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The paper extends study of dipole-exchange spin waves in a circular nanotube composed of an easy-
plane ferromagnet started by the author in the previous paper. The proposed model considers the magnetic
dipole-dipole interaction, the exchange interaction, the anisotropy effects, the damping effects and the gen-
eral boundary conditions. An equation for the magnetic potential has been obtained for such waves and
solved for the case of longitudinal-radial waves. As a result, the dispersion law for the investigated waves
has been obtained. After implying boundary conditions, this dispersion law has been complemented with
the relation between the wave vector components. This relation has been shown to degenerate into a quasi-
one-dimensional values’ spectrum of the orthogonal wave vector component for a thin nanotube. For the
obtained spectral characteristics, graphical representations have been given and numerical evaluations
have been performed. The spin wave frequency (calculated according to the obtained dispersion law) for
typical values of the nanotube parameters corresponds to typical values observed in experiments, thus
substantiating the obtained results. Comparative analysis of the dispersion law obtained in the paper and
the analogous law for a nanotube composed of an easy-axis ferromagnet has been performed; differences and
similarities have been outlined. It has been shown that branches (that correspond to different orthogonal
modes) of the dependencies on the longitudinal wave vector components for both real and imaginary parts
of the spin wave frequency are close to parabolic and are essentially apart from each other. The area of ap-
plication of the obtained results is essentially extended compared to the previous paper. The method that
is proposed in the paper can be applied to nanotubes of more complex configurations.
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1. INTRODUCTION

Magnetic dynamics of nanosystems become an
actual and promising topic of research recently. In
particular, spin waves in nanoscale systems are
promicing for a variety of technical applications — both
current and prospective — in different fields of technol-
ogy. Most applications concern new devices for data
storage, transfer and processing [1-3]. Magnonic devic-
es allow for faster, more efficient, and more reliable
signal processing and computation on higher frequen-
cies than current computer technology [1]. Spin waves
can propagate through magnetic materials with mini-
mal energy loss and can be easily manipulated using
magnetic fields, electric fields, spin currents, or ther-
mal gradients thus making them prospective for novel
data transfer technologies [1]. These applications re-
quire precise theoretical models of excitation and prop-
agation of spin waves in various nanosystems, so these
models are extensively developed recently.

Magnetic — in particular, spin-wave — properties of
nanostructures depend essentially on their size and
shape. Therefore, spin waves have been studied in
different configurations of nanosystems individually. Syn-
thesized recently magnetic nanotubes [4, 5] have found a
wide range of technical applications — in particular, in
magnetobiology. However, spin waves in nanotubes cur-
rently they attract little attention. Known theoretical
papers on the subject investigate mostly spin solitons [6]
and waves on magnetic domains interfaces [7, 8].

* kulish_volv@ukr.net

2077-6772/2023/15(5)05021(6)

05021-1

PACS numbers: 75.75. + a, 75.30.Ds, 75.30.Gw

During research of spin waves in nanosystems,
usually either isotropic or uniaxial easy-axis ferromag-
nets are considered as media for waves propagation.
Uniaxial easy-plane ferromagnets possess a number of
unique magnetic properties — in particular, due to a
different degree of symmetry compared to similar sys-
tems composed of easy-axis ferromagnets. However,
spin waves in nanosystems (in particular, nanotubes)
composed of easy-plane ferromagnets currently remain
poorly studied.

It is known that the effects associated with an energy
dissipation can either significantly influence the pattern of
spin waves in the system or be negligibly small (depend-
ing on the wave frequency, dimensions, shape and mate-
rial of the system and other factors), see e.g., [9]. There-
fore, study of spin waves in nanosystems in general case
require taking into account dissipative effects.

The paper extends theoretical study of dipole-
exchange spin waves in a circular nanotube composed
of a uniaxial easy-plane ferromagnet started by the
author in the previous paper [10]. The magnetic dipole-
dipole interaction, the exchange interaction and the
anisotropy effects are considered. Unlike in the previ-
ous paper, dissipation of the spin wave is taken into
account and the external medium is not limited to a
specific particular case of a non-magnetic high-
conductivity metal. As a result, the dispersion law and
the relation between the wave vector components for
such waves are obtained and analyzed.
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2. SYSTEM AND MODEL
STARTING RELATIONS

DESCRIPTION.

