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Abstract: Digital business plays a crucial role in driving energy efficiency and sustainability by
enabling innovative solutions such as smart grid technologies, data analytics for energy optimization,
and remote monitoring and control systems. Through digitalization, businesses can streamline
processes, minimize energy waste, and make informed decisions that lead to more efficient resource
utilization and reduced environmental impact. This paper aims at analyzing the character of digital
business’ impact on energy efficiency to outline the relevant instruments to unleash EU countries’
potential for attaining sustainable development. The study applies the panel-corrected standard
errors technique to check the effect of digital business on energy efficiency for the EU countries in
2011–2020. The findings show that digital business has a significant negative effect on energy intensity,
implying that increased digital business leads to decreased energy intensity. Additionally, digital
business practices positively contribute to reducing CO2 emissions and promoting renewable energy,
although the impact on final energy consumption varies across different indicators. The findings
underscore the significance of integrating digital business practices to improve energy efficiency, lower
energy intensity, and advance the adoption of renewable energy sources within the EU. Policymakers
and businesses should prioritize the adoption of digital technologies and e-commerce strategies to
facilitate sustainable energy transitions and accomplish environmental objectives.

Keywords: e-commerce sales; e-commerce turnover; e-commerce web sales; digital economy;
sustainable development

1. Introduction

The rapid advancement of digital technologies and digital business models has re-
shaped various aspects of the world’s development. Digital business continues to expand
across industries, and it becomes crucial to examine its implications for energy efficiency
and sustainability [1–6]. Digital business encompasses a wide range of activities, including
e-commerce, cloud computing, data analytics, Internet of Things (IoT) applications, and
smart city initiatives, among others [7–10]. These technologies and business models have
the potential to transform traditional energy systems [11–13], providing new avenues for en-
ergy management, resource optimization [14–17], and environmental stewardship [18–22].
However, the full implications of digital business on energy efficiency are multifaceted
and require a comprehensive analysis. One of the key areas where digital business inter-
sects with energy efficiency is through its influence on energy demand and consumption
patterns [23–25]. For instance, the growth of e-commerce has significantly changed the
way products are distributed and delivered, affecting logistics and transportation systems.
Digital business facilitates the integration of renewable energy sources into the power grid,
enabling more efficient management of energy generation and consumption, declining
carbon dioxide emissions, and improving the well-being of society [26–28]. Smart grid
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technologies, coupled with advanced data analytics, enable real-time monitoring and con-
trol, demand response mechanisms, and grid optimization, leading to more sustainable
and efficient energy systems. However, digital business also poses challenges to energy
efficiency and sustainability. The rapid proliferation of digital devices, data centers, and
communication networks has led to increased energy consumption and associated envi-
ronmental impacts [29–31]. Furthermore, issues such as electronic waste management,
cybersecurity risks, and the ethical use of data in digital business need to be addressed to
ensure a sustainable digital future [32–34]. In addition, digitalization requires sufficient
green financial resources [35–38] and relevant digital knowledge and skills [39–50]. To
fully harness the potential of digital business for energy efficiency and sustainability, it is
essential to identify best practices, technological innovations, and policy frameworks that
can promote energy-efficient digital transformation. This paper aims at analyzing the char-
acter of digital business’ impact on energy efficiency to outline the relevant instruments to
unleash EU countries’ potential for attaining sustainable development. This study fills the
scientific gaps on energy efficiency by developing approaches to explore the character of the
digital business’ impact on energy efficiency based on the panel-corrected standard errors
technique (PSCE). The PCSE method is chosen for its appropriateness in analyzing small
panel data while accounting for cross-sectional dependence. Furthermore, the approaches
developed in this study provide accurate estimation of variability considering the panel
error structures. This study makes an original contribution by using the panel-corrected
standard errors technique (PCSE) to analyze the impact of digital business on energy effi-
ciency. The accurate estimation of variability provided by the PCSE method enhances the
robustness of the findings. Additionally, the research contributes to the existing literature
by providing evidence of the positive relationship between digital business practices and
energy intensity reduction, aligning with broader efforts towards a more sustainable and
low-carbon economy in the EU. The research implications of this study underscore the
potential of digital business in improving energy efficiency and reducing CO2 emissions in
the EU. Policymakers could utilize these findings to develop targeted policies that promote
digitalization strategies among businesses to enhance sustainability efforts. However, the
study acknowledges the complexity of the relationship between digitalization and energy
intensity, highlighting the need for further research to understand the nonlinear dynamics
and mediating factors involved.

