

ABSTRACT

Note: 42 pages, 14 figures, 1 appendix, 10 reference sources.

Object of study – Infoware and software of intelligent chat-bot

Purpose - To design and implement an intelligent chatbot with natural language

processing (NLP) capabilities using Java and Apache OpenNLP in the Spring

Framework.

Results - an intelligent chatbot has been designed and implemented with natural

language processing (NLP) capabilities using Java and Apache OpenNLP in the

Spring Framework.

Keywords: Intelligent chatbot, Natural Language Processing, Java, Apache

OpenNLP, Spring Framework, Sentence detection, Named entity recognition,

Weather API, News API

Contents

Introduction .. 5

1.1 Background ... 5

 1.2 Problem Statement .. 5

1.3 Objectives ... 6

 1.4 Methodology ... 6

 1.5 Scope and Limitations ... 7

Literature Review ... 7

2.1 Chatbot Systems ... 7

 2.2 Natural Language Processing .. 8

2.3 Java .. 8

 2.4 Apache OpenNLP .. 9

 2.5 Spring Framework ... 10

System Design ... 11

3.1 Architecture Overview .. 11

 3.2 User Interface Design .. 12

3.3 NLP Models and Integration ... 13

 3.4 Integration with Weather API ... 14

 3.5 Integration with News API .. 14

Implementation ... 15

4.1 Setup and Configuration.. 15

 4.2 Development of NLP Models.. 17

4.3 Integration with External APIs .. 19

 4.4 User Interface Implementation .. 23

Evaluation ... 23

5.1 Testing and Validation .. 23

5.2 Performance Evaluation .. 24

Results and Discussion ... 26

6.1 System Functionality ... 26

 6.2 Integration with Weather and News APIs ... 26

6.3 User Feedback and Satisfaction .. 26

Conclusion ... 27

7.1 Summary of Achievements .. 27

 7.2 Contributions .. 27

7.3 Future Work ... 27

References ... 28

Appendix ... 29

Introduction

1.1 Background

In the era of digital transformation, one of the most groundbreaking

developments is the advent of chatbot systems. These automated entities engage

with users through text, offering a simulated conversation like human

interaction. By processing and responding to user inputs, chatbots have

revolutionized customer service, data collection, and more, in a variety of

industries. They can offer 24/7 support, manage multiple inquiries

simultaneously, and provide immediate responses. However, creating an

intelligent chatbot, one that can comprehend the intricacies of human language,

interpret the semantic and contextual meaning of sentences, and offer rich,

personalized responses, presents a significant challenge. This project focuses on

building such a chatbot, harnessing the power of Natural Language Processing

(NLP) with Java and Apache OpenNLP within the Spring Framework.

Additionally, the chatbot aims to provide enriched user experiences by

integrating with external Weather and News APIs.

1.2 Problem Statement

Despite the widespread implementation of chatbots, a common drawback is

their inability to accurately grasp and interpret human language, often resulting

in generic or incorrect responses. To address this challenge, various existing

solutions leverage advanced Natural Language Processing (NLP) techniques.

These solutions utilize deep learning models, such as transformer-based

architectures like BERT or GPT-3, which significantly improve the chatbot's

ability to understand and respond to user inputs with higher accuracy and

contextual understanding [9][10].

Furthermore, another existing solution focuses on incorporating real-time,

context-aware information into chatbot interactions. By integrating with

relevant APIs, such as weather and news services, these chatbots can provide

users with up-to-date and personalized information. For example, they can

retrieve current weather conditions or deliver the latest news updates in real-

time [4][3]. This project builds upon these existing solutions by combining

advanced NLP algorithms and API integration to construct a chatbot that

comprehends user inputs more accurately and offers real-time, relevant

information.

1.3 Objectives

The core objectives of this project include:

1. Design: Lay out a systematic blueprint of an intelligent chatbot, focusing

on user interaction and data flow.

2. Implementation: Apply Java and Apache OpenNLP within the Spring

Framework to realize the design, incorporating sentence detection and

named entity recognition features for enhanced language understanding.

3. Integration: Seamlessly combine external APIs, particularly weather and

news APIs, to enrich the chatbot's knowledge base and its response scope.

4. Evaluation: Rigorously evaluate the implemented system, validating its

functionalities, performance, and user experience, ensuring it aligns with

the predefined requirements.

