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The paper extends study of dipole-exchange spin waves in a circular nanotube composed of an easy-

plane ferromagnet started by the author in the previous paper. The proposed model considers the magnetic 

dipole-dipole interaction, the exchange interaction, the anisotropy effects, the damping effects and the gen-

eral boundary conditions. An equation for the magnetic potential has been obtained for such waves and 

solved for the case of longitudinal-radial waves. As a result, the dispersion law for the investigated waves 

has been obtained. After implying boundary conditions, this dispersion law has been complemented with 

the relation between the wave vector components. This relation has been shown to degenerate into a quasi-

one-dimensional values’ spectrum of the orthogonal wave vector component for a thin nanotube. For the 

obtained spectral characteristics, graphical representations have been given and numerical evaluations 

have been performed. The spin wave frequency (calculated according to the obtained dispersion law) for 

typical values of the nanotube parameters corresponds to typical values observed in experiments, thus 

substantiating the obtained results. Comparative analysis of the dispersion law obtained in the paper and 

the analogous law for a nanotube composed of an easy-axis ferromagnet has been performed; differences and 

similarities have been outlined. It has been shown that branches (that correspond to different orthogonal 

modes) of the dependencies on the longitudinal wave vector components for both real and imaginary parts 

of the spin wave frequency are close to parabolic and are essentially apart from each other. The area of ap-

plication of the obtained results is essentially extended compared to the previous paper. The method that 

is proposed in the paper can be applied to nanotubes of more complex configurations. 
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1. INTRODUCTION 
 

Magnetic dynamics of nanosystems become an 

actual and promising topic of research recently. In 

particular, spin waves in nanoscale systems are 

promicing for a variety of technical applications – both 

current and prospective – in different fields of technol-

ogy. Most applications concern new devices for data 

storage, transfer and processing [1-3]. Magnonic devic-

es allow for faster, more efficient, and more reliable 

signal processing and computation on higher frequen-

cies than current computer technology [1]. Spin waves 

can propagate through magnetic materials with mini-

mal energy loss and can be easily manipulated using 

magnetic fields, electric fields, spin currents, or ther-

mal gradients thus making them prospective for novel 

data transfer technologies [1]. These applications re-

quire precise theoretical models of excitation and prop-

agation of spin waves in various nanosystems, so these 

models are extensively developed recently. 

Magnetic – in particular, spin-wave – properties of 

nanostructures depend essentially on their size and 

shape. Therefore, spin waves have been studied in 

different configurations of nanosystems individually. Syn-

thesized recently magnetic nanotubes [4, 5] have found a 

wide range of technical applications – in particular, in 

magnetobiology. However, spin waves in nanotubes cur-

rently they attract little attention. Known theoretical 

papers on the subject investigate mostly spin solitons [6] 

and waves on magnetic domains interfaces [7, 8]. 

During research of spin waves in nanosystems, 

usually either isotropic or uniaxial easy-axis ferromag-

nets are considered as media for waves propagation. 

Uniaxial easy-plane ferromagnets possess a number of 

unique magnetic properties – in particular, due to a 

different degree of symmetry compared to similar sys-

tems composed of easy-axis ferromagnets. However, 

spin waves in nanosystems (in particular, nanotubes) 

composed of easy-plane ferromagnets currently remain 

poorly studied. 

It is known that the effects associated with an energy 

dissipation can either significantly influence the pattern of 

spin waves in the system or be negligibly small (depend-

ing on the wave frequency, dimensions, shape and mate-

rial of the system and other factors), see e.g., [9]. There-

fore, study of spin waves in nanosystems in general case 

require taking into account dissipative effects. 

The paper extends theoretical study of dipole-

exchange spin waves in a circular nanotube composed 

of a uniaxial easy-plane ferromagnet started by the 

author in the previous paper [10]. The magnetic dipole-

dipole interaction, the exchange interaction and the 

anisotropy effects are considered. Unlike in the previ-

ous paper, dissipation of the spin wave is taken into 

account and the external medium is not limited to a 

specific particular case of a non-magnetic high-

conductivity metal. As a result, the dispersion law and 

the relation between the wave vector components for 

such waves are obtained and analyzed. 

http://jnep.sumdu.edu.ua/index.php?lang=en
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2. SYSTEM AND MODEL DESCRIPTION. 

