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A string cosmic model with a perfect fluid distribution model has been researched in general relativity.
It is based on the notion of Bianchi IT homogeneous bifurcation. During the early universe's inflation, the
cosmos expanded at an accelerated rate, stretching out space-time and smoothing out any kinks that may
have occurred. The behavior of gravity in terms of the curvature of space-time serves as the foundation for
this model. This brief epoch lasted just a fraction of a second, yet it had a tremendous impact on the
universe's eventual history. The universe is uniform and isotropic on large sizes, but inflation happened in
the early universe, and the world is homogenous and isotropic on small scales. The universe's energy was
liberated in the form of particles and radiation. The equation of state parameter, which connects cosmic fluid
pressure and energy density, is supposed to remain constant throughout the universe's development. This
assumption simplifies the mathematical explanation of the universe's development compared to models with
a time-varying equation of state. The initial event that led to the formation of galaxies and stars was the
phase change. The assumption is that the homogeneous generalisation of Bianchi type II with stress-energy-
momentum, density, and pressure may be used to solve the Einstein metric field equations. The resulting
model will depict the cosmos expanding, shearing, and spinning. Discuss the geometrical and physical
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properties of the model as well to help you understand how it works.
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1. INTRODUCTION

The cosmological model Bianchi type II is a solution
to the Einstein field equations of general relativity that
describes an anisotropic, homogeneous universe. This
means that the universe is the same in all directions at
every point, but the properties of the universe can be
different in different directions. In the Bianchi type II
model, the universe is composed of three orthogonal
planes, each of which expands at a different rate. This
results in a shearing motion of the cosmic fluid that is
present in the universe, which leads to the anisotropy of
the universe. The expansion rate can be different in each
plane and is governed by a scale factor.

The cosmic string has a significant influence on the
formation of structures in cosmology [9]. They appear
when the phase transition in the early universe (10-36)
[13], as suggested by grand unified theories (GUT) [1, 2,
14], takes place when the temperature falls below a
crucial temperature (TGUT = 1028Kk). It is thought that
the density shifts caused by the vacuum strings are
essential for the formation of galaxies. Letelier had
started the lengthy string assertion (lines 8-9). These
threads are a representation of the gravitational field
and convey stress energy.

In various studies, different researchers have looked
into cosmological models for different types of Bianchi
spacetimes, including type II, VIII, and IX. One such
study by Chakraborty, Nandi [10], and Kriori et al.[4]
and highlight the importance of the cosmological model
Bianchi type-II in general relativity. Another research
Asseo with Sol [3] in the field of general relativity
analyzed the Bianchi type-I cosmological model of
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magnetization. The study of the integration of cosmic
strings in various spacetime models such as Bianchi
type-IX, II, and VII has been conducted by Patel,
Maharaj, and Leach [5]. Additionally, Rao et al.[15]
studied the Saez-Ballester theory of gravity about
accurate models of Bianchi type-IX, VIII, and II.

The relationship between the scalar field and the
cosmological constant was used by Agarwal and Singh
[12] to explore Bianchi type-IX, VIII, & II models inside
the scalar-tensor theory. Wang examined the behavior
of Bianchi type-III LRS cosmological model of a cloud
string with a viscosity [16-18]. Additionally, Bianchi
type-II LRS cosmological models describe clouds of both
geometrical and heavy strings, which have been studied
by Banerjee and Roy[11].

In this study, the authors focus on Bianchi type II
spacetime and analyze its physical and geometric
properties. They examine the effect of energy-
momentum viscosity on the model and present a
graphical representation of its variations over time.

2. METRIC WITH FIELD EQUATION

Let the space-time metric equation of Bianchi Type —
IIis

ds® = —dt® + R%(t) [dxz + dzz] +S82(0)[dy-xdzT (1)

Where R(t) & S(t) are a function of ¢.
Energy-momentum tensor and bulk viscosity are related.