1.4 Methodology

The project follows the following methodology:

1. Conduct a literature review on chatbot systems, NLP techniques, Java,

Apache OpenNLP, and the Spring Framework.

2. Design the architecture of the intelligent chatbot, including the user

interface and integration with external APIs.

3. Implement the chatbot using the provided code as a base, focusing on the

NLP models, API integration, and user interface implementation.

4. Perform testing and validation of the chatbot's functionality and evaluate

its performance and user experience.

5. Analyze the results and discuss the achievements, contributions, and

potential future work.

1.5 Scope and Limitations

While the project sets out to build a comprehensive chatbot system, some

limitations exist. The chatbot's understanding of human language is constrained

by the quality and quantity of its training data. Thus, it may struggle with

complex or ambiguous queries. Also, its responses are bound by the information

accessible via the integrated APIs, limiting its knowledge to predefined areas

like weather and news. Any inquiries beyond this scope may not receive

adequate responses.

Literature Review

2.1 Chatbot Systems: Chatbot systems are AI software designed to interact with

humans in their natural languages. These systems utilize technologies such as

Machine Learning and Natural Language Processing (NLP) to understand,

interpret, and respond to user queries in a manner that resembles human

conversation. Chatbots find applications in various domains, including customer

service, information retrieval, and user experience enhancement.

Advantages:

• Instantaneous responses and support, enhancing customer service.

• Scalability, allowing for handling a large volume of user interactions

without the need for additional human resources.

• 24/7 availability, providing access to information or services at any time.

• Personalized interactions, improving user engagement and satisfaction.

Disadvantages:

• Limited ability to handle complex or ambiguous queries.

• Dependence on accurate training data and continuous model updates.

• Potential privacy and security concerns when handling sensitive user

information.

2.2 Natural Language Processing: Natural Language Processing (NLP) is a

specialized field of AI that concentrates on the interaction between humans and

computers language. NLP enables computers to understand, interpret, and

generate human language through techniques such as named entity recognition,

sentiment analysis, language translation, and sentence detection.[5].

Advantages:

• Automated understanding and analysis of large volumes of text data.

• Language translation and localization for global applications.

• Sentiment analysis and opinion mining for market research and social

media analysis.

• Powering chatbot systems and voice assistants for natural language

interactions.

Disadvantages:

• Challenges in handling ambiguity and context-dependent interpretation.

• Difficulty in processing slang, colloquialisms, and non-standard

language.

• Computationally and resource-intensive processing for large-scale

applications.

• Ethical considerations in ensuring unbiased and fair language processing.

2.3 Java: Java is a high-level, object-oriented programming language known for

its platform independence and "write once, run anywhere" capability. It is

widely used for developing web applications, mobile applications, and

enterprise-level software. Java provides a rich ecosystem of libraries and

frameworks, making it a popular choice for building robust and scalable

applications.[8].

Advantages:

• Platform independence, allowing Java code to run on different operating

systems without recompilation.

• Strong community support and a vast collection of libraries and

frameworks.

• Robust memory management and garbage collection.

• Extensive tooling for debugging, profiling, and performance

optimization.

Disadvantages:

• Verbose syntax and boilerplate code compared to some other

programming languages.

• Slower execution speed compared to lower-level languages like C++.

• Limited support for functional programming paradigms.

2.4 Apache OpenNLP: Apache OpenNLP is a Java-based open-source library

for natural language processing. It offers various NLP functionalities, including

tokenization, sentence segmentation, part-of-speech tagging, named entity

extraction, chunking, and parsing. OpenNLP also provides machine learning

algorithms based on maximum entropy and perceptron models.[1][6].

Advantages:

• Comprehensive suite of NLP functionalities for various text processing

tasks.

• Easy integration with Java-based applications and frameworks.

• Actively maintained and supported by the Apache Software Foundation.

• Extensibility and customizability to meet specific NLP requirements.

Disadvantages:

• Steep learning curve for users new to NLP and Java programming.

• Limited support for languages other than English.

• Performance limitations for large-scale processing or real-time

applications.

2.5 Spring Framework: The Spring Framework is a popular Java-based

framework for building enterprise applications. It provides a comprehensive

programming and configuration model, supporting different application

architectures such as messaging, transactional data, persistence, and web-based

applications. Spring Boot, a project built on top of the Spring Framework,

simplifies the development of stand-alone, production-grade Spring

applications.[2][7].

Advantages:

• Simplified development through features like dependency injection and

inversion of control.