The paper has the following structure: the literature review explores the theoretical
background of energy efficiency, digital business, and links among them; materials and
methods section describes the variables for analysis and sources for them and provides an
explanation of the core stages of research and methodology to check the research hypothesis
on digital business’ effect on energy efficiency; the results section overviews empirical
findings on testing the research hypothesis; and the discussion and conclusion sections
explain the core results of the analysis, outlining the policy implication considering the
findings, whilst identifying the limitations and further directions for research.

2. Literature Review
2.1. Energy Efficiency Assessment

Scholars [51] conclude that energy efficiency plays a crucial role in decarbonizing
economic development. The findings of energy efficiency assessments could be used to
identify opportunities for energy savings and propose cost-effective solutions to enhance
energy efficiency, which is the primary goal of sustainable development. It should be
noted that scholars developed a vast range of approaches for assessing energy efficiency.
Scholars [52–55] outline that energy intensity refers to the amount of energy required to
produce a unit of output or provide a specific service. It is a measure of the efficiency
with which energy is utilized. Lower energy intensity indicates higher energy efficiency.
Based on empirical findings, Dong et al. [52] outline that declining energy intensity allows
increasing energy efficiency among Chinese provinces and promotes the energy capabilities
of the country. Shahiduzzaman and Alam [53] empirically justify that energy intensity and
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carbon dioxide emissions are closely related to each other, which consequently affects the
Australian energy efficiency. Applying the Granger causality test, scholars [54] conclude
that energy efficiency depends on the energy consumption structure, economic structure,
and energy intensity. Based on the results, scholars suggest decreasing coal energy con-
sumption and boosting the development of green energy. Hosan et al. [55] show that
energy intensity directly impacts sustainable economic growth within the energy efficiency
of a country. Su et al. [56] developed the composite energy efficiency index to develop
policy recommendations to improve energy efficiency in OECD countries. Scholars justify
the crucial role of final energy consumption in energy independence. Furthermore, schol-
ars [56,57] highlight that energy efficiency has a significantly positive effect on final energy
consumption in a country. Paramati et al. [58] confirm that environmental technologies
have a significant positive impact on energy efficiency by reducing energy consumption.
These findings indicate that environmental technologies contribute to reducing overall
energy consumption and improving energy efficiency in OECD countries. Studies [59–62]
confirm that decreasing CO2 emissions from fuel combustion improve the energy efficiency
of a country. In addition, studies [63–67] show that renewable energy has the most signifi-
cant impact on energy efficiency among all other dimensions. Thus, extending renewable
energy allows for boosting the rapid growth of a country’s energy efficiency [68,69].

2.2. Digital Business and Energy Efficiency

The analysis of the theoretical background on energy efficiency shows that digital
business can have both linear and nonlinear effects on energy efficiency, depending on
how it is implemented and utilized. Scholars [70–72] outline that digital technologies and
solutions are used to optimize energy consumption and improve energy efficiency. Digital
systems and smart meters enable real-time monitoring of energy consumption, allowing
businesses to identify inefficiencies and implement corrective measures promptly. By
analyzing large volumes of data generated by digital systems, businesses gain insights into
energy usage patterns, identify areas of potential energy waste, and proactively schedule
maintenance to prevent energy losses [73,74]. Digitalization facilitates the implementation
of energy-efficient processes, such as automated controls, smart grid technologies, and
demand response systems. These technologies allow optimization of energy use and
reduction of waste. Pålsson et al. [75] found that e-commerce eliminates the need for
physical retail spaces, and the increased reliance on transportation could result in energy
consumption and associated environmental impacts. However, studies [76] outline that
efficient logistics practices, such as route optimization, consolidation of shipments, and
the use of electric vehicles or alternative fuels, help minimize the energy intensity of
e-commerce delivery operations.