T/ = pvy’ — Axx’ —Ev! (g] +vp’) (2
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The Ricci tensor Rij and Weyl conformal curvature
tensor for this metric has been given by

R}~ Rg] =T} ®
The Tij describes the distribution of energy and
momentum in the universe.
T/ = —puu’ +Ax; x/ 4
Relation between u, &x; is

' = —x,x’ =1 & x;u' =0 6))

The energy of the cloud string at rest is p
p=p,+4 (6)
The condition is determined with the space-like unit
vector and the matter's four-velocity vector in the
direction of anisotropy.
g uu =-1 (7

Einstein tensor is obtained by

R}~ Rl =T/ ®

Equation (8) & (1) gives the following system of
equation

9 2
Rl (10) _i(S(t)j S

R(t) R@) R?()
2

R,  Su® , R®S,®) 1 ( R(t)j _z9 (10)

R@) SG®)  R@®SE) 4\S%p)
(Rm)]z Lo RS0 18%0) _ an

R(t) R®)S®) 4 R'®)
o Ba®) S0 _ (12)

Rt) S(@)

The physical parameters of the developed model,
which are used extensively for solving field equations
and discussing geometric features, are given by Spatial
volume(V) for the developed model (1) is

V=\J-g =R*®)S®) (13)

The scalar of expansion () is

_o Ba® S,

0=2 + (14)
R(i@) S@)
Shear scalar is
o2 :1(R4(t)_84(t>) (15)
3URE) S@)
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Deceleration parameter is

R44(t)R( :
_ t
O (4o
R*(2)
Hubble parameter is
H:1(2 R4(t)+s4(t)] amn
3L R@) S@)

Where the sub-indices 4 in R(f), and S(f) denote
partial derivative w.r.t variables ¢.

3. FIELD EQUATION WITH SOLUTION

Each solution describes a different aspect of the
universe, Equations (9-12) are the independent equation
with some unknown variables, so we require some extra
conditions such as coefficient of bulk viscosity

1
(&) expasion scalar (6)
&9 = ¢ (constant) (18)
And
Rt)=SY(@t); M>1 (19)

From the equations (9) and (10)

LMONEMON (RN)T _R,(0S,® _[ S(t) jz _0(20)
Rt  S@) R@) R@®)S®) | R%@)

Equations (19) and (20) give

Sit) 2 sam
28,,@t)+4M S© - M1 STH@) @D
We consider
S,(#) =f(S) (22)
e [STMO , qam ey P
f_S4(t)_[2x(M—1)+A ST (23)

Equation (2.10) leads to

S4_4M(t) - 9

= L AxSM¢) | dS(@t) =+t -, 24
I(ZX(M_D+ xS | dS@) =2t-t,)  (24)
Where ¢, is an arbitrary constant

The metric equation (1) can be reduced to the form

ds® = - +TM [ozX2 + dzz]

+A><T4M} (25)
+T*[dY -X.dZ T

Using transformation

x=X,S@®)=T,y=Y,andz=2Z
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4. PHYSICAL AND GENERAL FEATURES

Physical features include properties such as the
density and pressure of matter, the flux of energy and
momentum, and the presence of fields such as the
electromagnetic field. These properties determine how
matter and energy are distributed in the universe, and
how they interact with one another. Geometrical
features include properties such as the distance between
points in spacetime, the angles between vectors, and the
curvature of spacetime. These properties determine the
geometry of the universe, and how objects move and
interact within it.

The shear o is
2(1-2M)

o’ =1><(M—1)2>{
3 2x(M -1)

+Ax T2(2M*1>} (26)

The scalar of the expansion is

T2(1—2M)
9=0CM+1) || ———— + AxT72EMD 27)
2x(M -1)

Hubble parameter

@M +1) || T2 A
"= 2x(M—1) T2 9

The deceleration parameter

3
2M +1

g=-1+ (29)

In terms of geometrical features, Bianchi Type II
models have a hyperbolic spatial geometry, meaning
that the spatial section has a negative curvature. These
hyperbolic spatial slices are locally isometric to the 3-
dimensional hyperbolic space. Additionally, the
spacetime is not maximally symmetric, which means
that the curvature tensor does not have the maximum
number of independent components.

Spatial volume is
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M=n=1.5 M=n=25 M=n=3.5
1 1 0.6250 4.1250 10.6250
2 1.1 0.3457 1.4253 2.4386
3 1.2 0.2078 0.5530 0.6473
4 1.3 0.1335 0.2368 0.1945
5 1.4 0.0905 0.1104 0.0651
6 1.5 0.0640 0.0553 0.0239
7 1.6 0.0469 0.0295 0.0095
8 1.7 0.0353 0.0165 0.0041
9 1.8 0.0272 0.0097 0.0019
10 1.9 0.0214 0.0059 0.0009
11 2.0 0.0171 0.0038 0.0004
12 2.1 0.0138 0.0024 0.0002
13 2.2 0.0114 0.0016 0.0001
14 2.3 0.0094 0.0011 0.0001
15 2.4 0.0079 0.0008 0.0000
Graph is drawn by Table 1 data
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Fig. 1 — Graph between shear scalar vector & time