• Modular and scalable architecture for building enterprise-level

applications.

• Seamless integration with other Java libraries and frameworks.

• Robust support for testing, monitoring, and management of applications.

Disadvantages:

• Initial learning curve to understand the Spring ecosystem and concepts.

• Increased complexity as the number of dependencies and configurations

grows.

• Potential performance overhead compared to lightweight frameworks for

simpler applications.

System Design

3.1 Architecture Overview

Figure 1 diagram showing the classes.

The architecture of the intelligent chatbot system consists of several

components that work together to process user input and provide appropriate

responses. The key components of the system architecture are as follows:

• User Interface: The user interacts with the chatbot through a web-based

interface. The interface allows the user to enter queries and receive

responses from the chatbot.

• ChatBot Controller: This component handles the HTTP requests from the

user interface. It communicates with the ChatBot service to process user

inputs and generate appropriate responses.

• ChatBot Service: The ChatBot service contains the core logic of the

chatbot. It uses natural language processing (NLP) techniques to analyze

and interpret user inputs and generate relevant responses. It interacts with

other services, such as the WeatherService and NewsService, to fetch

additional information.

• NLP Models: The chatbot utilizes NLP models provided by the Apache

OpenNLP library. These models include a sentence detector model and a

named entity recognition (NER) model. The sentence detector model is

responsible for identifying sentences in user inputs, while the NER model

identifies named entities like person names.

• WeatherService: This service integrates with an external weather API to

fetch weather information based on user queries related to weather[4]. It

uses the OpenWeatherMap API to retrieve current weather data for a

specific location.

• NewsService: The NewsService integrates with a news API to retrieve the

latest news updates based on user queries related to news topics[3]. It

uses the NewsAPI to fetch top headlines and news articles matching the

user's query.

3.2 User Interface Design

Figure 2 shows the interface design based on the user query on weather in

London.

Figure 3 user interface showing user query on news in US.

The user interface is implemented as a web page using HTML, CSS, and

JavaScript. It provides an input field for the user to enter queries and a submit

button to send the query to the server for processing. The response from the

chatbot is displayed on the same page.

3.3 NLP Models and Integration

The ChatBot service incorporates NLP models provided by Apache OpenNLP

to enhance its natural language processing capabilities. Specifically, it utilizes

the SentenceDetectorME class for sentence detection and the NameFinderME

class for named entity recognition.

During the initialization of the ChatBot service, the NLP models are loaded. The

sentence detection model and the named entity recognition model are loaded

from their respective binary files using InputStreams. The ChatBot class

contains a method called initializeNLPModels() that handles this loading

process.

1. Sentence Detection Model Integration:

• The sentence detection model is loaded from the "sentence-

detection.bin" binary file. This model is responsible for identifying

sentence boundaries within user inputs.

• The SentenceDetectorME class is instantiated with the loaded

SentenceModel, which encapsulates the sentence detection model.

• The SentenceDetectorME instance, referred to as

sentenceDetector, is utilized within the ChatBot service to detect

sentences in user inputs. It provides the sentDetect(text: String)

method to perform sentence detection and returns an array of

detected sentences.

2. Named Entity Recognition Model Integration:

• The named entity recognition model is loaded from the "person-

detection.bin" binary file. This model is designed to recognize

named entities, with a focus on identifying person names within

user inputs.

• The NameFinderME class is instantiated with the loaded

TokenNameFinderModel, which encapsulates the named entity

recognition model.

• The NameFinderME instance, referred to as nameFinder, is used

within the ChatBot service to perform named entity recognition. It

provides the find(tokens: String[]) method to recognize named

entities within an array of tokens and returns an array of Span

objects representing the positions of named entities.

By integrating these NLP models into the ChatBot service, the chatbot gains the

ability to detect sentences and recognize person names within user inputs. This

enhances the chatbot's understanding of user queries and enables it to provide

more accurate and contextually relevant responses.

3.4 Integration with Weather API

The WeatherService component integrates with an external weather API to

retrieve weather information. It utilizes the OkHttpClient library to make HTTP

requests to the OpenWeatherMap API. The WeatherService constructs the

appropriate URL based on the user's location query and sends a request to the

API.

The response from the weather API is received as JSON data, which is then

parsed to extract the relevant weather information. The WeatherService formats

the weather information into a readable format and returns it to the ChatBot

service for inclusion in the chatbot's response.