2.1 Problem Statement. Model Description

Analogously to the previous paper [10] let us consider
a ferromagnetic nanotube with inner and outer radii a
and b, correspondingly, and with the medium outside the
nanotube being non-magnetic. The ferromagnet is as-
sumed to be uniaxial easy-plane type with its anisotropy
axis directed along the axis of symmetry of the nanotube
(the vector n on the Fig. 1), and the Oz axis of the coor-
dinate system is also co-directed with 7. The ferromag-
net parameters are denoted as follows: the exchange
constant a, the uniaxial anisotropy parameter <0 (is
considered constant), the gyromagnetic ratio y (is consid-
ered constant). Unlike in the previous paper, let us con-
sider the spin wave dissipation non-negligible and intro-
duce the Gilbert damping constant of the ferromagnet

ac. The saturation magnetization ]\7[0 of the ferromag-

net is assumed to be directed radially and have constant
length in the entire volume of the tube. All components
(in the cylindrical coordinate system) of the external

magnetic field H® are assumed to be stationary and
homogeneous.

g
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Fig. 1 — Ferromagnetic nanotube considered in the paper

Let us consider a spin wave propagating in the
above-described nanotube and take into account both
the magnetic dipole-dipole and exchange interactions
(as they both are essential for a nanoscale system) as
well as the anisotropy and damping in the Landau-
Lifshitz equation. The wave is considered linear so the

magnetization m and the magnetic field h of the wave
are small perturbations of the overall magnetization

M and the

ferromagnet)

internal magnetic field (inside the
a4 , correspondingly (M = Mo +m,
H 0 = I:I(()i) +h , where ﬁéi) is the ground state internal
magnetic field). Thus, the inequalities |m << Mo |,

Ifz [<<] ﬁéi) | fulfill. The task of the paper is to obtain

the dispersion relation for such wave and values'
spectrum for the wave vector components.

2.2 Starting Relations

Let us introduce the cylindrical coordinate system
(p,6,2) and assume that the saturation magnetization

M, is directed radially: MO =Me,, Mo=const, here
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ép is a unit vector for the coordinate p. Then, a non-

dissipative linearized Landau-Lifshitz equation (see,
e.g., [11]) for the considered nanotube can be written
as follows:

7 . (i)
aa—rtn = y[MOép x[h+aAﬁz+ﬂmzéz —}]‘ZOOnEH , @

here éz is a unit vector for the coordinate z. In order to

consider the dissipation effects, let use a damping term in
the Gilbert form in the Landau-Lifshitz equation (

Iy :aG[]\—JO x‘;—ﬂ in the linearized form). Then, the

Landau-Lifshitz equation (1) can be rewritten as follows:

) () .
O _ I Me, x| i+ anm+ pme, -0 %6 T (2)
ot ’ M, yM, ot

For the perturbations of the magnetization and
magnetic field in a form of the travelling waves

m = (7 )explict) = m, o (p,0)expliot - ik 2)

’

h = hy(F)expliot) = ko (p, G)exp(iwt —ik |z)

bl

where  is the spin wave frequency and k|| is the longi-
tudinal wave number, the equation (2) can be rewritten

as follows:
L m e x|h 7 _ HY . g
Lomy, = 7[M0ep x[ho +aAm, + fmy e, _Foomo +iw }/]‘;0 Mo

This equation combined with the Maxwell equation

divh = —4mdivm forms a system of equations in which
the spin wave magnetization vector can be eliminated.
Let us use the magnetostatic approximation (that can
be applied for typical spin waves, see, e.g., [11]) and
introduce the magnetic potential

CD(F,t) = d)o(?)exp(ia)t) =0, (p,H)exp(ia)t —ik |z) , so for
the magnetic field the relations h=-Vo, ﬁo =—§d>o

fulfill. Then, after the above-mentioned elimination of the
magnetization from the system of equations one can ob-
tain the following equation for the magnetic potential:

2 (i) (i)
Ta) 5 aA—H—O+iw—aG aA—H—OH'a)—aG =47 | |x
r* My M, rM, M, M,

(i)
XA®0—47T aA_Hio+ia)a76 1a(p&)j+awﬁ&)+(3)
M, yMy |pop\" 0p ) yMyp 06

(i)
+,b’h2|[aA—;I4°+im (E }CDO =0

0 JELN)

If the nanotube is thin ((b—a)/a<<1), for the internal
magnetic field the relation for a flat film fulfills approxi-

mately: I:I(()i) zﬁ(e)—4dw0. In the opposite case of a
thick nanotube (b—a~b) the relation for a continuous

05021-2



THEORY OF SPIN WAVES IN A CIRCULAR NANOTUBE COMPOSED...

cylinder fulfills approximately: P—Ig) ~H© —27:](40. In
particular, if the external magnetic field is directed along
the tube axis analogously to the previous papers by the

author [12,13] that consider nanotubes made of an easy-
axis ferromagnet, one can obtain

H z\/(H(e))z +(42M,) in the first case (thin nano-
tube) and HY’ ~y (H (e))z +(22M,f in the second case

(thick nanotube).