At the same time, studies [77–80] justify the nonlinear effect of digitalization on
energy efficiency. Morley et al. [81] confirm that digitalization leads to increased energy
consumption if the efficiency gains are offset by increased usage or new applications. For
instance, the proliferation of digital devices and data centers contributes to higher overall
energy consumption. Babu et al. [82] highlight that the production, use, and disposal of
digital devices generates electronic waste. Improper handling and disposal of e-waste
negatively impacts the environment, including energy-intensive recycling processes and
resource depletion. The growth of digital business often requires expanding data centers
and related infrastructure. Gunasekaran et al. [83] explain that e-commerce businesses
often operate large-scale warehouses to manage inventory and fulfill online orders. These
facilities require energy for lighting, heating, cooling, and operating material handling
equipment. Optimizing warehouse design, implementing energy-efficient technologies,
and adopting sustainable practices such as energy management systems and renewable
energy integration enhance energy efficiency in these operations. Chen et al. [84] confirm
the nonlinear effect of e-commerce on energy efficiency. This means that the initial effects
of e-commerce on energy efficiency could be negative, but over time, as technology and
practices evolve, they lead to positive energy efficiency outcomes. The U-shaped impact is
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represented by a curve that initially dips downward (indicating a negative impact) and then
rises upward (indicating a positive impact). The U-shaped impact of e-commerce on energy
efficiency underscores the importance of proactive measures, technological advancements,
and sustainable practices to mitigate initial negative impacts and capitalize on the long-term
potential for energy efficiency gains. It highlights the need for continuous improvement
and collaboration among e-commerce businesses, policymakers, and consumers to ensure a
sustainable and energy-efficient e-commerce ecosystem. Considering the abovementioned
factors, this study tests the following hypotheses:

H1: Digital business has a statistically significant impact on energy efficiency.

H2: The share of enterprises with e-commerce sales impacts energy efficiency.

H3: The share of enterprises with e-commerce sales of at least 1% turnover impacts energy efficiency.

H4: The share of enterprises with web sales impacts energy efficiency.

The theoretical framework and core hypotheses are shown in Figure 1.
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Figure 1. The theoretical framework of the research.

3. Materials and Methods
3.1. The Model and Estimation Procedure

The model specification for exploring the impact of digital business on energy effi-
ciency and sustainability is built upon the foundational structure proposed by previous
studies [6,13,17,22]:

Yi,t = a0 + b1Xi,t + b2Zi,t + ε (1)

where Yi,t is an explained variable; Xi,t is a vector of explanatory variables; Zi,t is a vector
of control variables; a0 is constant; b1, b2 are search parameters of the model; and ε is an
error term.

The estimation and verification process for the models involves the following steps:
In the initial step, a series of diagnostic tests are conducted to ensure that the model is
appropriately fitted. One crucial aspect is examining the correlation matrix, which provides
an insight into the strength and direction of relationships among variables. Analyzing
the correlation matrix can identify variables that exhibit strong associations or potential
dependencies. Furthermore, the focus is on detecting multicollinearity, which occurs when
independent variables are highly correlated with each other. Multicollinearity can lead
to unreliable coefficient estimates and hinder the interpretability of the model. To assess
the extent of multicollinearity, the variance inflation factor (VIF) is calculated for each
variable. A high VIF suggests a high degree of multicollinearity, indicating the need for
reconsideration or removal of variables from the model.
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The second step involves conducting unit root tests to evaluate the stationarity of
variables in the panel dataset. Stationarity refers to the property of a variable where its
statistical properties, such as the mean and variance, remain constant over time. If variables
are nonstationary, it can lead to spurious regression results and invalidate the model’s
conclusions. All data in the models are transformed into logarithmic form to address
potential stationarity issues.

