko-type beam model, 

taking into account the viscoelastic and mass parameters 

of intermediate supports, is proposed to study the 

deformed state of widespread multi-span beams. 

2 Literature Review 

Beam-like structural elements are widely applied for 

engineering purposes of mankind. From experience, the 

Timoshenko hypothesis-based models considering 

rotatory inertia and shear provide good results for beams 

[2, 3]. Nevertheless, the classical models, i.e., Euler-

Bernoulli beams, are still used for simplification when 

solving problems involving modeling nonlinear 

properties of the beam material [4] or in complex 

identification problems [5]. 
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The paper [4] presents vibration analysis of a simply 

supported beam with a fractional order viscoelastic 

material model. The studies show that the selection of 

appropriate damping coefficients and fractional derivative 

order of the damping model enables us to fit more 

accurately the dynamic characteristics of the beam in 

comparison with using the integer order derivative 

damping model. 

A new method to identify the viscoelastic boundary 

conditions of Euler–Bernoulli beams under forced 

response is presented in [5]. The capability of identifying 

complex boundary conditions under high levels of noise 

might open the door for the proposed method to be 

considered in real-life applications of structural health 

monitoring and model updating with boundary conditions 

of beam-like structures such as bridges. 

For mechanical systems, including structural elements 

in the form of beams under non-stationary loads, 

auxiliary restrictions are sometimes imposed on the 

displacements of specific beam parts (e.g., displacement 

magnitude) in addition to the robustness requirements. In 

such cases (i.e., bridges), using additional supports for 

beams is advisable.  

Vibrations of multi-span beams with additional elastic 

supports under pulse and traveling loads are considered in 

[6]. 

Non-stationary direct and inverse problems for multi-

span beams with additional elastic supports are solved in 

[7]. Similar problems in viscoelastic settings are studied 

in [8]. 

Implementation of the time-weighted residual method 

for simulation of flexural waves in multi-span 

Timoshenko beams subjected to various external loads: 

from stationary loads to accelerating moving masses 

considered in [9]. Experimental studies of the dynamic 

response of multi-span beams under the action of moving 

masses, among which is [10], is also known.  

The paper [11] study extends a frequency domain 

modified spectral element method (SEM) from single-

span beams to multi-span beams subjected to moving 

point forces. The Timoshenko beam model represents 

each span. The time history of the moving point force is 

transformed to the frequency domain as a series of quasi-

static or stationary point forces acting on the beam 

simultaneously. The dynamic responses are obtained by 

superposing the individual dynamic responses excited by 

each quasi-static point force. Note that in this work, a 

similar problem has already been solved at a high level, 

but each additional support is, in fact, absolutely rigid. 

The assumption about the absolute rigidity of the 

supports is also used by authors in [12] in the analysis of 

the dynamic behavior of a Rayleigh multi-span uniform 

continuous beam system traversed by a constant moving 

force or uniformly distributed loads. 

Manipulating the dynamic response of a multi-span 

bridge due to organizational arrangements is considered 

in the article [13], namely by managing the entry time of 

the crossing trains (in other words, moving loads). 

The analytical solution uses the Euler–Bernoulli beam 

model. For comparisons, a two-dimensional numerical 

finite element modeling based on the Timoshenko beam 

element that includes the effect of the shear force is also 

presented there. 

This solution is more complex because of the number 

of pavement bridge layers. However, it does not consider 

the properties of additional supports, is the model 

considered in [14]. 

In paper [15], the multi-span Timoshenko beams are 

investigated, and the interpolation modifies the mode 

shapes of the beams functions to model the vibration 

modes of the multi-span beams. Hamilton’s principle is 

applied to establish the equation of motion of the 

structure, and the natural circular frequencies and the free 

vibration responses of the multi-span beams are obtained. 

Note that in this work, only free vibrations are 

considered. 

