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1. INTRODUCTION 
 

The present work is focused on the study of the nature of physical processes 
in thermoelectric mediums, which are the basis of discovery of original and 
important from the practical point of view elements and investigation of the 
phenomena in these objects. Questions connected with cascading of the 
transverse galvano-thermomagnetic cooling elements (GTM CE) and aniso-
tropic thermoelectric cooling elements (AT CE) are poorly covered. This idea 
is based on the assumptions about the one-dimensionality of the temperature 
and the constancy of the electric field, which cannot be held simultaneously. 
Presented results of the physical investigations, directed to elucidate these 
questions, are the components of thermoelectricity and have the original 
nature from the point of view both of the phenomena and the practical 
application. The aim of the present paper is to develop the models of new 
longitudinal and transverse anisotropic and GTM elements and investigation 
of the physical processes in these objects; clarification of the improvement 
possibilities of the operating characteristics of usual longitudinal thermal 
elements by their modernization; elucidation of the nature of the physical 
processes in thermal elements with side heat-exchange and in loaded aniso-
tropic thermal elements (ATE). 
 To achieve the desired aim it is necessary to solve the following problems: 
1. Analyze operation of the two-stage AT CE based on the one-dimensional 
temperature model with the assumption of the constancy of the electric 
current density from the point of view of the maximum temperature drop, 
and generalize the results obtained for the case of the model of multistage 
transverse galvano-thermomagnetic cooler (GTMC) and anisotropic thermo-
electric cooler (ATC). 
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2. Analyze the influence of anisotropy of the thermal conductivity on the 
transverse thermal emf of ATE under condition that the anisotropy parameter 
is much more than 1. 
3. Investigate the vortex anisotropic thermal elements and physical processes 
in these objects. 
 To achieve the aim and to solve the aforesaid problems we have used the 
fundamental concepts of thermodynamics of the thermoelectric phenomena 
and methods of the mathematical physics. 
 In the present work we have studied the physical processes in ATE from 
the point of view of the one- and two-dimensional temperature models, the 
use validity of which was proved in [3]. One-dimensional temperature model 
is used while investigating the operation of cascade ATC, and two-dimen-
sional one – while investigating the influence of the anisotropy of thermal 
conductivity on the temperature field of ATE. 
 Operation of the loaded ATE from the point of view of the conversion 
efficiency is studied. 
 
2. ANISOTROPIC THERMAL ELEMENT IN COOLING MODE 
 

Schematic diagram of the AT CE is represented in Fig. 1. In this paper we 
present the investigation results first published in [1]. 
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Fig. 1 – Schematic representation of AT CE or GTM CE if sample 1 is in magnetic 
field perpendicular to the xy-plane. Current leads 2 are made of metal (for example, 
copper) and contact with the thermostat 4 through the thin dielectric layer 3 with 
high thermal conductivity 
 

 If cooling element (CE) is long enough one can consider the temperature 
as T  T(y) in its midsection. For the electric field component along the x-
axis we can write 
 

E1  j + 12 T/ y, 
 

where  and 12 are the longitudinal resistivity and the coefficient of the 
transverse thermal emf, respectively, which are considered to be constant. 
In accordance with the continuity equation j  j(y). 
 Along the y-axis the electric field conditioned by a temperature gradient 
also appears: 
 

E2  22 T/ y, 
 

where 22 is the coefficient of the thermal emf along the y-axis, which is 
also constant. Electric field should be the potential one, i.e., 
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therefore E1  const since E2 does  not  depend  on  x.  So,  we  conclude:  if  
temperature is one-dimensional than E1  const. In this approximation the 
energy conservation law can be written in the form 
 

 
22

1

2
12

(1 ) 0
d T E dT

ZT Z
dy dy

, (1) 

 

where 2
12 / ( )Z  is the anisotropic thermoelectric efficiency,  and  are the 

resistivity and the thermal conductivity along the x- and y-axes, respectively. 
 Equation (1) should be considered jointly with the boundary conditions: 
 

 0(0) ,

( ) .h

T T
T h T

 (2) 

 

General solution of equation (1) has a form 
 

 1 12
1 12

1
ln(1 ( / ) )