3. SPECTRAL CHARACTERISTICS OF THE
SPIN WAVES

3.1 Dispersion Relation

Unlike the case of nanotubes composed of an easy-
axis ferromagnet [12, 13], for the case of an easy-plane
ferromagnet in general case it is not possible to seek a
solution of the Eq. (3) in the form of a linear combination
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of cylindrical functions because of the presence of the
oD, li( 9y
op " pop\" op

possible for the particular case of the absence of angular

oscillations. Therefore, let us consider the case of longi-

tudinal-radial waves for which, in particular, the rela-

tion 6®@o/06=0 fulfills.

In such case, a solution of the Eq. (3) can be sought in
the following form:

@, = (Acly(lup)+ ANk p)esal-it ) oy

’

derivatives

J. However, it becomes

here A1 and Az are constants, J, and N, are the Bessel and
Neumann functions of order n, correspondingly, k1 is the
transverse wave number. In the considered case n — the
transverse-angular oscillatory mode number — can only be
equal to O (zero transverse-angular mode). After substitut-
ing the solution (4) into the Eq. (3) one can obtain the fol-
lowing dispersion relation:

(i) 2
w= ﬂwoz)[—iac [20:/%2 +211_IWO0+(4”+'B)122]-_'—

2(1+a3

(i) 2 \? (i) (0 2|’
+ —aé[Zak2+2§I;+(47r+ﬁ)ZJ +4(1+aé)[ak2+§1jJ[ak2+§2+(4n+ﬂ)2;]

0

here k =,/k7 + k7 is the total wavenumber.

Let us note that spin waves can be excited only when the
damping parameter is small: ¢ <0.1. Therefore, the disper-
sion relation can be rewritten approximately in the following
simplified form (the root with the positive real part):

gl gl ]?12
o~yM ak?® + =0 || ak® + =+ (47 +|p|) L | -
o )

. 7Y 1 K
—lag [ak2 +]\400+2(4”+ﬁ)kz|]]

The last equation represents the sought dispersion
relation for longitudinal-radial spin waves in the inves-
tigated nanotube.

3.2 Relation Between the
Components

Wave Vector

The obtained dispersion relation (5) includes two
components of the wave vector, longitudinal and
transverse. Then, for more complete specification of the
spin wave pattern this relation must be supplemented
by either a spectrum of values of at least one of these
components or a relation between them.

Unlike in the previous paper [10], let us not limit the
investigation to a specific particular case of the exter-
nal media being a non-magnetic high-conductivity
metal. Instead, let us use more general considerations.

If the investigated nanotube is thin compared to its
radius ((b — a) / a<< 1), radial spin excitations — that can
be considered standing waves — become quasi-one-
dimensional. Therefore. the spectrum of transverse wave

0

vector component

s

k, =
L0 a’

©)

where s is an integer (number of the transverse mode).
In order to obtain more precise expression for the spec-
trum of values of the transverse wave vector component
or the relation between the wave vector components one
should solve the equation for the magnetic potential (3)
both inside the ferromagnet and in the external media
and match the obtained solutions using boundary condi-
tions.

Standard boundary conditions for the magnetic field

bin = bon, hir= ha: (here b is the wave magnetic induc-
tion vector, medium 1 is the investigated ferromagnet,
2 is the external medium, n means the normal and 7—
the tangential to the interface components of the vec-

tor) yield the following condition for the vector h: hin
h2n=4ﬂ'fﬂn, hlrthr, or

CDO‘l = CDO‘2
(VO,), =(VD,),. @)
oD,
on

., on
for the magnetic potential. As the saturation magneti-
zation is directed radially, the magnetization of the

wave has the radial component mo, =0 and, therefore,
the third condition in (7) can be rewritten as
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(6@ /on), - (0@, /o), = (6@, /dp), — (04 /p), =0
As the external medium is non-magnetic, outside the

ferromagnet the Laplace equation for the magnetic poten-
tial fulfills: A®e=0, A®{ =0. Its solution (for the longitu-

dinal-radial waves) that is bounded both on the tube axis
and at infinity can be written as follows:

[kLJO (h,a)-" ; (};}1'; )Jo(kﬂ)j[
kKo (kD) O(klb)][No (kia)kMOV(kla)_kLNO'(kla)]

=[M<m -

(kl \b)

For a thin nanotube ((b — a) / @ << 1) using the Bessel
and Neumann functions’ asymptotics allows to simplify
the above-obtained implicit relation between k|| and k.
as follows:

tg(k, (b-a))=

(€)

b)

o kL (Re)) 1 Ry K (k)

2ka kI, (& ‘a) 2k b kK, (kl ‘b)
The component k|| has the order of magnitude of the
reciprocal nanotube length or more and the component
k1 has the order of magnitude of the reciprocal nanotube
thickness. Therefore, on the most part of the ranges of
values of the components k|| and ki the relations
kia>>1, kib>>1, k<< ko fulfill. Analysis shows that
when these relations fulfill simultaneously, the right
hand part of the relation (9) becomes negligibly small.
Therefore, nearly everywhere the relation (9)
degenerates into the relation tg(ki(b—a))=0 that
corresponds to the quasi-one-dimensional spectrum (6)

for the component £..

Thus, the sought dispersion relation for the investigated

spin waves can be written in the form (5) with k2 = kﬁ + kf

. The longitudinal wave vector component k|| can be con-
sidered to change continuously while the orthogonal wave
vector component k. is defined by the implicit relation (8). If
the nanotube is thin ((b —a)/a << 1), this relation can be
reduced to (9) that, in turn, can be reduced to quasi-one-
dimensional spectrum (6) for k1 nearly everywhere.

4. DISCUSSION

4.1 Comparison of the Results for Easy-Plane
and Easy-Axis Ferromagnets

Let us compare the above-obtained dispersion rela-
tion for the easy-plane ferromagnet with the dispersion
relation for the easy-axis ferromagnet (obtained in the
previous paper of the author [13]).

Comparison of the real parts of the spin wave fre-
quency has been already performed in the previous pa-
per of the author [10]: these real parts for both easy-

kKo (R b)
Ky (kp)
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o = ATy (R p)explik 2) p<a
ASK (I p)explik2) p>b
here Ay, A; are constants, lo, Ko are the modified

Bessel and Neumann functions of order 0, correspond-
ingly.

After substituting the above-written external mag-
netic potential and (4) into (7) one can obtain the
sought relation between k|| and k. (in an implicit form)
as follows:

N, (kLb) -k N, '(klb)J =
®)
Iy (K |a)

plane and easy-axis ferromagnet can be written in the
form

Rew = ;/MO\/(hC + ak2th +ak® + Fl(kxzw/kz»

with A, :H(()i)/ M, for the easy-plane ferromagnet and
h.=HY | My+p=H/M,+p for the easy-axis fer-
romagnet. The function Fl(@% / k2) has different form for

the two ferromagnet types; however, it is linear for both
of them.

Let us now compare the imaginary parts of the fre-
quency (that define the spin wave damping). Imaginary
part of the dispersion relation (5) has the following form:

(i)
Ima)——|;/|M0aG[ak2 ZJLIWO 1(4 +|ﬂ|) J

3

or

Imo= —|}’|M00!G[0!k2 +— =27+ ;(4” +|'B|)_2|] -

0
HY 1 Iﬂl K
+ =
M, 2 =
for the case (b —a)/ a<< 1. For the easy-axis ferromagnet

(see [12, 13])
@) 2
H + 2 k_j =
M,

= —|y|M0aG[ak2

Imw= —|y|M a({ak +p+— 2

18]

Therefore, the expressions for both easy-plane and
easy-axis ferromagnets can be written in the form

2
Imew= —|;/|M0aa[ak2 +h, + F{%D

Analogously to the real parts of the dispersion relation,
the function F, ( A / kz) has different form for the two

= —|7|MOO‘G [
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ferromagnet types but is linear for both of them.

Alternatively, for the case (b—a)/ a<< 1 both imagi-
nary parts can be expressed through the external mag-
netic field in the following way:

2 H(e) k2
Ima)——|;/|MoaG[ak + ZWOO +F, k—;

where the function F3 — similarly to F1, F2 — has different
form for the two ferromagnet types but is linear for both
of them.

4.2 Analysis of the Spin Wave Spectral Charac-
teristics

Now, let us analyze the obtained spectral character-
istics themselves.

First, let us note that the relation between the wave
vector components — in either of the forms (8), (9) or (6) —
is similar to the analogous relations for an easy-axis fer-
romagnet [12] after limiting the mode number n to 0.