The uniform formulation of dynamic vibration analysis 

of multi-span beams is presented by using an efficient 

domain decomposition method in the paper [16]. The 

domain decomposition method divides the structure into 

several equal sections. Next, the artificial spring is used 

to simulate the multi-span beam’s complex boundaries 

and continuity conditions. Finally, the admissible 

displacement functions are expanded through Jacobi 

orthogonal polynomials, and the free and forced vibration 

characteristics of multi-span beam structures can be 

obtained using Rayleigh–Ritz method. 

The paper [17] investigates multi-step Timoshenko 

beams coupled with rigid bodies on springs. Additional 

purely elastic supports are considered when In works 

[16, 17]. 

Note that in the case of modeling complex multilayer 

objects, along with beams, more complex objects are 

used, called strips or strip plates [18]. However, using an 

object as a strip significantly complicates the model and, 

in our case, will not give visible refinements of the 

solution. 

The results of the present paper are based on those for 

non-stationary deforming of mechanical systems 

consisting of beams and plates having concentrated 

viscoelastic supports additional to the main support along 

its edge. Solutions to direct problems for beams and 

plates with additional supports are found in [19, 20]. 

After analyzing the existing publications, we conclude 

that the problem of studying non-stationary oscillations 

of multi-span beams is quite relevant. At the same time, 

absolutely rigid supports are most often considered in 

well-known publications. The proposed model makes it 

possible to describe the behavior of real mechanical 

objects more accurately. In addition, introducing 

additional supports, considering their characteristics can 

be used to reduce unwanted vibrations, such as in 

[21, 22]. 
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3 Research Methodology 

3.1 Problem settings 

A mechanical system consists of a hinged elastic 

isotropic beam and an additional concentrated 

viscoelastic support contacting the beam at some point 

(Figure 1). 
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Figure 1 – Beam with additional support loading scheme 

The additional support is assumed to be installed 

transversally to the beam, and its lower end is hinged. 

The stiffness and damping ratios are considered constant. 

Transverse pulse load P(t) is applied to the beam at some 

point, which excites non-stationary vibrations of the 

beam and additional support. 

The impact of the additional viscoelastic support on 

the beam is modeled by a non-stationary external 

unknown force (the beam and additional support reaction 

taken with the opposite sign) applied to the beam at the 

point of its contact with the support. When solving the 

problem, we assume the point of the load application as 

well as the point of contact with the additional support to 

be arbitrary, i.e., they can be any points of the beam 

except for its ends. 

The displacements of the points of the beam under the 

simultaneous action of the system of two forces (i.e., the 

given function P(t) and the unknown function R(t), which 

is the time-dependent reaction of the beam and additional 

support considering its mass-inertia characteristics) are to 

be determined. 

3.2 Analytical solution 

The system of Timoshenko beam partial differential 

equations, which considers the appropriately chosen 

initial and boundary conditions that describes non-

stationary deformation processes, is of the form (see [2]): 
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where bh  is the beam thickness; bb  is the beam width; 

l  is the beam length; GkG = '' ; 'k  is the shear 

coefficient; 12/3hbI b= ; w  describes the beam middle 

plane deflection;   stands for the rotation angle;  , E , 

  are the elastic constants of the beam material; t  is the 

time. We also remind that ),( txP  and ),( txRC  are the 

exciting load and the reaction of the beam and additional 

support interaction, respectively. 

The system is solved by expanding the unknown 

functions, namely the displacements and rotation angles, 

into corresponding Fourier series with time-dependent 

coefficients. Then a system of ordinary differential 

equations can be derived for the expansion coefficients, 

which can be solved, for instance, by using the integral 

Laplace transform [23]. In this case, after applying the 

inverse transform, the solutions can be written as 

convolution-type Duhamel’s integrals, which allows for 

obtaining analytic representations for the kernels of 

integral equations. 