1 ( / )
ZT E y A B

ZT Z E y A
, (3) 

 

where A and B are the constants of integration, which are found from the 
boundary conditions (2). We will assume that the top face of AT CE (Fig. 2) 
is adiabatically isolated from the environment. This can be achieved if CE, 
for example, is placed in the vacuum. Condition of the adiabatic isolation is 
the following: 
 

 12 0h

y h

T
jT

y
. (4) 

 

Using conditions (2) and (4) and expression (3) we will obtain the equation 
 

 0
0 1 12

0 1 12

1
ln(1 ( / ) ) 1

1 ( / )
h h

h

ZT
ZT ZT Z E h ZT

ZT ZT z E h
, (5) 

 

which connects Th and E1. In general case it does not have an analytical solu-
tion with respect to Th. In the case when Z(T0 – Th) << 1 we find from (5) 
 

0
0 0 1 12

1 12

1 1
1 ln 1 /

1 ( / )
h

ZT
T T ZT Z E h

Z Z E h
. 

 

In this case the optimal value of the parameter C  Z(E1/ 12)/h is equal to 
C  ZT0, therefore the minimum temperature will be the following: 
 

0
min

ln(1 )
h

ZT
T T

Z
. 

 

If ZT0 << 1 than 2
min 0 0 / 2T T ZT . 
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Approximation j  const for the one-dimensional temperature distribution 
leads to the following expression for Tmin [3]: 
 

0
min

1 1ZT
T

Z
, 

 

which holds for any Z. For small Z when 2ZT0 << 1 we obtain 2
min 0 0 /2T T ZT . 

In [3] approximation j  const is preferred, since it can be easily realized 
experimentally. 
 
3. STEADY-STATE TEMPERATURE REGIME OF THE TWO-STAGE 

ANISOTROPIC THERMAL ELEMENT IN COOLING MODE 
 

It was mentioned above, that investigations of cascading of the transverse 
coolers  [4,  5]  are  not  convincing  enough:  physical  models  of  separate  and  
cascading coolers, which are the basis of these investigations, are too far 
from the reality. Separate galvano-thermomagnetic (GTM) or anisotropic 
thermoelectric (AT) elements of the squared shape are placed one above the 
other. Here we suppose that the heat extracted by each element is the 
thermal load of thermal elements. While calculating the maximum tempera-
ture decrease a number of assumptions should be made, and the main ones 
are the following: the same electrostatic field is applied to each CE; there is 
an electric contact between the separate thermal elements, and as it seems, 
it does not influence the current and temperature distributions. 
 

 

Fig. 2 – Cascade transverse GTM or AT element operating in cooling mode 
 

 Calculations performed on the basis of the mentioned simplifications lead 
to that the maximum temperature decrease is achieved by the exponential 
change in the side generatrixes subject to x (Fig. 2). Experiments with GTMC 
showed that the exponential cross-section gives deeper cooling than the same 
GTMC of the squared shape. In [5] the investigation results of cascade trans-
verse GTMC are generalized for the case of ATC. 
 In this paper the two-stage ATC from the point of view of the maximum 
temperature [6] is studied in detail. Schematic diagram of the two-stage 
ATC is represented in Fig. 3. It consists of the separate AT CE 1 and AT CE 
2, which are connected in the thermal ratio in such a way that the heat ext-
racted on the bottom face of AT CE 2 is the thermal load of AT CE 1. There 
is no electric contact between the bottom face of AT CE 2 and the top face 
of AT CE 1. At the same time thermal contact between them is considered to 
be the perfect one. In electric ratio the AT CE 1 and AT CE 2 are connected 
as it has shown in Fig. 3. 
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Fig. 3 – Schematic diagram of the two-stage ATC 
 