Table 2 — Value of scalar shear with different powers

V= T2M+1 (30)
The bulk viscosity coefficient is
B
4: _ 2M +1 (3 1)

: B +
\/{2(1‘4_1)]’2@1"11)-#,4{[* 22M 1)}

4.1 Graphical Representation of Physical and
Geometrical Parameters

Table 1 — Value of scalar shear with different powers

The scalar of expansion (A = 1.5)
S. T 72020 _2(2M+1)
No. 3=(02M +1) 27+A><T
x(M -1)
M=n=15 M=n=25 M=n=3.5

1 1 6.3246 8.1240 10.4307
2 1.1 4.7037 4.7754 49971
3 1.2 3.6466 2.9744 2.5745
4 1.3 2.9230 1.9465 1.4114
5 1.4 2.4065 1.3288 0.8164

6 1.5 2.0241 0.9404 0.4948

7 1.6 1.7321 0.6865 0.3123

8 1.7 1.5032 0.5145 0.2042

9 1.8 1.3198 0.3944 0.1377
10 1.9 1.1701 0.3083 0.0955
11 2 1.0458 0.2451 0.0677
12 2.1 0.9414 0.1977 0.0491
13 2.2 0.8525 0.1615 0.0363
14 2.3 0.7761 0.1334 0.0272
15 2.4 0.7100 0.1113 0.0207

Scalar Shear (A = 1.5)

2(1-2M)
1+ AxT2em +1):|

T | o2=Lem —1)2{—
3 2x(M —1)

Graph is drawn by Table 2 data
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n=15
n=25
n=35

Scalar of expansion
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0, then the spatial volume (V) also approaches to 0, and
as T approaches infinity then the spatial volume is also
approaching infinity (V — o). It shows that when 7"— 0
then (spatial volume V) — 0, and when 7 — o then
spatial volume becomes V — oo,

Table 4 — Value of Spital Volume with different powers

S. T Spital Volume V =72M*
21 No. M=n=15 | M=n=25 M=n=35
1 1 1.0000 1.0000 1.0000
o 2 11 1.4641 1.7716 2.1436
; R ——— 3 1.2 2.0736 2.9860 4.2998
0.8 1.0 1.2 1.4 1.6 1.8 2.0 22 2.4 26
e 4 1.3 2.8561 4.8268 8.1573
5 1.4 3.8416 7.5295 14.7579
Fig. 2 — Graph between scalar of expansion & time 6 1.5 5.0625 11.3906 95.6289
Table 3 — Value of Hubble parameter with different powers 7 1.6 6.5536 16.7772 42.9497
8 1.7 8.3521 24.1376 69.7576
Hubble parameter (A = 1.5) 9 1.8 10.4976 34.0122 110.1996
S . L @M1 2020 4 10 1.9 13.0321 47.0459 169.8356
No. =73 ox(M-1) | TR 11 2 16.0000 64.0000 256.0000
12 2.1 19.4481 85.7661 378.2286
M=n=15 M=n=25 M=n=35 13 2.2 23.4256 113.3799 548.7587
1 1 i it 8.4769 14 | 23 27.9841 148.0359 783.1099
2 | 11 1.5679 1.5918 1.6657 5 | 24 33.1776 191.1030 1100.7531
3 | 1.2 1.2155 0.9915 0.8582
4 | 13 0.9743 0.6488 0.4705 Graph is drawn by Table 4 data
5 | 1.4 0.8022 0.4429 0.2721
6 | 15 0.6747 0.3135 0.1649 ——
7 | 16 0.5774 0.2288 0.1041 ——n=25
1600 ——n =35
8 | 1.7 0.5011 0.1715 0.0681
9 1.8 0.4399 0.1315 0.0459 1400+
10 | 1.9 0.3900 0.1028 0.0318 1200 4
11 2 0.3486 0.0817 0.0226 2 1000
12 | 21 0.3138 0.0659 0.0164 3 o
13 | 22 0.2842 0.0538 0.0121 =
14 | 2.3 0.2587 0.0445 0.0091 5 8001
15 | 24 0.2367 0.0371 0.0069 4001

Graph is drawn by Table 3 data
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Fig. 3 — Graph between Hubble parameter & time

5. OBSERVATIONS

The initial spital volume (V) is zero and grows along
with the time (7) as well as becomes infinite at a late
time, which indicates that cosmic inflation is possible in
a developed model, which shows that when T approaches