In the third step, panel data estimates are utilised, taking advantage of the larger
availability of cross-sectional data units (27 EU countries) compared to the time series
data (10 years). By including Croatia, which joined the EU in 2013, the study showed how
adopting digital business practices and its impact on energy efficiency evolved during the
new membership period. It offers valuable insights into how a relatively newer member
state incorporates digital technologies into its economic practices and energy management
strategies. This can be particularly enlightening for understanding how digital transfor-
mation and energy efficiency policies are adopted and adapted by countries that have
recently joined the EU. On the other hand, excluding the United Kingdom, which exited
the EU in 2020, allows the study to analyse the impact of digital business practices on
energy efficiency without the influence of a country going through a significant political
and economic separation from the Union. The withdrawal of the UK from the EU brought
unique challenges and uncertainties, which overshadowed the focus on digital business
practices’ direct impact on energy efficiency during that period. Before proceeding with the
estimation using fixed effects, random effects, or panel-corrected standard errors (PCSE),
it is crucial to conduct various statistical tests to examine the characteristics of the data
and carefully select the appropriate model specification and econometric method. These
statistical tests serve the purpose of identifying specific characteristics within the data.
First, the presence of heteroscedasticity is examined using the Wald test [85,86]. This test
helps determine whether the variance of the errors varies across different observations. If
heteroscedasticity is detected, it indicates that the assumption of constant error variance
may be violated, and appropriate corrective measures need to be taken. Second, temporal
autocorrelation is assessed using the Wooldridge test [87,88]. This test is employed to deter-
mine if there is a correlation between the error terms of the model at different time points.
If temporal autocorrelation is detected, it implies that the assumption of independently dis-
tributed errors over time may not hold, necessitating appropriate adjustments in the model
specification. Finally, the contemporaneous correlation among the cross-sectional units is
examined using Pesaran’s cross-section dependence test [89,90]. This test helps identify
potential interdependence or spatial autocorrelation among observations across different
countries. If cross-sectional dependence is found to exist, it indicates that the assumption
of independently distributed errors across countries may not be valid, and alternative
estimation methods or robust standard errors may be needed. To address potential issues
of heteroscedasticity and the correlation of errors within the panel data, the panel-corrected
standard errors (PCSE) technique was employed in the analysis. Heteroscedasticity refers
to the situation where the variance of the error term varies across different levels of the
independent variables. The correlation of errors within the panel arises due to unobserved
factors affecting multiple observations within the panel. The PCSE technique adjusts the
standard errors of the estimated coefficients to account for these issues, leading to robust
statistical inference. By considering the heteroscedasticity and correlation structure of the
data, the PCSE method yields more reliable coefficient estimates and valid hypothesis
tests. Furthermore, applying this method helped minimize the impact of the disturbance at
the end of the series, arising from a significant difference in the use of e-business during
the COVID-19 pandemic. Additionally, robustness checks were conducted to assess the
sensitivity of the results to the disturbance caused by the pandemic.

3.2. Data and Sources

Energy efficiency is a critical aspect to measure and evaluate progress towards sustain-
able energy practices and environmental goals. In the framework of this study, considering
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the studies [52–59], energy efficiency is explained via indicators (dependent variables):
energy intensity; final energy consumption; CO2 emissions from fuel combustion per total
electricity output; and share of renewable energy in total primary energy supply.

• Energy intensity refers to the amount of energy used per unit of economic output,
typically measured as energy consumed per unit of GDP. A decline in energy intensity
over time indicates that an economy is becoming more energy efficient, producing
more goods and services with less energy consumption. This indicator is essential for
tracking the overall energy efficiency improvements of a country or region’s economy.

• Final energy consumption represents the total energy utilized for end-use activities,
such as transportation, residential, commercial, and industrial sectors. Monitoring
final energy consumption helps identify trends in energy demand and highlights areas
where energy-saving measures and technological advancements can lead to more
efficient energy usage.

• CO2 Emissions from Fuel Combustion per Total Electricity Output indicator relates to
the amount of carbon dioxide (CO2) emitted per unit of electricity generated from fuel
combustion. A lower value indicates a cleaner and more energy-efficient electricity
generation system, with reduced greenhouse gas emissions. By tracking this indicator,
policymakers can gauge the environmental impact of electricity production meth-
ods and identify opportunities for transitioning to cleaner and more energy-efficient
energy sources.

• The proportion of renewable energy sources in the total primary energy supply pro-
vides insights into the extent to which a country or region is transitioning towards
more sustainable and environmentally friendly energy sources. A higher share of
renewables suggests a reduced reliance on fossil fuels, contributing to energy diversifi-
cation and improved energy efficiency.

These indicators offer a comprehensive assessment of energy efficiency from different
angles, enabling policymakers and stakeholders to identify areas of improvement, set
energy efficiency targets, and develop effective strategies to enhance energy performance
and mitigate environmental impacts. By monitoring and analyzing these indicators over
time, countries and regions can make informed decisions to foster a more sustainable
energy landscape, promoting economic growth while reducing energy consumption and
greenhouse gas emissions.