 The model described here differs from the one presented in [5] by the fact 
that, firstly, instead of the condition of the constancy of the electric field 
the condition j  const is taken. At first sight the condition E  const is 
stricter. However, it is difficult to realize this condition. Condition j  const 
is satisfied easier: for this it is necessary to produce the corresponding 
current leads [3]. Secondly, cascading, which is known from [5], foresees the 
identity of the cooling coefficients of the separate thermal elements that is 
beneath criticism as well. 
 Choosing AT CE 1 and AT CE 2 long enough,  i.e.,  assuming H/L << 1 
and l/L << 1, where h and l  H – h are the sizes of CE 1 and CE 2 along 
the y-axis, L is the size along the x-axis (Fig. 4), one can consider that in 
the midsection of ATE the temperature will depend on the y only. We also 
suppose that the kinetic coefficients of materials of ATE 1 and ATE 2 do 
not depend on the temperature. This assumption is confirmed if the opera-
ting temperature range is not very wide. 
 Generalized equation of the thermal conductivity in the steady-state case 
under condition that the current densities in CE 1 and CE 2 are constant 
will be written in the form 
 

 
2

2
0i

i
d T

b
dy

, (5) 

 

where i  1, 2 is a number of CE, 2
i i i ib j . 

Boundary conditions are the following: 
 

 T1(0)  T0, T1(h)  Th, T2(h)  Th, T2(H)  TH. (6) 
 

General solution of equation (5) has the form 
 

 21

2
i i i iT y b y A y B , (7) 

 

where Ai and Bi are the constants of integration. Using the boundary condi-
tions (6) and solution (7) we can find the expressions for the temperature 
distributions in CE 
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We will obtain temperatures Th and TH from the conditions 
 

2 2
1 0 1 1 2

1 1

2 2
H h h H hb h T T a hT k b l T T a lT , 

2 2
1

0
2

h H Hb T T a lT , 

 

where i i
i

i

j
a , 2

1

h
k

l
, i is the transverse thermal emf. 

These conditions indicate, respectively, the continuity of the heat flow at 
the interface between AT CE 1 and AT CE 2 and the adiabatic isolation of 
the top face of AT CE 2. Using them we find 
 

 2
2

2

1 1

1 2
H hT T b l

a l
, (8) 

 

2 2 2
2 2 0 2 1

1 2 2 2

1 1 1
1

2 2 2

1 1 1
h

kb l a l T kb l b h
T

a h a l a l ka l
. (9) 

 

 Let us consider two cases. 
 1) a1 > 0, a2 > 0. 
 In order that cooling takes place, i.e., TH < T0, it is necessary to suggest in 
(8) and (9) that j1 < 0 and j2 < 0, that is to direct currents in the negative 
direction of the x-axis. In this case we can state about the “parallel” con-
nection of AT CE 1 and AT CE 2. Let us suppose that k << 1, 1  2  , 

1  2   and 1  2  . Then we will obtain for TH 
 

2 2 2 2
0 1 2

2
1 2 1

1 1

2 2
1 2 1

H

T I c I c
T

I c I c I c
, 

 

where I1 and I2 are the currents in AT CE 1 and AT CE 2, respectively, c is 
the CE thickness. In the last expression we neglect the quantities of the 
second order of smallness I1/( c), I2/( c)  and [ I2/( c)2]k. Further inve-
stigations are to fill in the optimal currents I1 and I2, which, generally 
speaking, should be different. For numerical estimation we take I1  I2  I. 
Let   10–4 V/K,   10–2 W/(cm K),   10–3 Ohm cm, c  1 cm, I  10 A, 
T0  300 K, then find TH  239 K. For one-stage AT CE in accordance with 
formula 
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0
min

1 1ZT
T

Z
, 

 

where Z  2/( ) is the anisotropic thermoelectric Q-factor. At Z  10–3 K–1 
we have Tmin  265 K. So, cooling is deeper for the two-stage ATC. 
 2) a1 < 0, a2 > 0. 
 In this case it is necessary to change the current direction in AT CE 1 by 
the opposite one. It is appropriate mention here about the “series” connection 
of AT CE 1 and AT CE 2. Taking the same values of the kinetic coefficients, 
sizes and currents as in the first case, we will obtain TH  239 K. 
 We should note, that the given calculations have only to show that in the 
case of ATC cascading leads to deeper cooling. 
 