STARTING RELATIONS 
 

2.1 Problem Statement. Model Description 
 

Analogously to the previous paper [10] let us consider 

a ferromagnetic nanotube with inner and outer radii a 

and b, correspondingly, and with the medium outside the 

nanotube being non-magnetic. The ferromagnet is as-

sumed to be uniaxial easy-plane type with its anisotropy 

axis directed along the axis of symmetry of the nanotube 

(the vector n


 on the Fig. 1), and the Oz axis of the coor-

dinate system is also co-directed with n


. The ferromag-

net parameters are denoted as follows: the exchange 

constant α, the uniaxial anisotropy parameter   0 (is 

considered constant), the gyromagnetic ratio  (is consid-

ered constant). Unlike in the previous paper, let us con-

sider the spin wave dissipation non-negligible and intro-

duce the Gilbert damping constant of the ferromagnet 

G. The saturation magnetization 0M


 of the ferromag-

net is assumed to be directed radially and have constant 

length in the entire volume of the tube. All components 

(in the cylindrical coordinate system) of the external 

magnetic field )(eH


are assumed to be stationary and 

homogeneous. 
 

 
 

Fig. 1 – Ferromagnetic nanotube considered in the paper 
 

Let us consider a spin wave propagating in the 

above-described nanotube and take into account both 

the magnetic dipole-dipole and exchange interactions 

(as they both are essential for a nanoscale system) as 

well as the anisotropy and damping in the Landau-

Lifshitz equation. The wave is considered linear so the 

magnetization m


 and the magnetic field h


 of the wave 

are small perturbations of the overall magnetization 

M


 and the internal magnetic field (inside the 

ferromagnet)  iH


, correspondingly ( mMM


 0 , 

    hHH ii


 0 , where )(
0
iH


 is the ground state internal 

magnetic field). Thus, the inequalities |||| 0Mm


 , 

|||| )(
0
iHh


  fulfill. The task of the paper is to obtain 

the dispersion relation for such wave and values' 

spectrum for the wave vector components. 

 

2.2 Starting Relations 
 

Let us introduce the cylindrical coordinate system 

(,,z) and assume that the saturation magnetization 

0M


 is directed radially: eMM

00  , M0=const, here 

e


 is a unit vector for the coordinate ρ. Then, a non-

dissipative linearized Landau-Lifshitz equation (see, 

e.g., [11]) for the considered nanotube can be written 

as follows:  
 

 
 
0

0

0

i

z z

Hm
M e h m m e m

t M
  

  
       

  
  

,

 

(1) 

 

here 
ze


 is a unit vector for the coordinate z. In order to 

consider the dissipation effects, let use a damping term in 

the Gilbert form in the Landau-Lifshitz equation (















t

m
Mt GG


0  in the linearized form). Then, the 

Landau-Lifshitz equation (1) can be rewritten as follows: 
 

 
 
0

0

0 0

i

G
z z

Hm m
M e h m m e m

t M M t



  



   
        

   
  

. (2) 

 

For the perturbations of the magnetization and 

magnetic field in a form of the travelling waves  
 

       ziktimtirmm ||00 exp,exp   


,  
 

       ziktihtirhh ||00 exp,exp   


,
  

where  is the spin wave frequency and k|| is the longi-

tudinal wave number, the equation (2) can be rewritten 

as follows: 
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This equation combined with the Maxwell equation 

mdivhdiv


4  forms a system of equations in which 

the spin wave magnetization vector can be eliminated. 

Let us use the magnetostatic approximation (that can 

be applied for typical spin waves, see, e.g., [11]) and 

introduce the magnetic potential 

         ziktitirtr ||00 exp,exp,   


, so for 

the magnetic field the relations 


h , 00 


h  

fulfill. Then, after the above-mentioned elimination of the 

magnetization from the system of equations one can ob-

tain the following equation for the magnetic potential: 
 

   

 
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 
      
 
 

(3) 

 

If the nanotube is thin ((b–a)/a<<1), for the internal 

magnetic field the relation for a flat film fulfills approxi-

mately: 
 

0
)(

0 4 MHH ei


 . In the opposite case of a 

thick nanotube (b–a~b) the relation for a continuous 
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cylinder fulfills approximately:  
0

)(
0 2 MHH ei


 . In 

particular, if the external magnetic field is directed along 

the tube axis analogously to the previous papers by the 

author [12,13] that consider nanotubes made of an easy-

axis ferromagnet, one can obtain 

   20

2)()(
0 4 MHH ei   in the first case (thin nano-

tube) and    20

2)()(
0 2 MHH ei   in the second case 

(thick nanotube). 