Based on prior studies [70–76], digital business is measured within the following inde-
pendent variables: the share of enterprises with e-commerce sales, the share of enterprises
with e-commerce sales of at least 1% turnover, and the share of enterprises with web sales (via
websites, apps, or online marketplaces). Considering studies [70–76], digital business posi-
tively impacts energy efficiency by reducing the energy consumption associated with physical
operations, optimizing supply chains, and enabling data-driven energy management strate-
gies. Embracing digital business practices contributes to more sustainable and energy-efficient
operations across various sectors. The first independent variable, the share of enterprises
with e-commerce sales, is a crucial indicator of how businesses utilise digital platforms to
conduct their transactions. By engaging in e-commerce, companies can reduce the need
for physical operations, such as brick-and-mortar stores, potentially lowering their overall
energy consumption associated with maintaining and running traditional retail outlets. The
second variable, the share of enterprises with e-commerce sales of at least 1% turnover, further
emphasises the significance of e-commerce in relation to energy efficiency. When businesses
derive a substantial portion of their revenue from online sales, it indicates a higher reliance
on digital technologies and a decreased reliance on energy-intensive physical infrastructure.
The third variable, the share of enterprises with web sales through various digital channels,
encompasses a broader spectrum of digital business practices, including sales via websites,
apps, or online marketplaces. By leveraging these digital avenues, businesses can optimise
their supply chains, streamline operations, and implement data-driven energy management
strategies. This can lead to more efficient use of resources and reduced energy consumption
in the production, distribution, and sales processes.
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The study applies the following control variables:

1. GDP per capita: GDP per capita is an important indicator of economic development
and can have a significant impact on energy intensity, final energy consumption, CO2
emissions, and the adoption of digital business practices [5,91–93]. Higher GDP per
capita generally indicates greater economic resources and technological advancements,
which can influence energy efficiency and sustainability outcomes. Countries with
higher GDP per capita may have more financial capacity to invest in energy-efficient
technologies, implement sustainable practices, and adopt digital business strategies.

2. Trade openness [94–97]: Trade openness refers to the degree of integration of a
country’s economy with the global market. It can have implications for energy con-
sumption and environmental impact. Countries with higher trade openness may have
greater access to international markets, which can affect their energy consumption
patterns, including imports and exports of energy-intensive goods.

3. Governance efficiency [98,99]: Governance efficiency reflects the effectiveness of a
country’s institutions and their ability to implement and enforce policies and reg-
ulations. Good governance can promote sustainable practices and enhance energy
efficiency initiatives. Countries with more efficient governance systems may be better
equipped to implement and enforce energy efficiency policies, incentivize digital
business practices, and ensure compliance with sustainability standards.

4. Land Surface Temperature: The temperature conditions of the Earth’s surface, as
captured by Land Surface Temperature, have both direct and indirect effects on energy
consumption and intensity [100,101]. Temperature variations directly impact heating
and cooling demands, thereby influencing energy consumption patterns. Additionally,
temperature conditions indirectly influence energy efficiency by affecting the need for
energy-intensive processes such as air conditioning or heating systems.

5. Population density: Population density can affect energy consumption patterns [102–104].
Urban areas with higher population densities tend to have different energy requirements
compared to rural areas. Factors such as the concentration of residential and commercial
buildings, transportation needs, and infrastructure availability can all influence energy
consumption. Furthermore, areas with higher population densities are more likely to have
advanced infrastructure, including digital connectivity and technological innovations.
This may facilitate the adoption of digital business practices, as well as the implementation
of energy-efficient technologies.

The list of variables, their explanations, sources, and descriptive statistics is shown in
Table 1.

Table 1. Descriptive statistics of the selected variables for analysis of the digital business effect on
energy efficiency.

Variable Explanation Source Mean CV Min Max

EI Energy intensity

Eurostat [105]

5.076 0.090 3.798 6.201
FEC Final energy consumption 2.763 0.495 −0.713 5.398

SDG7co2
CO2 emissions from fuel combustion per total

electricity output 0.215 3.057 −1.544 3.590

SDG7ren
Share of renewable energy in total primary

energy supply 2.591 0.255 −0.010 3.783

Es The share of enterprises with e-commerce sales 2.853 0.166 1.335 3.846

Et

The share of enterprises with e-commerce
sales of at least 1%

turnover
2.698 0.193 0.916 3.757

Ews
The share of enterprises with web

sales (via websites, apps, or online marketplaces) 2.299 0.226 0.875 3.329

GDP GDP per capita

World Data Bank
[106]

10.226 0.061 8.864 11.725
WGI Governance efficiency −0.141 −4.636 −2.442 0.627
TO Trade openness 4.768 0.096 4.005 5.940
LST Land Surface Temperature 2.676 0.186 0.272 3.416
PD Population density 4.679 0.195 2.875 7.384
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The correlation coefficients in the matrix range (Table 2) from −1 to 1, with values
closer to −1 indicating a strong negative correlation, values closer to 1 indicating a strong
positive correlation, and values close to 0 indicating a weak or no correlation. Positive
correlations between digital business metrics (such as e-commerce sales, e-commerce
turnover, or e-commerce web sales) and energy efficiency variables would suggest a
positive relationship, indicating that an increase in digital business activities is associated
with improved energy efficiency. All data are significant at 1% and 5%.