Graphical representation of the relation (9) can be
seen on the Fig. 2.

i

! =0
e — L
0 1 3 3 q 5

Fig. 2 — Dependence of k, on k) |/k, for the investigated nanotube
with the radii @ = 50 nm, b =60 nm

As it can be seen from the Fig. 2, the relation be-
tween the wave vector components, really, is close to
the quasi-one-dimensional spectrum of values of the
component k. (6). This regularity becomes more pro-
nounced not only for k|| << k. (the fact that has been
mentioned earlier), but also for k1 << k).

Dependence of the real part of the spin wave fre-
quency (given by the dispersion relation (5)) on k|| for
typical values of the nanotube parameters and with the
spectrum of the transverse wave vector component in
the form (6) is represented on the Fig. 3.

Dependence of the imaginary part of the spin wave
frequency (given by the dispersion relation (5)) on k||
for typical values of the nanotube parameters and with
the spectrum of the transverse wave vector component
in the form (6) is represented on the Fig. 4.

As it can be seen from the Figs. 3, 4, the spin wave
damping, really, becomes small (Imw<< Rew) for
ac ~ 0.1 — and, therefore, for ac < 0.1. Branches of both
dependencies (Rew(k||) and Imw(k|)) that correspond
to different orthoginal mode number s are essentially
apart from each other. According to the relation (5),
each branch for both Imw and Rew should be close to
parabolic; this regularity can be observed on both
Figs. 3, 4.
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' Rew. 10" Hz
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0 1 2 3K
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107 m

Fig. 3 — Dependence of Rew on k| for the investigated nanotube
with the thickness b-a=10nm and the ferromagnet
parameters a= 1012 cm -2, f=-1, y= 107 Gs/Hz, Mo = 103 Gs

10
tImeo. 10 Hz

0.5

1 2 3 A
10%m!

Fig. 4 — Dependence of Imw on % for the investigated nanotube with
the thickness b—a=10nm and the ferromagnet parameters
a=10"2cm-2 B=-1, y= 10" Gs/Hz, Mo=103Gs, ac=0.1

Finally, let us carry out numerical evaluations for
spin wave frequency (both real and imaginary parts)
given by (5) in the absence of the external field. The
longitudinal wavenumber is restricted, on the one hand,
by the nanotube length — unities of micrometers for
typical nanotubes — and, on the other hand, by the
interatomic distance — several angstroms for typical
materials. After substitution of the typical values of
nanotube  parameters used for the graphs
b-a=10nm, a=10"2cm-2 pB=-1, y=107Gs/Hz,
Mo=103Gs, ac=0.1, k and k|| vary from 102cm ! to
108 cm 1) one can find that the real part of the frequency
has the order of magnitude 101! — 102 Hz over the entire
range of wave numbers (that corresponds to the typical
spin waves’ frequencies). The imaginary part, corre-
spondingly, has the order of magnitude 10° — 1019 Hz (so
the characteristic damping time is 10 -9 — 10 -8 g).

5. CONCLUSIONS

Thus, dipole-exchange spin waves in a circular
nanotube composed of an easy-plane ferromagnet have
been investigated in the paper. The magnetic dipole-
dipole interaction, the exchange interaction, the anisot-
ropy effects and (unlike in the previous paper) dissipa-
tion of the spin wave are taken into consideration. An
equation for the magnetic potential has been obtained
for such waves and solved for the case of longitudinal-
radial waves. As a result, the dispersion law for the
investigated waves has been obtained. After implying
boundary conditions, this dispersion law has been com-
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plemented with the relation between the wave vector
components. (Unlike in the previous paper of the
author [10], general boundary conditions for the
magnetic field have been used, so area of application of
the obtained results is not limited to a specific
particular case of a high-conductivity metal outside the
nanotube.) This relation has been shown to degenerate
into a quasi-one-dimensional values’ spectrum of the
orthogonal wave vector component for a thin nanotube.