By solving the system of differential equation (1) for 

zero initial and hinge boundary conditions, we arrive at 

the following analytic formula for the deflection 

functions: 

( ) ( ) ( ) ( ) ( ) −−−=  dtxKRdtxKPtxw W
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where ( )txKW

i ,  are the corresponding kernels of 

Duhamel’s integrals (i.e., convolutions): 
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The eigenfrequencies are given by the formula: 

 ;))((5.0 2
1 kkk bda +++=  

 kkk bda −++= ))((5.0 2
2 .  

Similar relations can be derived for total 

displacements, normal rotation angles, and deformation. 

In the general case, the additional support can be 

represented as a combination of mass, stiffness, and 

damping impact (Figure 1). The formula gives the beam 

and additional viscoelastic support reaction considering 

inertia phenomena: 
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where c  is the additional support stiffness ratio, N/m; 

  is the damping, Ns/m; m  stands for the mass-inertia 

characteristic of the additional viscoelastic support, kg; 

)(twi  describes the beam deflection at the point of the 

contact with the additional support, m. 

For the case under consideration, the functions of 

deflections at a point are to be derived. Applying the 

direct Laplace integral transform to (3) for the zero initial 

condition, we get the formula: 

 )()()()( 2 swcswsswsmsR iiiiiii ++= . (4) 

From (4), the Laplace transform of the deflection 

functions can be easily found: 
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Applying the inverse Laplace transform by the 

convolution theorem, we arrive at the following 

expression for the deflection at the point of application of 

the viscoelastic support reaction considering its mass: 
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 is the 

finite difference kernel of the convolution type integral 

accounting for viscous, elastic, and mass-inertia 

characteristics of the additional support at the i-th point, 

and 
2225.0 iiiiiCD mmc −=  is the eigenfrequency 

corresponding to the i-th additional viscoelastic support 

considering its mass. 

Below is an example of solving the problem for one 

additional support. 

Note that (6) is similar to (2) in its structure. 

Substituting the coordinate of the point of contact with 

the additional support Cx  for the variable x  in the beam 

deflection ( )txw , , we can equate the deflections obtained 

by the two formula: ( ) ( ),C iw x t w t= . 

Hence the right-hand parts of relations (2) and (6) are 

also equal for Cxx = . Then after gathering all the known 

summands in the right-hand part of the equality and 

keeping all the unknown ones in its left-hand part, we 

arrive at a first-kind Volterra equation with respect to the 

unknown reaction )(tR : 

( )  −=−+−  dPtKdRtKtK

t

W

P

t

f

W

R

0

0

0

)()()()( . (7) 

By discretization, integral equation (7) is transformed 

into a system of linear algebraic equations (SLAE) [24], 

which can be written in the form: 

 P

*

R wRA = , (8) 

where the vector R  corresponds to the change of the 

reaction )(tR  in time; the vector 
Pw  is the change in 

deflection time at the point of contact with the additional 

support excited solely by the external force )(tP  

−=  dPtKw

t

W

PP

0

)()( ; the matrix *

RA  corresponds to 

the sum of the kernels ( )−+− tKtK f
W
R )( . 

Finally, the beam and additional support reaction force 

)(tR  is found taking into account the support mass-

inertia characteristics, which allows determining the 

components of the deflection of the beam at all points in 

time considering the impact of two independent loads 

)(tP  and )(tR  rather than the presence of additional 

supports. 

4 Results and Discussion 

Consider a specific example of modeling non-

stationary transverse vibrations of a beam with additional 

support. Let, for simplicity purposes, the beam be hinged 

at its ends and have only additional support attached to 

the downward side of the beam at an arbitrary point 

between its ends. The additional support is modeled to be 

realistic, considering elastic, viscous, and various mass-

inertia characteristics. 

When undeformed, the midline of the beam is assumed 

to coincide with the Ox  axis of the cartesian coordinate 

system. The computations are carried out for the 

following parameters: ρ = 7890 kg/m3, ν = 0.3, and 

E = 2.07·1011 Pa, which corresponds to the alloy steel 

beam mechanical constants; the beam length l = 0.80 m; 

the beam thickness hb = 0.04 m; the beam width 

bb = 0.05 m. 