3.5 Integration with News API

The NewsService component integrates with a news API to retrieve the latest

news updates based on user queries. It utilizes the OkHttpClient library to make

HTTP requests to the NewsAPI. The NewsService constructs the URL based on

the user's query and sends a request to the API.

The response from the news API is received as JSON data, which is then parsed

to extract the necessary information such as news titles, descriptions, sources,

and URLs. The NewsService formats the news updates into a readable format

and returns them to the ChatBot service for inclusion in the chatbot's response.

Figure 4 Sequence of the architecture

By visualizing these interactions in a sequence diagram, we provide an intuitive

overview of the system's design and workflow. This concludes system design,

which covers the design of the chatbot system, the details of its user interface,

the integration of NLP models, and the incorporation of external APIs for

weather and news services.

Implementation

4.1 Setup and Configuration

Before starting the implementation, it is essential to set up the development

environment correctly. This project requires Java Development Kit (JDK), an

Integrated Development Environment (IDE) that supports Java, such as IntelliJ

IDEA or Eclipse, and the Spring Framework.

The Apache OpenNLP libraries are also needed for the natural language

processing (NLP) functionalities. These libraries can be added as dependencies

in the project's build configuration file.

We also used Apache Maven, which is a software project management and

comprehension tool. Maven allowed us to easily manage our project's build,

report, and documentation from a central piece of information. The

configuration for Maven was done using the pom.xml file.

Pom.xml

Figure 5. Pom.xml

The project was set up using the Spring framework, specifically Spring Boot

which simplifies the initial creation and configuration of a new Spring

application. The Spring framework was chosen because it allows for the

creation of enterprise applications that are easy to test and maintain.

OpenNLP was used, a machine learning based toolkit for processing natural

language text. It supports the most common NLP tasks, such as tokenization,

sentence segmentation, and named entity recognition.

4.2 Development of NLP Models

The core of this chatbot system lies in its ability to understand natural language.

This understanding is achieved by using Apache OpenNLP's models for

sentence detection and named entity recognition.

Upon initialization, the chatbot loads the sentence detection model and the

named entity recognition model. These models are contained in binary files,

which are located in the application's resource directory.

Here is the implementation of the model loading in the ChatBot class:

Figure 6 code showing how models are loaded

4.3 Integration with External APIs

The chatbot integrates two external APIs: the weather API and the news API.

Two service classes, WeatherService and NewsService, are responsible for

handling API requests and processing the responses.

Weather API Integration

The WeatherService class is responsible for retrieving weather information

using an external weather API. It utilizes the OkHttpClient library to send HTTP

requests and receive responses. The getWeatherInfo() method takes a location as

a parameter, sends a request to the weather API, and parses the response to

extract the relevant weather information. The extracted information is formatted

and returned as a string.

Figure 7 showcases the WeatherService class, responsible for retrieving weather

information using an external weather API.

News API Integration

The NewsService class is responsible for retrieving news updates using an

external news API. It also uses the OkHttpClient library to send HTTP requests

and receive responses. The getLatestNews() method takes a subject as a

parameter, sends a request to the news API, and processes the response to

extract the latest news articles. The extracted news articles are formatted and

returned as a string.

Figure 8 displays the NewsService class, responsible for retrieving news

updates using an external news API.

4.4 User Interface Implementation

The user interface is implemented using HTML and CSS. The interface

consisted of a simple input form that the user can use to interact with the

chatbot, and a response area to display the chatbot's responses.

Figure 9 presents the provided index.html template, which contains the user

interface for the chatbot. It includes a form for inputting queries and a section to

display the chatbot's response. The template uses Thymeleaf tags to retrieve the

response from the model and display it dynamically.

The UI is integrated with the chatbot system using the Spring MVC controller

pattern, where the ChatBotController class takes user input from a form

submission and sends it to the ChatBot service for processing. The processed

output is then added to the response model and displayed on the webpage.

Figure 10 code showing controller responsible for processing input and output.

The chatbot code, in turn, integrates the NLP models, weather, and news

services to process the input. It first breaks the input down into sentences, then

performs named entity recognition on each sentence. Depending on the input,

the chatbot then queries the relevant API and builds a response string by getting

the intent.

Figure 11 code showing how the user input is processed.

Figure 12 code showing intent is gotten from user input.

Evaluation

In this section, we will evaluate the performance and effectiveness of the

intelligent chatbot system. The evaluation includes testing and validation,

performance evaluation, and user experience evaluation.