 

3. SPECTRAL CHARACTERISTICS OF THE 

SPIN WAVES 
 

3.1 Dispersion Relation 
 

Unlike the case of nanotubes composed of an easy-

axis ferromagnet [12, 13], for the case of an easy-plane 

ferromagnet in general case it is not possible to seek a 

solution of the Eq. (3) in the form of a linear combination 

of cylindrical functions because of the presence of the 

derivatives 


 0 , 




















01

. However, it becomes 

possible for the particular case of the absence of angular 

oscillations. Therefore, let us consider the case of longi-

tudinal-radial waves for which, in particular, the rela-

tion ∂Φ0/∂θ=0 fulfills. 

In such case, a solution of the Eq. (3) can be sought in 

the following form:  
 

 
      zikkNAkJA ||02010 exp   

, (4) 
 

here A1 and A2 are constants, Jn and Nn are the Bessel and 

Neumann functions of order n, correspondingly, k is the 

transverse wave number. In the considered case n – the 

transverse-angular oscillatory mode number – can only be 

equal to 0 (zero transverse-angular mode). After substitut-

ing the solution (4) into the Eq. (3) one can obtain the fol-

lowing dispersion relation: 
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

,  

 

here 22
||  kkk  is the total wavenumber. 

Let us note that spin waves can be excited only when the 

damping parameter is small: G  0.1. Therefore, the disper-

sion relation can be rewritten approximately in the following 

simplified form (the root with the positive real part): 
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  
   

 
    

 
 

(5) 

 

The last equation represents the sought dispersion 

relation for longitudinal-radial spin waves in the inves-

tigated nanotube. 

 

3.2 Relation Between the Wave Vector  

Components 
 

The obtained dispersion relation (5) includes two 

components of the wave vector, longitudinal and 

transverse. Then, for more complete specification of the 

spin wave pattern this relation must be supplemented 

by either a spectrum of values of at least one of these 

components or a relation between them. 

Unlike in the previous paper [10], let us not limit the 

investigation to a specific particular case of the exter-

nal media being a non-magnetic high-conductivity 

metal. Instead, let us use more general considerations. 

If the investigated nanotube is thin compared to its 

radius ((b – a) /   1), radial spin excitations – that can 

be considered standing waves – become quasi-one-

dimensional. Therefore. the spectrum of transverse wave 

vector component 
 

 
ab

s
k





, (6) 

 

where s is an integer (number of the transverse mode). 

In order to obtain more precise expression for the spec-

trum of values of the transverse wave vector component 

or the relation between the wave vector components one 

should solve the equation for the magnetic potential (3) 

both inside the ferromagnet and in the external media 

and match the obtained solutions using boundary condi-

tions.  

Standard boundary conditions for the magnetic field 

b1n  b2n, h1  h2 (here b


 is the wave magnetic induc-

tion vector, medium 1 is the investigated ferromagnet, 

2 is the external medium, n means the normal and  – 

the tangential to the interface components of the vec-

tor) yield the following condition for the vector h


: h1n–

h2n=4mn, h1τ=h2τ, or  
 

    
0 01 2

0 01 2

0 0
0

1 2

4 nm
n n

 






  


  

   

  
 

(7) 

 

for the magnetic potential. As the saturation magneti-

zation is directed radially, the magnetization of the 

wave has the radial component m0  0 and, therefore, 

the third condition in (7) can be rewritten as 
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        0////
20102010  nn

. 
 

As the external medium is non-magnetic, outside the 

ferromagnet the Laplace equation for the magnetic poten-

tial fulfills: ΔΦe=0, 00 e . Its solution (for the longitu-

dinal-radial waves) that is bounded both on the tube axis 

and at infinity can be written as follows:  
 

 

   
   











bzikkKA

azikkIA
e

e
e





,exp

,exp

||||02

||||01
0

  
 

here eA1 , eA2

 

are constants, I0, K0 are the modified 

Bessel and Neumann functions of order 0, correspond-

ingly. 