200

T
08 10 12 14 16 18 20 22 24 26
Time

Fig. 4 — Graph between Volume & time

Based on these findings, it may be concluded that the
cosmos expands with a volume of zero and explodes at
limitless distances in the past and future. In the early
phases of cosmic history, in particular, the significance
of bulk viscosity appears to be important because the
model-maintained anisotropy late in time, but at M =1
bulk viscosity is absent for £ = 0, the model became
shear-free and isotropic. The expansion scalar,
represented by 6, tends to continuously increase and
become infinitely large as the time approaches infinity
(T — «©). At T — 0 (Initial Stage), the o (shear scalar)
approaches infinity, but eventually reaches zero at T —
. This model depicts an expanding and non-rotating
universe with a big-bang origin, as initial energy density
is infinite (p — ) and gradually decreases to zero as
time passes (p — 0 when T' — o). The negative dark
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pressure in this model indicates an accelerating phase reaches zero for late times. The high field also decreases
in the cosmos. The Hubble parameter and scalar of slowly and becomes finite after a long period. The
expansion become divergent at the initial stage but presence of a bulk viscosity coefficient in this scenario
eventually approach to 0 as the time approaches results in cosmic inflation.

infinity. The shear scalar decreases over time and
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Indnaaniiina kocmosoriuaa moaenns B’ auki Tuny 11
y 3arajipbHii Teopii BigHOCHOCTI

Sunil Kumawat, Laxmi Poonia

Department of Mathematics and Statistics, Manipal University Jaipur, India

Kocmiuma Momesnb cTpyHHM 3 imeasIbHOI MOMEJLII0 PO3MONIIY PIAUHU, SKA 3aCHOBAHA HA IIOHATTI

omHopigHoI Oidyprarii B'auxi tumy II, 6yna mocaimkeHa B 3arayibHii Teopii BigHocHocTi. I1ix yac paHHBOI
iHamii  BeecBiTy KocMoC poOSIIMPIOBABCA 3 MPUCKOPEHOK IMBUIOKICTIO, PO3TATYIOYH IIPOCTIp-dac 1
3rVIAPKYI09N OyIb-siKl IIeperwHu, sikl MoOIviM BHHUKHyTH. lloBeminka rpasitaifii B TepMiHAX KPUBU3HU
IIPOCTOPY-Yacy CJIY?KHTHh OCHOBOIO Juis 1riei Momesi. [[s kopoTka emoxa TpuBasia JIMIe YACTKY CEKYHIH, aJie
BOHA MaJia BeJIMYE3HWH BIUIMB Ha Hopjasibiry icropito Bceciry. BeecBit e ommOpimHuM Ta i30TpomHUM Yy
BEJINKUX po3Mipax, aje 1HQJIsIs Big0yIacsa B paHHEboOMY BcecBiri, 1 CBIT OSHOPIIHEIHI Ta 130TPOITHUM y MAJIAX
macmrabax. Exepris Beeciry Oyiia 3BinbHeHa y opMi YaCTHHOK 1 BUIIPOMiHIOBaHHs. PIBHSHHS mapamerpa
CTaHy, sike 3B’si3ye THUCK KOCMIYHOI PIIWHM Ta IMUIHHICTH €HepTii, Mae 3aJIMINATHUCS ITOCTIMHUM ITPOTITOM
ycboro po3BuTKy BceecBity. Ile mpumymieHHs: CIpoIye MaTeMaTW4yHe IIOSICHEHHSI PO3BUTKY Bcecsity
MOPIBHAHO 3 MOJEJIAMHK 31 3MIHHMM y dYaci PIBHAHHAM cTaHy. 1[04aTKOBOIO IIOi€l0, sSIKa IIpHU3Besa 0
YTBOPEHHS TaJIAKTHUK 1 31pok, OyJia amina dasu. [Ipumyiensasa mossarae B TOMy, 10 OZHOPIgHE y3araJlbHeHHS
Bauxi tumy II 3 Hampyrow-eHeprien-iMIyIbCOM, IIUIBHICTIO TA4 THCKOM MOKe OyTH BHKOPHCTAHO JIS
BUpIIIEHHsS] PIBHAHb MeTpUYHOro mois Kitamreitna. Orpumana mojesb Oye 300paskaTé KOCMOC, IO
POSIIMPIOETHCS, 3CYBAETHCSA TA 00ePTAETHC.

Kmiouosi cnosa: Biauxi tuny II, IIpocrip-uac, Kocmiune sxasmo, 3arajabHa Teopis BIIHOCHOCTI.
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