5.1 Testing and Validation

To ensure the accuracy and reliability of the chatbot system, rigorous testing and

validation processes were conducted. The testing phase involved various

scenarios and input data to assess the system's ability to detect sentences and

perform named entity recognition accurately. The validation process included

comparing the system's output with expected results and evaluating the system's

performance against predefined criteria.

During testing, a variety of test cases were executed to cover different aspects of

the chatbot's functionality.

Test Case 1:

Input: "What is the weather in Paris"

Expected Output: The chatbot retrieves the weather information for Paris.

Actual Output: The chatbot successfully retrieves the weather information for

Paris.

Figure 13 presents a sample input and output for a weather query.

Test Case 2:

Input: "Give me news from Germany"

Expected Output: The chatbot fetches the latest news updates related to

Germany.

Actual Output: The chatbot successfully fetches the latest news updates related

to Germany.

Figure 14 illustrates an example input and output for a news query.

5.2 Performance Evaluation

The performance of the intelligent chatbot system was evaluated based on

several metrics, including response time, scalability, and resource utilization.

The response time metric measured the system's efficiency in processing user

queries and generating appropriate responses. The scalability assessment

examined the system's ability to handle a growing number of users and maintain

performance under high load conditions. Resource utilization evaluation

analyzed the system's efficient use of computing resources, such as memory and

processing power.

Here are the example performance measurements for response time:

• Test Scenario 1: Weather Query

• Input: "What is the weather in Paris"

• Request/Response Duration:

• Request sent: 0.14 ms

• Waiting for server response: 742.58 ms

• Content Download: 0.42 ms

• Total Duration: 743.14 ms

• Test Scenario 2: News Query

• Input: "Give me news from Germany"

• Request/Response Duration:

• Request sent: 0.11 ms

• Waiting for server response: 261.30 ms

• Content Download: 0.44 ms

• Total Duration: 261.85 ms

These measurements demonstrate the time taken at various stages of the

request-response cycle, indicating the system's response time for different

queries.

Results and Discussion

In this section, we present the results of the evaluation and discuss the findings

in detail.

6.1 System Functionality

The evaluation confirmed that the intelligent chatbot system effectively detected

sentences and performed named entity recognition. The system demonstrated

reliable functionality in understanding user queries and generating appropriate

responses. The accuracy of sentence detection and named entity recognition was

validated through testing with various input data.

6.2 Integration with Weather and News APIs

The integration of the weather and news APIs enhanced the functionality of the

chatbot system. The evaluation demonstrated successful integration, allowing

users to obtain real-time weather information and the latest news updates based

on their queries. The accuracy and reliability of the integrated APIs were

validated through testing and validation processes.

6.3 User Feedback and Satisfaction

The user experience evaluation provided valuable insights into user satisfaction

and feedback regarding the intelligent chatbot system. Users expressed their

satisfaction with the system's responsiveness, accuracy, and the availability of

weather and news information. The feedback collected helped identify areas of

improvement and potential enhancements to enhance user satisfaction.

Conclusion

In conclusion, the design and implementation of an intelligent chatbot system

using Java, Apache OpenNLP, and Spring Framework were successfully

accomplished. The evaluation results indicated that the chatbot system

performed effectively in detecting sentences, performing named entity

recognition, and integrating with external APIs for weather and news

information. User feedback and satisfaction validated the system's usability and

usefulness.

7.1 Summary of Achievements

The main achievements of this research included the development of an

intelligent chatbot system that utilized natural language processing techniques

for sentence detection and named entity recognition. The integration of weather

and news APIs enhanced the system's functionality. The evaluation confirmed

the system's accuracy, performance, and user satisfaction.

7.2 Contributions

The contributions of this research included the implementation of an intelligent

chatbot system using Java and Apache OpenNLP, along with integration with

external APIs for weather and news information. The system's design and

implementation provided a valuable contribution to the field of natural language

processing and chatbot development.

7.3 Future Work

Future work in this area can focus on several aspects. Firstly, further

enhancements can be made to the chatbot system, such as expanding the range

of supported queries and improving the system's response generation

capabilities. Additionally, incorporating machine learning.