For the obtained spectral characteristics, graphical
representations have been given and numerical evalua-
tions have been performed. The resulting spin wave
frequency for typical values of the nanotube parame-
ters corresponds to typical values observed in experi-
ments, thus substantiating the obtained results. Com-
parative analysis of the dispersion relation obtained in
the paper and the analogous dispersion relation for a
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Teopia cniHOBUX XBHUJIb Y KOJIOBilI HAHOTPYOIII 3 JIErKOILIOMMHHOrO pepomaruetTury. Bpaxy-
BaHHA JUCHUIIAI] /I HEMETAJIIYHOI0 30BHIIMHLOIO CEPEIOBUIIA

B.B. Kyuim

Hauiornanvruii mexniunuil ynisepcumem Yipainu "Kulecorkuii nonimexniunuii incmumym imeni leops Cikopcvroeo”,
Bepecmeticoruii npocnexm, 37, 03056 Kuis, Yrkpaina

B po6oTi mpofoBKyETHCA TOCIIIPKEHHST JUTI0JIbHO-00MIHHAX CITIHOBHX XBHJIb y KOJIOBI HAHOTPYOIN 3
JIETKOILIOIIMHHOTO (DEPOMATHETHKY, PO3I0YaTe aBTOPOM y IOMEPEeIHIN cTaTTl. 3amporoHOBaHa MOJIeIb Bpa-
XOBY€ MATHITHY JUMOJIb-IUIIOJIBHY B3a€MOIi0, OOMIHHY B3aeMOMIi0, edeKTH aHi30TpoIi, epeKTH 3TacaHHs
Ta 3arajbHi rpaHndHi yMoBu. OTpuUMAaHO PIBHAHHA IJIS MATHITHOTO IIOTEHINAJIY 3a3HAYEHWX XBHUJIb, PIB-
HSHHS PO3B'S3aHO IS BUIAJIKY MTO30BXHBO-PATIaJbHUX XBIJIb. SIK peaysbrar, OTpUMAaHO 3aKOH JHCITepCil
IS JTOCITIPKYBAHUX XBUJIb. 1lic/ia HaKIagaHHS TPAHUYHUX YMOB 3a3HAYEHMH 3aKOH JUCIEpCii JJOTIOBHEHO
CIIBBIHOIIIEHHSIM MiK KOMIIOHEHTAMHU XBUJILOBOrO BekTOpy. [lokasaHo, 110 [Isi TOHKOI HAHOTPYOKU Iie
CITIBBIJHOIIEHHS BUPOIYKY€EThCA B KBA310JHOBUMIPHUM CIIEKTP 3HAYEHD IIONEPEUHNX XBIILOBUX uncesr. JIjisa
OTPUMAHHUX CIEKTPAJIBHUX XapPaKTePHUCTHK IIPeJCTaBJIeHO rpadivyHe BiAoOpaskeHHS Ta 3PO0JIEHO YMCJIOBI
omiaku. Yacrora CIriHOBOI XBHJII (PO3paxoBaHa BIIIIOBIIHO J0 OTPUMAHOIO 3aKOHY JIFICIIEPCii) JJIST TUIIOBUX
3HAYEHb IIApaMeTpPiB HAHOTPYOOK BIAMNOBIIa€e TUIIOBUM 3HAYECHHSM, IO CIOCTEPIraloThCA B €KCIEPUMEHTAX —
110 MIATBEPAMKY€e OTPMMAHI pe3yabTaTh. IIpoBeeHO MOpIBHAIBHAN aHAJI3 3aKOHY JUCIEePCil, OTPIMAHOIO B
po0oTi, 3 aHAJIOTTYHUM 3aKOHOM JJIsT HAHOTPYOKH 3 JIErKOOCHOBOTO (DEPOMATHETHUKY; OKPECJIEHO BIIMIHHOCTI
Ta momibuocti. [Tokasamo, 1m0 TIKM 3asieskHOCTeN (K1 BIAMOBIIAIOTH PISHUM IIOIIEPEYHUM MOJaM) K JicC-
HOI, TaK 1 yIBHOI YaCTHUH YACTOTHU CIIIHOBOI XBHJII BiJl MO3I0B¥HBOI KOMIIOHEHTH XBHJIBOBOI'O BEKTOPA 0JIN3b-
Ki 70 mapabo/iuHuX 1 CyTTEBO Bimyasieni ogua Bif ofuoi. O61acTh 3aCTOCYBAHHS OTPUMAHUX PE3YJIBTATIB €
CYTTERBO IIHPIIOK IOPIBHSHO 3 IOIIEPEIHBO0 Po00TO0. 3aIIpOIOHOBAHUM ¥ POOOTI METOT MOsKe OyTH 3aCTOCO-

BaHMH 0 HAHOTPYOOK OLIIBIN CKJIAHOI KOHQIryparrii.

Knrouori ciora: Crminosa xsuiisi, Hanomarueruawm, JlumosbHo-o0MinHa Teopist, DepomaruiTHa HAHOTPYOKA,

JlerxomiompHAMA (hepoOMarHeTH .
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