Table 2. The correlation matrix between the selected variables for analysis of the digital business’
effect on energy efficiency.

Variables EI FEC SDG7co2 SDG7ren Es Et Ews GDP WGI TO LST PD

EI 1.000
FEC −0.351 1.000

SDG7co2 0.021 −0.313 1.000
SDG7ren −0.126 0.158 −0.379 1.000

Es −0.392 0.070 −0.174 −0.066 1.000
Et −0.318 0.028 −0.212 0.007 0.966 1.000

Ews −0.328 0.061 −0.036 −0.095 0.924 0.878 1.000
GDP −0.501 0.063 0.010 0.004 0.673 0.601 0.530 1.000
WGI 0.155 −0.055 0.546 −0.534 0.174 0.143 0.185 0.239 1.000
TO 0.041 −0.097 0.267 −0.498 −0.369 −0.383 −0.323 −0.434 0.069 1.000
LST −0.124 0.002 0.249 −0.719 −0.054 −0.160 0.003 0.105 0.355 0.424 1.000
PD −0.124 0.002 0.249 −0.719 −0.054 −0.160 0.003 −0.124 0.105 0.355 0.624 1.000

Based on the outputs of the correlation analysis, the regression model (1) was estimated
separately for each explained variable (EI, FEC, SDG7co2 , SDG7ren). The results of the
variance inflation factor (VIF) show that all values are less than threshold 5 (Table 3). This
means that the variable is not highly correlated with other independent variables in the
model [107]. The fundings allow rejection of the multicollinearity among selected variables.

Table 3. The results of VIF for the selected variables for analysis of the digital business’ effect on
energy efficiency.

Variables EI FEC SDG7co2 SDG7ren

Es 1.85 – – 1.85 – – 1.85 – – 1.85 – –
Et – 1.63 – – 1.63 – – 1.63 – – 1.63 –

Ews – – 1.45 – – 1.63 – – 1.45 – – 1.45
GDP 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21
WGI 4.01 3.97 3.57 4.01 3.97 3.97 4.01 3.97 3.57 4.01 3.97 3.57
TO 1.07 1.07 1.08 1.07 1.07 1.07 1.07 1.07 1.08 1.07 1.07 1.08
LST 3.29 3.28 3.38 3.29 3.28 3.28 3.29 3.28 3.38 3.29 3.28 3.38
PD 2.93 2.96 2.97 2.93 2.96 2.96 2.93 2.96 2.97 2.93 2.96 2.97

4. Results

The stationarity of the variables was examined using the Im-Pesaran-Shin unit root
test [108] and the Fisher-based augmented Dickey–Fuller unit root test [109]. The results
presented in Table 4 demonstrate that all variables become stationary after taking the
first difference.

The results of the Hausman test presented in Table 5 indicate that all models exhibit
statistically significant chi-square test statistics, with p values of 0.000. This implies a
substantial disparity between the estimated coefficients of the fixed effects (FE) and random
effects (RE) models for all variables. These findings suggest that the random effects model
may not be suitable for the regression analysis, favoring the adoption of the fixed effects
model instead. The significance of the results indicates the presence of unobserved time-
invariant factors that impact the relationship between the explained and explanatory
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variables. Consequently, incorporating these fixed effects within the model enhances the
reliability and accuracy of the coefficient estimates.

Table 4. The results of the unit root test.

Variables

Im–Pesaran–Shin Augmented Dickey–Fuller

At Level At 1-st Difference At Level At 1-st Difference

Statistic p Value Statistic p Value Statistic p Value Statistic p Value

Es 2.069 0.981 −10.884 0.000 1.422 0.078 32.594 0.000
Et 1.303 0.904 −7.100 0.000 0.691 0.245 36.072 0.000

Ews 1.804 0.964 −5.439 0.000 5.238 0.000 28.548 0.000
GDP −2.776 0.003 −9.272 0.000 0.295 0.384 8.697 0.000
WGI −3.856 0.000 −5.517 0.000 0.629 0.265 28.540 0.000
TO −5.560 0.000 −4.068 0.000 −1.458 0.928 2.651 0.004
LST −12.630 0.000 −14.190 0.000 9.914 0.000 35.966 0.000
PD −5.804 0.000 −5.976 0.000 2.523 0.006 12.155 0.000

Table 5. Results of the Hausman test.