After substituting the above-written external mag-

netic potential and (4) into (7) one can obtain the 

sought relation between k|| and k (in an implicit form) 

as follows: 
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 (8) 

 

For a thin nanotube ((b – a) /   1) using the Bessel 

and Neumann functions’ asymptotics allows to simplify 

the above-obtained implicit relation between k|| and k 

as follows: 
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(9) 

 

The component k|| has the order of magnitude of the 

reciprocal nanotube length or more and the component 

k has the order of magnitude of the reciprocal nanotube 

thickness. Therefore, on the most part of the ranges of 

values of the components k|| and k the relations 

ka  1, kb  1, k|| k fulfill. Analysis shows that 

when these relations fulfill simultaneously, the right 

hand part of the relation (9) becomes negligibly small. 

Therefore, nearly everywhere the relation (9) 

degenerates into the relation tg(k(b – a)) = 0 that 

corresponds to the quasi-one-dimensional spectrum (6) 

for the component k. 

Thus, the sought dispersion relation for the investigated 

spin waves can be written in the form (5) with 
22

||
2

 kkk

. The longitudinal wave vector component k|| can be con-

sidered to change continuously while the orthogonal wave 

vector component k is defined by the implicit relation (8). If 

the nanotube is thin ((b – a)/a  1), this relation can be 

reduced to (9) that, in turn, can be reduced to quasi-one-

dimensional spectrum (6) for k nearly everywhere. 

 

4. DISCUSSION 
 

4.1 Comparison of the Results for Easy-Plane 

and Easy-Axis Ferromagnets 
 

Let us compare the above-obtained dispersion rela-

tion for the easy-plane ferromagnet with the dispersion 

relation for the easy-axis ferromagnet (obtained in the 

previous paper of the author [13]).  

Comparison of the real parts of the spin wave fre-

quency has been already performed in the previous pa-

per of the author [10]: these real parts for both easy-

plane and easy-axis ferromagnet can be written in the 

form  
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0 // MHMHh ei
c  for the easy-axis fer-

romagnet. The function  22
||1 kkF  has different form for 

the two ferromagnet types; however, it is linear for both 

of them. 

Let us now compare the imaginary parts of the fre-

quency (that define the spin wave damping). Imaginary 

part of the dispersion relation (5) has the following form: 
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for the case (b – a) /   1. For the easy-axis ferromagnet 

(see [12, 13]) 
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Therefore, the expressions for both easy-plane and 

easy-axis ferromagnets can be written in the form  
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Analogously to the real parts of the dispersion relation, 

the function  2 2
2 ||F k k  has different form for the two 
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ferromagnet types but is linear for both of them.  

Alternatively, for the case (b – a) /   1 both imagi-

nary parts can be expressed through the external mag-

netic field in the following way: 
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where the function F3 – similarly to F1, F2 – has different 

form for the two ferromagnet types but is linear for both 

of them. 

 

4.2 Analysis of the Spin Wave Spectral Charac-

teristics 
 

Now, let us analyze the obtained spectral character-

istics themselves.  

First, let us note that the relation between the wave 

vector components – in either of the forms (8), (9) or (6) – 

is similar to the analogous relations for an easy-axis fer-

romagnet [12] after limiting the mode number n to 0.  

Graphical representation of the relation (9) can be 

seen on the Fig. 2.  
 

 
 

Fig. 2 – Dependence of k on k||/k for the investigated nanotube 

with the radii a  50 nm, b  60 nm 
 

As it can be seen from the Fig. 2, the relation be-

tween the wave vector components, really, is close to 

the quasi-one-dimensional spectrum of values of the 

component k (6). This regularity becomes more pro-

nounced not only for k||  k (the fact that has been 

mentioned earlier), but also for k  k||.  

Dependence of the real part of the spin wave fre-

quency (given by the dispersion relation (5)) on k|| for 

typical values of the nanotube parameters and with the 

spectrum of the transverse wave vector component in 

the form (6) is represented on the Fig. 3. 