REFERENCES

1. OpenNLP. (n.d.). Apache OpenNLP Documentation. Retrieved from

https://opennlp.apache.org/documentation/1.9.3/manual/opennlp.html

2. Spring Framework. (n.d.). Spring Framework Reference Documentation.

Retrieved from

https://docs.spring.io/springframework/docs/current/reference/html/

3. News API. (n.d.). News API Documentation. Retrieved from

https://newsapi.org/docs/

4. OpenWeatherMap. (n.d.). OpenWeatherMap Documentation. Retrieved

from https://openweathermap.org/api

5. Introduction to Natural Language Processing - GeeksforGeeks,

https://www.geeksforgeeks.org/introduction-to-natural-language-

processing/

6. Apache OpenNLP - Wikipedia,

https://en.wikipedia.org/wiki/Apache_OpenNLP

7. Spring Framework, https://spring.io/projects/spring-framework/

8. Java Programming Language Official Website. Retrieved from:

https://www.java.com/

9. BERT Pre-training of Deep Bidirectional Transformers for Language

Understanding https://arxiv.org/abs/1810.04805

10. Language models are few-shot learners https://arxiv.org/abs/2005.14165

https://opennlp.apache.org/documentation/1.9.3/manual/opennlp.html
https://docs.spring.io/springframework/docs/current/reference/html/
https://newsapi.org/docs/
https://openweathermap.org/api
https://www.geeksforgeeks.org/introduction-to-natural-language-processing/
https://www.geeksforgeeks.org/introduction-to-natural-language-processing/
https://en.wikipedia.org/wiki/Apache_OpenNLP
https://spring.io/projects/spring-framework/
https://www.java.com/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165

APPENDIX

ChatBot.java

package com.basit.chatbot.service;

import opennlp.tools.namefind.NameFinderME;

import opennlp.tools.namefind.TokenNameFinderModel;

import opennlp.tools.sentdetect.SentenceDetectorME;

import opennlp.tools.sentdetect.SentenceModel;

import opennlp.tools.util.Span;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.InputStream;

import java.util.Arrays;

public class ChatBot {

 private SentenceDetectorME sentenceDetector;

 private NameFinderME nameFinder;

 private WeatherService weatherService;

 private NewsService newsService;

 public ChatBot() {

 initializeNLPModels();

 weatherService = new WeatherService();

 newsService = new NewsService();

 }

 private void initializeNLPModels() {

 try {

 // Load sentence detection model

 InputStream sentenceModelStream =

getClass().getResourceAsStream("/sentence-detection.bin");

 if (sentenceModelStream == null) {

 throw new FileNotFoundException("Sentence detection model file

not found");

 }

 SentenceModel sentenceModel = new

SentenceModel(sentenceModelStream);

 sentenceDetector = new SentenceDetectorME(sentenceModel);

 // Load named entity recognition model

 InputStream nerModelStream =

getClass().getResourceAsStream("/person-detection.bin");

 if (nerModelStream == null) {

 throw new FileNotFoundException("Named entity recognition model

file not found");

 }

 TokenNameFinderModel nerModel = new

TokenNameFinderModel(nerModelStream);

 nameFinder = new NameFinderME(nerModel);

 } catch (IOException e) {

 e.printStackTrace();

 }

 }

 public String processInput(String input) {

 // Detect sentences in the input

 String[] sentences = sentenceDetector.sentDetect(input);

 // Process each sentence

 StringBuilder response = new StringBuilder();

 for (String sentence : sentences) {

 // Perform named entity recognition on the sentence

 String[] tokens = sentence.split(" ");

 Span[] spans = nameFinder.find(tokens);

 // Check if any person names were found

 if (spans.length > 0) {

 for (Span span : spans) {

 String personName = String.join(" ", Arrays.copyOfRange(tokens,

span.getStart(), span.getEnd()));

 response.append("Hello, ").append(personName).append("! How

can I assist you?\n");

 }

 } else {

 String intent = getIntent(sentence);

 if (intent.startsWith("weather:")) {

 String location = intent.substring(8);

 String weatherInfo = weatherService.getWeatherInfo(location);

 response.append(weatherInfo).append("\n");

 } else if (intent.startsWith("news:")) {

 String subject = intent.substring(5);

 String newsUpdates = newsService.getLatestNews(subject);

 response.append(newsUpdates).append("\n");

 } else {

 response.append("I'm sorry, I didn't catch that. Can you please

rephrase?\n");

 }

 }

 }

 return response.toString();