Statistics
EI FEC SDG7co2 SDG7ren

Es Et Ews Es Et Ews Es Et Ews Es Et Ews

chi2 25.75 29.44 27.61 57.54 57.66 56.29 21.09 18.59 21.15 83.72 85.97 82.27
Prob > chi2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000

The statistically significant F-statistic values and low p values of the Wooldridge test
(Table 6) suggest that heteroscedasticity is present in the regression models for all variables
(EI, FEC, SDG7co2 , SDG7ren) and their respective explanatory variables (Es, Et, Ews).

Table 6. Results of the Wooldridge test.

Statistics
EI FEC SDG7co2 SDG7ren

Es Et Ews Es Et Ews Es Et Ews Es Et Ews

F(1,21) 41.045 40.989 45.229 82.008 82.164 83.051 50.510 72.701 55.248 30.908 30.547 31.383
Prob > F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The outputs presented in Table 7 provide the results of the modified Wald test, which
aims to detect groupwise heteroscedasticity in the regression models. Groupwise het-
eroscedasticity occurs when the variances of the error terms in a regression model differ
across distinct groups or subsets within the data.

Table 7. The results of the modified Wald test for groupwise heteroscedasticity.

Statistics
EI FEC SDG7co2 SDG7ren

Es Et Ews Es Et Ews Es Et Ews Es Et Ews

chi2 469.19 257.77 1180.56 127.10 132.70 135.52 6939.78 4547.71 4467.72 391.29 250.14 198.59
Prob > chi2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 7 displays the Chi-square test statistics and their corresponding p values for each
variable included in the regression models. The chi-square test statistic assesses the overall
significance of the groupwise heteroscedasticity in the models. A statistically significant
chi-square value, indicated by a very low p value (p = 0.000), suggests the presence of
substantial groupwise heteroscedasticity. The presence of groupwise heteroscedasticity
has implications for the interpretation of the regression results, similar to the implications
of overall heteroscedasticity. When groupwise heteroscedasticity is present, the standard



Information 2023, 14, 480 10 of 20

errors of the coefficient estimates could be biased, leading to incorrect inference and
hypothesis testing.

The results presented in Table 8 showcase the outcomes of Pesaran’s cross-section de-
pendence test. This test is conducted to examine the hypothesis of cross-sectional indepen-
dence in panel data models with N > T. It is specifically designed to detect contemporaneous
correlation or cross-sectional dependence among the variables in the model. The decision to
employ Pesaran’s test over the Breusch–Pagan test is due to its suitability for detecting con-
temporaneous correlation in the model residuals. The Breusch–Pagan test is not well suited
for panel data analysis with cross-sectional dependence [110]. Therefore, Pesaran’s alterna-
tive approach is adopted to accurately assess the presence of cross-sectional dependence.

Table 8. The results of Pesaran’s cross-section dependence test.

Statistics
EI FEC SDG7co2 SDG7ren

Es Et Ews Es Es Et Ews Es Es Et Ews Es

stat 20.519 20.748 23.443 8.603 7.732 9.275 2.033 2.098 3.555 14.976 14.952 17.449
Pr 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.036 0.000 0.000 0.000 0.000

The Pesaran’s cross-section dependence test presented in Table 8 evaluates the null
hypothesis of cross-sectional independence, which assumes no contemporaneous corre-
lation among the variables. The test statistics (stat) and corresponding p values (Pr) for
each dependent variable in the panel data models indicate that the null hypothesis of
cross-sectional independence is rejected. This suggests the presence of cross-sectional
dependence or contemporaneous correlation among the variables.

Based on the results of the Wooldridge test, the modified Wald test for groupwise het-
eroscedasticity, and Pesaran’s cross-section dependence test, it is evident that the panel data
models suffer from heteroscedasticity, contemporaneous correlation, and cross-sectional
dependence. Considering these findings, employing panel-corrected standard error (PCSE)
estimations would be a more appropriate approach. PCSE estimations effectively ad-
dress the issues of heteroscedasticity and cross-sectional dependence in panel data models,
providing robust standard errors that account for within-group correlation.