Dependence of the imaginary part of the spin wave 

frequency (given by the dispersion relation (5)) on k|| 

for typical values of the nanotube parameters and with 

the spectrum of the transverse wave vector component 

in the form (6) is represented on the Fig. 4. 

As it can be seen from the Figs. 3, 4, the spin wave 

damping, really, becomes small (Im  Re) for 

G ~ 0.1 – and, therefore, for G  0.1. Branches of both 

dependencies (Re(k||) and Imω(k||)) that correspond 

to different orthoginal mode number s are essentially 

apart from each other. According to the relation (5), 

each branch for both Imω and Reω should be close to 

parabolic; this regularity can be observed on both 

Figs. 3, 4. 
 

 
 

Fig. 3 – Dependence of Reω on k|| for the investigated nanotube 

with the thickness b – a  10 nm and the ferromagnet 

parameters   10 –12 cm –2,   –1,   107 Gs/Hz, M0  103 Gs 
 

 
 

Fig. 4 – Dependence of Imω on k|| for the investigated nanotube with 

the thickness b – a  10 nm and the ferromagnet parameters  

  10 –12 cm –2,   –1,  = 107 Gs/Hz, M0  103 Gs, G  0.1 
 

Finally, let us carry out numerical evaluations for 

spin wave frequency (both real and imaginary parts) 

given by (5) in the absence of the external field. The 

longitudinal wavenumber is restricted, on the one hand, 

by the nanotube length – unities of micrometers for 

typical nanotubes – and, on the other hand, by the 

interatomic distance – several angstroms for typical 

materials. After substitution of the typical values of 

nanotube parameters used for the graphs  

(b – a  10 nm,   10 –12 cm –2,   –1,  = 107 Gs/Hz, 

M0  103 Gs, G  0.1, k and k|| vary from 102 cm –1 to 

108 cm –1) one can find that the real part of the frequency 

has the order of magnitude 1011 – 1012 Hz over the entire 

range of wave numbers (that corresponds to the typical 

spin waves’ frequencies). The imaginary part, corre-

spondingly, has the order of magnitude 109 – 1010 Hz (so 

the characteristic damping time is 10 – 9 – 10 – 8 s). 

 

5. CONCLUSIONS 
 

Thus, dipole-exchange spin waves in a circular 

nanotube composed of an easy-plane ferromagnet have 

been investigated in the paper. The magnetic dipole-

dipole interaction, the exchange interaction, the anisot-

ropy effects and (unlike in the previous paper) dissipa-

tion of the spin wave are taken into consideration. An 

equation for the magnetic potential has been obtained 

for such waves and solved for the case of longitudinal-

radial waves. As a result, the dispersion law for the 

investigated waves has been obtained. After implying 

boundary conditions, this dispersion law has been com-
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plemented with the relation between the wave vector 

components. (Unlike in the previous paper of the 

author [10], general boundary conditions for the 

magnetic field have been used, so area of application of 

the obtained results is not limited to a specific 

particular case of a high-conductivity metal outside the 

nanotube.) This relation has been shown to degenerate 

into a quasi-one-dimensional values’ spectrum of the 

orthogonal wave vector component for a thin nanotube. 

For the obtained spectral characteristics, graphical 

representations have been given and numerical evalua-

tions have been performed. The resulting spin wave 

frequency for typical values of the nanotube parame-

ters corresponds to typical values observed in experi-

ments, thus substantiating the obtained results. Com-

parative analysis of the dispersion relation obtained in 

the paper and the analogous dispersion relation for a 

nanotube composed of an easy-axis ferromagnet has 

been performed; differences and similarities have been 

outlined. 

It has been shown that branches of the dependen-

cies on the longitudinal wave vector components for 

both real and imaginary parts of the spin wave fre-

quency are close to parabolic and are essentially apart 

from each other. (Different branches correspond to 

different orthogonal modes.) 

The method proposed in the paper can be applied to 

nanotubes of more complex configurations – for instance, 

with an elliptic cross-section – as well as for more complex 

configurations of tube-type nanosystems in general. 

However, one have to bear in mind that for some 

configurations additional conditions (for instance, fixed 

boundary conditions for the magnetization) are required. 