 }

 private String getIntent(String sentence) {

 if (sentence.toLowerCase().contains("weather")) {

 String[] words = sentence.split(" ");

 for (int i = 0; i < words.length; i++) {

 if (words[i].equalsIgnoreCase("in") && i < words.length - 1) {

 return "weather:" + words[i + 1];

 }

 }

 } else if (sentence.toLowerCase().contains("news")) {

 String[] words = sentence.split(" ");

 for (int i = 0; i < words.length; i++) {

 if (words[i].equalsIgnoreCase("from") && i < words.length - 1) {

 return "news:" + words[i + 1];

 }

 }

 }

 return "unknown";

 }

}

ChatBotController.java

package com.basit.chatbot.controller;

import com.basit.chatbot.service.ChatBot;

import org.springframework.stereotype.Controller;

import org.springframework.ui.Model;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.bind.annotation.RequestParam;

@Controller

public class ChatBotController {

 private ChatBot chatbot;

 public ChatBotController() {

 chatbot = new ChatBot();

 }

 @GetMapping("/")

 public String index() {

 return "index";

 }

 @PostMapping("/process")

 public String processInput(@RequestParam("input") String input, Model

model) {

 String response = chatbot.processInput(input);

 model.addAttribute("response", response);

 return "index";

 }

}

NewsService.java

package com.basit.chatbot.service;

import okhttp3.OkHttpClient;

import okhttp3.Request;

import okhttp3.Response;

import org.json.JSONArray;

import org.json.JSONObject;

import java.io.IOException;

public class NewsService {

 private static final String API_KEY =

"9af1e2769ba54c879deceac6aa1f8bd3";

 public String getLatestNews(String subject) {

 OkHttpClient client = new OkHttpClient();

 String url = "https://newsapi.org/v2/top-headlines?q=" + subject +

"&apiKey=" + API_KEY;

 Request request = new Request.Builder()

 .url(url)

 .build();

 try (Response response = client.newCall(request).execute()) {

 if (response.isSuccessful()) {

 String responseData = response.body() != null ?

response.body().string() : "";

 JSONObject jsonObject = new JSONObject(responseData);

 JSONArray articles = jsonObject.getJSONArray("articles");

 // Format the news updates

 StringBuilder newsUpdates = new StringBuilder();

 for (int i = 0; i < articles.length(); i++) {

 JSONObject article = articles.getJSONObject(i);

 String title = article.getString("title");

 String description = article.opt("description") instanceof String ?

article.getString("description") : "N/A";

 String source =

article.getJSONObject("source").getString("name");

 String urlToArticle = article.getString("url");

 // Add new paragraph for each news article

 if (i > 0) {

 newsUpdates.append("

");

 }

 newsUpdates.append("<p>Title:

").append(title).append("</p>");

 newsUpdates.append("<p>Description:

").append(description).append("</p>");

 newsUpdates.append("<p>Source:

").append(source).append("</p>");

 newsUpdates.append("<p>URL: ").append(urlToArticle).append("<

/p>");

 }

 return "<h2>Latest news updates on " + subject + ":</h2>\n\n" +

newsUpdates;

 } else {

 return "Unable to fetch news updates. Please try again.";

 }

 } catch (IOException e) {

 e.printStackTrace();

 return "An error occurred while fetching news updates.";

 }

 }

}

WeatherService.java

package com.basit.chatbot.service;

import okhttp3.OkHttpClient;

import okhttp3.Request;

import okhttp3.Response;

import org.json.JSONArray;

import org.json.JSONObject;

import java.io.IOException;

public class WeatherService {

 private static final String API_KEY =

"b8e750f9c448d3018eee247543246788";

 public String getWeatherInfo(String location) {

 OkHttpClient client = new OkHttpClient();

 // First, get the latitude and longitude of the city

 String geoUrl = "http://api.openweathermap.org/geo/1.0/direct?q=" +

location + "&limit=1&appid=" + API_KEY;

 Request geoRequest = new Request.Builder()

 .url(geoUrl)

 .build();

 try (Response geoResponse = client.newCall(geoRequest).execute()) {

 if (geoResponse.isSuccessful()) {

 String geoData = geoResponse.body() != null ?

geoResponse.body().string() : "";

 JSONArray jsonArray = new JSONArray(geoData);

 if (jsonArray.length() > 0) {

 JSONObject cityData = jsonArray.getJSONObject(0);

 double lat = cityData.getDouble("lat");

 double lon = cityData.getDouble("lon");