4. MODEL OF THE CASCADE TRANSVERSE THERMOELECTRIC AND 

GALVANO-THERMOMAGNETIC COOLERS 
 

Cascade transverse cooler consists of the separate rectangular CE (Fig. 4), the 
sizes of which are chosen in such a way as to achieve the usual cascade coo-
ling while CE are arranged one above the other [4]. In this case the heat ext-
racted on the “hot” face of each element is a thermal load of thermal elements. 
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Fig. 4 – Schematic diagram of the cascade ATC 
 

 Electrical part of the cascade cooler is the following: separate thermal 
elements of the cooler are not only in the perfect thermal contact, but also 
in the electric one. Electric contact, as considered in the cited publications, 
does not influence the potential and temperature distributions and gives the 
possibility to use the only one power source for all thermal elements. Such 
idea of cascading leads to that the transverse cooler should have the side 
faces of a special shape. Experimental investigations show that such a cooler 
has the right of existence: for example, it gives deeper cooling than the 
same  cooler  of  the  squared  shape  [7,  8].  But  a  number  of  questions  arise  
while analyzing the model of cascade transverse cooler, which give rise to 
doubts about its validity. 
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 Condition of the constancy of the electric field in cascades does not hold 
since when constructing such CE the bulk current leads made of materials 
with high electric conductivity, and so, with high thermal conductivity are 
required, that will inevitably lead to the thermal interaction with environ-
ment. This interaction changes the temperature distribution in CE, i.e., the 
distribution ceases to be one-dimensional, that, in turn, leads to violation of 
the condition of the constancy of the electric field, and as a result, to denial 
of the cascading idea. 
 Cascading can be more realistic if separate rectangular thermal elements 
were electrically isolated from each other, but at the same time were in the 
perfect thermal contact with each other. In this case the condition ji  const 
fulfills better than the condition Ei  const. Moreover, currents in each 
thermal element are independent. The cascading scheme can be represented 
as follows. In Fig. 4 we present the middle part (cross-section) of the long 
enough cooler, for which temperature is one-dimensional, i.e., it depends on 
the y only. Each thermal element has its own current density jk. Then under 
the condition that the kinetic coefficients 12  , 22   and 11   are 
constant, the task for ATC is the following: 
 

 
2

2
0k

k
d T

b
dy

, (10) 

 

where Tk is the temperature in the k-th thermal element, 2
k k kkb j . 

Equation (10) has to be solved with the boundary conditions 
 

 T1(0)  T0, T1(N)  TN, (11) 
 

which should be supplemented by the join conditions of the temperatures 
and heat flows at the interface between CE. Thus, for example, the heat flow 
and the temperature should be continuous between the (k – 1) and k-th 
thermal elements that is mathematically expressed by the conditions 
 

1
1 1 1 1 1

k k
k k k k k k k k k k

dT dT
T j S T j S

dy dy
, 1k kT T , 

 

where Sk is the base area of the k-th thermal element. 
Here should be as many conditions as interfaces. Difference between Sk and 
Sk–1 leads to that the side surfaces will have the form, which is different 
from the plane one. 
 As seen from the aforesaid, this task is not a simple one, and the more 
number of separate CE, the more complicated its solution is. To our opinion, 
the model proposed describes in more detail the real physical situation. 
 Obviously, the mentioned task should be solved using a computer, setting 
the areas Sk,  material  constants  and  currents.  If  program  is  successful,  
computer  calculations  can  lead  to  the  maximum  temperature  drop  at  the  
fitted optimal currents in separate CE. 
 Experimental realization of the proposed cascade cooler is not a simple 
task: it is necessary to provide the reliable thermal leads between separate 
thermal elements and their independent supply as well. 
 As known, in practice one can be restricted by a small amount of cascades 
as it is done for the usual Peltier coolers. 



 
 
 
 PHYSICAL PROCESSES IN ANISOTROPIC THERMOELEMENT … 51 

 

5. CONCLUSIONS 
 

1. From the point of view of one-dimensional temperature model under the 
condition of the constancy of the electric current in separate AT CE the ma-
ximum temperature drop of the two-stage anisotropic cooler is found. Calcu-
lation results are generalized for the case of multistage anisotropic cooler. 
2. Influence of the strong anisotropy of the thermal conductivity on the 
temperature field of anisotropic thermal element subject to its sizes and 
value of the temperature drop is studied. 
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