The coordinates of the point of the exciting load 

application x0 = 0.50 m, of the point at which the 

additional viscoelastic support is attached to the beam 

xC = 0.40 m (i.e., the middle of the beam), the point at 

which the change of the deflection in time is studied 

xS1 = 0.20 m. 

The additional support stiffness ratio is 

c1 = 1.0·107 N/m, and the ratio of the linear viscous 

damping is assumed to be  = 1.0·103 N·s/m; the 

number of the terms in the corresponding Fourie series 

is 100. 

The general scheme of the geometry chosen for the 

computational example is shown in Figure. 1. 
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The computations are carried out for three cases, 

namely: 

1) the minimal possible value of the mass-inertia 

characteristic, since in the case of the mass less than the 

value )4( 1

2

1min cm = , the natural frequency 

corresponding to the additional viscoelastic support 

considering its mass 
2225.0 iiiiiCD mmc −=  

becomes complex. For the values of the parameters 

(
1c ,

1 ) adopted above we have 025.0min =m kg. We 

choose 0251.01 =m kg for our computations; 

2) the mass m2 = 1.0 kg; 

3) the mass m3 = 2.5 kg. 

Figure 2 shows the external force P(t) exiting the 

deformations (i.e., non-stationary vibrations) of the beam 

with additional support. We point out that in Figure 2, the 

force (in N) is plotted along the vertical axis, and time in 

seconds is plotted along the horizontal axis. 
1
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500−
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Figure 2 – Exiting load )(tP
 

In Figure 3, the beam deflections ( )txw S ,1 , ( )txw S ,2  

and ( )txw S ,3  are caused by the influence of only an 

external perturbing force (illustrate the case – a beam 

without additional support). 

We point out that in Figure 3 the deflection in meters 

is plotted along the vertical axis, and time in seconds is 

plotted along the horizontal axis. 1
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Figure 3 – Deflection of beam point are caused  

by the influence only of )(tP  

In Figure 4, the external force )(tP  and the reaction of 

the additional support )(tR  determined by solving matrix 

equation (8) are shown for the masses 0251.01 =m  kg, 

12 =m  kg, and 5.23 =m  kg. We point out that in 

Figure 4, the force (in N) is plotted along the vertical 

axis, and time in seconds is plotted along the horizontal 

axis. 1
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Figure 4 – Exiting load )(tP  and reaction determined )(tR  

In Figure 5, the beam deflections ( )txw S ,1 , ( )txw S ,2  

and ( )txw S ,3  are shown for the four cases, namely, for 

the case when the impact of the additional support is not 

considered and for the three cases of mass-inertia 

characteristics of the additional support listed above. 1
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Figure 5 – Deflection of beam point are caused  

by the influence of )(tP  and )(tR  

We point out that in Figure 5, the deflection in meters 

is plotted along the vertical axis, and time in seconds is 

plotted along the horizontal axis. Also, we can see that 

the impact of the mass on the deflection amplitudes is 

insignificant (there is a strong dependence of the 

amplitudes on the elastic and viscous component 

parameters). Nevertheless, changing the mass results in 

an essential change in the curve phase characteristics. 

Increasing the mass leads to increasing the vibration 

period, which is logical since the system inertia grows 

with its mass.  
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5 Conclusions 

The article proposes an original approach to model the 

impact of additional viscoelastic support considering its 

mass-inertia characteristics by an independent non-

stationary external force: the beam and additional support 

reaction. 

Solving the first-kind integral Volterra equation 

determines the unknown non-stationary load. Modeling 

non-stationary vibrations of beams with additional sup-

ports based on the approach developed in the paper 

allows obtaining stable analytic and numerical solutions 

to the problems of mechanics of deformable solids 

without using iteration schemes.  

The impact of the mass on the deflection amplitudes is 

insignificant (if the mass is not very large). The phase 

characteristics of the vibrations are changed when the 

additional support’s mass is considered. Increasing the 

mass leads to increasing the vibration period.
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