 

 

REFERENCES 
 

1. B. Flebus, S.M. Rezende, D. Grundler, A. Barman, J. Appl. 

Phys. 133, 160401 (2023). 

2. Y. Li, W. Zhang, V. Tyberkevych, W.K. Kwok, A. Hoffmann, 

V. Novosad, J. Appl. Phys. 128, 130902 (2020). 

3. A.V. Chumak, P. Kabos, M. Wu, C. Abert, C. Adelmann, et 

al., IEEE T. Magn. 58, 0800172 (2022). 

4. Y. Ye, B. Geng, Crit. Rev. Solid State 37, 75 (2012). 

5. R. Sharif, S. Shamaila, M. Ma, L.D. Yao, R.C. Yu, X.F. Han, 

M. Khaleeq-ur-Rahman, Appl. Phys. Lett. 92, 032505 (2008). 

6. H. Leblond, V. Veerakumar, Phys. Rev. B 70, 134413 (2004). 

7. A.L. González, P. Landeros, Á.S. Núñez, J. Magn. Magn. 

Mater. 322 No 5, 530 (2010). 

8. J.A. Otálora, J.A. López-López, A.S. Núñez, P. Landeros, 

J. Phys.-Condens. Mat. 24 No 43, 436007 (2012). 

9. C. Wu, Spin Wave Resonance and Relaxation in Micro-

wave Magnetic Multilayer Structures and Devices: Thesis 

of Disser. for Ph.D. (New York: 2008). 

10. Yu.I. Gorobets, V.V. Kulish, Low Temp. Phys. 41, 517 (2015). 

11. A.I. Akhiezer, V.G. Baryakhtar, S.V. Peletminskiy, Spin 

waves (Amsterdam: North-Holland: 1968). 

12. V.V. Kulish, Naukovi visti NTUU “KPI”, 4, 73 (2017) [In 

Ukrainian]. 

13. V.V. Kulish, Ukr. J. Phys. 61, 59 (2016). 

 

 

 

 

Теорія спінових хвиль у коловій нанотрубці з легкоплощинного феромагнетику. Враху-

вання дисипації для неметалічного зовнішнього середовища 
 

В.В. Куліш 
 

Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського", 

Берестейський проспект, 37, 03056 Київ, Україна 
 

В роботі продовжується дослідження дипольно-обмінних спінових хвиль у коловій нанотрубці з 

легкоплощинного феромагнетику, розпочате автором у попередній статті. Запропонована модель вра-

ховує магнітну диполь-дипольну взаємодію, обмінну взаємодію, ефекти анізотропії, ефекти згасання 

та загальні граничні умови. Отримано рівняння для магнітного потенціалу зазначених хвиль; рів-

няння розв'язано для випадку поздовжньо-радіальних хвиль. Як результат, отримано закон дисперсії 

для досліджуваних хвиль. Після накладання граничних умов зазначений закон дисперсії доповнено 

співвідношенням між компонентами хвильового вектору. Показано, що для тонкої нанотрубки це 

співвідношення вироджується в квазіодновимірний спектр значень поперечних хвильових чисел. Для 

отриманих спектральних характеристик представлено графічне відображення та зроблено числові 

оцінки. Частота спінової хвилі (розрахована відповідно до отриманого закону дисперсії) для типових 

значень параметрів нанотрубок відповідає типовим значенням, що спостерігаються в експериментах – 

що підтверджує отримані результати. Проведено порівняльний аналіз закону дисперсії, отриманого в 

роботі, з аналогічним законом для нанотрубки з легкоосьового феромагнетику; окреслено відмінності 

та подібності. Показано, що гілки залежностей (які відповідають різним поперечним модам) як дійс-

ної, так і уявної частин частоти спінової хвилі від поздовжньої компоненти хвильового вектора близь-

кі до параболічних і суттєво віддалені одна від одної. Область застосування отриманих результатів є 

суттєво ширшою порівняно з попередньою роботою. Запропонований у роботі метод може бути застосо-

ваний до нанотрубок більш складної конфігурації. 
 

Ключові слова: Спінова хвиля, Наномагнетизм, Дипольно-обмінна теорія, Феромагнітна нанотрубка, 

Легкоплощинний феромагнетик. 
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