 // Use the obtained latitude and longitude to get the weather

information

 String weatherUrl =

"https://api.openweathermap.org/data/2.5/weather?lat=" + lat + "&lon=" + lon +

"&appid=" + API_KEY;

 Request weatherRequest = new Request.Builder()

 .url(weatherUrl)

 .build();

 try (Response weatherResponse =

client.newCall(weatherRequest).execute()) {

 if (weatherResponse.isSuccessful()) {

 String weatherData = weatherResponse.body() != null ?

weatherResponse.body().string() : "";

 JSONObject weatherJson = new JSONObject(weatherData);

 // Extract the relevant weather information

 JSONObject main = weatherJson.getJSONObject("main");

 double temperatureKelvin = main.getDouble("temp");

 double feelsLikeKelvin = main.getDouble("feels_like");

 double tempMinKelvin = main.getDouble("temp_min");

 double tempMaxKelvin = main.getDouble("temp_max");

 int pressure = main.getInt("pressure");

 int humidity = main.getInt("humidity");

 // Convert temperature values from Kelvin to Celsius

 double temperatureCelsius = temperatureKelvin - 273.15;

 double feelsLikeCelsius = feelsLikeKelvin - 273.15;

 double tempMinCelsius = tempMinKelvin - 273.15;

 double tempMaxCelsius = tempMaxKelvin - 273.15;

 JSONArray weatherArray =

weatherJson.getJSONArray("weather");

 JSONObject weatherObject =

weatherArray.getJSONObject(0);

 String description = weatherObject.getString("description");

 // Format the weather information

 return "<h2>Weather information for " + location +

":</h2>\n\n" +

 "<p>Temperature: " + String.format("%.2f",

temperatureCelsius) + " °C</p>\n" +

 "<p>Feels Like: " + String.format("%.2f",

feelsLikeCelsius) + " °C</p>\n" +

 "<p>Min Temperature: " + String.format("%.2f",

tempMinCelsius) + " °C</p>\n" +

 "<p>Max Temperature: " +

String.format("%.2f", tempMaxCelsius) + " °C</p>\n" +

 "<p>Pressure: " + pressure + " hPa</p>\n" +

 "<p>Humidity: " + humidity + " %</p>\n" +

 "<p>Description: " + description + "</p>";

 } else {

 return "Unable to fetch weather information. Please try

again.";

 }

 }

 }

 }

 return "Unable to fetch weather information. Please try again.";

 } catch (IOException e) {

 e.printStackTrace();

 return "An error occurred while fetching weather information.";

 }

 }

}

ChatBotApplication.java

package com.basit.chatbot;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

public class ChatBotApplication {

 public static

void main(String[] args) {

 SpringApplic

ation.run(ChatBotApplication.class, args);

 }

}

Pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <!-- Parent POM -->

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>3.1.0</version>

 <relativePath/> <!-- Lookup parent from the repository -->

 </parent>

 <!-- Project information -->

 <groupId>com.basit</groupId>

 <artifactId>ChatBot</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <name>ChatBot</name>

 <description>ChatBot</description>

 <!-- Properties -->

 <properties>

 <java.version>17</java.version>

 </properties>

 <!-- Dependencies -->

 <dependencies>

 <!-- Spring Boot dependencies -->

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId> <!-- Spring Boot starter

for web development -->

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-thymeleaf</artifactId> <!-- Spring Boot

starter for Thymeleaf templating engine -->

 </dependency>

 <!-- Apache OpenNLP dependencies -->

 <dependency>

 <groupId>org.apache.opennlp</groupId>

 <artifactId>opennlp-tools</artifactId> <!-- OpenNLP tools for natural

language processing -->

 <version>2.2.0</version>

 </dependency>

 <dependency>

 <groupId>com.squareup.okhttp3</groupId>

 <artifactId>okhttp</artifactId>

 <version>4.9.2</version>

 </dependency>

 <dependency>

 <groupId>org.json</groupId>

 <artifactId>json</artifactId>

 <version>20230227</version>

 </dependency>

 <!-- Spring Boot test dependency -->

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope> <!-- Scope set to 'test' for running tests -->

 </dependency>

 </dependencies>

 <!-- Build configuration -->

 <build>

 <plugins>

 <!-- Spring Boot Maven plugin for packaging and running the application

-->

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

 </build>

</project>

	1.2 Problem Statement05
	References028
	Appendix029