To validate the results obtained through PCSE estimations, the fixed effects model
is employed. The results of the fixed effects model regression analysis (Table 9) indicate
significant relationships between the independent variables Es, Et, and Ews and the ex-
plained variables EI, SDG7co2 , and SDG7ren. However, for the variable FEC, the coefficient
estimates for all indicators of digital business are not statistically significant (p > 0.05),
suggesting a lack of significant relationship between these indicators and the explained
variable. The F-statistic for all models is statistically significant with a p value of 0.000.
This indicates that the regression models are a good fit for the data and that at least one
independent variable has a significant relationship with the dependent variable. The high
significance level suggests that the chosen independent variables collectively contribute to
explaining the variation in the dependent variable. Furthermore, the correlation coefficient
(rho) for all models in Table 9 is higher than 0.99, indicating a strong positive correla-
tion between the dependent variable and the individual-specific effects. This suggests
that a large proportion of the variation in the dependent variable is accounted for by the
individual-specific effects. The high rho values reinforce the importance of considering
the fixed effects in the model and suggest a substantial influence of the individual-specific
effects on the dependent variable.
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Table 9. The results of regression analysis: fixed effects model.

Variables

EI FEC

Es Et Ews Es Et Ews

Coef. Prob. Coef. Prob. Coef. Prob. Coef. Prob. Coef. Prob. Coef. Prob.

Ei −0.166 0.000 −0.166 0.000 −0.101 0.000 −0.016 0.241 −0.011 0.440 −0.006 0.548
GDP −0.397 0.000 −0.410 0.000 −0.427 0.000 0.195 0.000 0.192 0.000 0.190 0.000
WGI −0.068 0.111 −0.067 0.122 −0.092 0.036 −0.066 0.011 −0.067 0.010 −0.069 0.007
TO −0.284 0.001 −0.264 0.002 −0.335 0.000 0.204 0.000 0.204 0.000 0.200 0.000
LST −0.095 0.007 −0.100 0.005 −0.100 0.006 −0.030 0.157 −0.031 0.146 −0.031 0.145
PD −1.390 0.000 −1.536 0.000 −1.411 0.000 −0.430 0.001 −0.442 0.001 −0.434 0.001

const 17.457 0.000 18.139 0.000 17.871 0.000 2.101 0.001 2.170 0.001 2.156 0.001
F 46.54 0.000 45.30 0.000 42.27 0.000 14.43 0.000 14.24 0.000 14.18 0.000

sigma_u 1.101 1.203 1.133 1.452 1.457 1.453
sigma_e 0.059 0.060 0.061 0.036 0.036 0.036

rho 0.997 0.998 0.997 0.999 0.999 0.999

SDG7co2 SDG7ren

Ei −0.246 0.000 −0.280 0.000 −0.155 0.000 0.156 0.000 0.164 0.000 0.073 0.011
GDP 0.136 0.309 0.130 0.325 0.094 0.477 0.308 0.001 0.317 0.000 0.345 0.000
WGI 0.088 0.462 0.099 0.402 0.054 0.649 0.226 0.004 0.222 0.005 0.252 0.002
TO −0.071 0.764 −0.030 0.898 −0.148 0.536 0.421 0.007 0.399 0.011 0.466 0.004
LST 0.067 0.492 0.064 0.512 0.061 0.536 0.126 0.049 0.129 0.043 0.133 0.041
PD 2.663 0.000 2.431 0.000 2.635 0.000 3.544 0.000 3.685 0.000 3.574 0.000

const −12.368 0.000 −11.385 0.000 −11.779 0.000 −19.233 0.000 −19.866 0.000 −19.703 0.000
F 6.15 0.000 6.85 0.000 5.73 0.000 28.79 0.000 29.02 0.000 26.48 0.000

sigma_u 2.043 1.883 2.017 3.380 3.480 3.420
sigma_e 0.165 0.164 0.166 0.108 0.108 0.110

rho 0.993 0.992 0.993 0.999 0.999 0.999

Table 10 presents the results of the regression analysis using PCSE estimations. For
the dependent variable EI (Energy Intensity), all indicators of digital business show a statis-
tically significant impact (p < 0.05). The negative coefficients for the indicators of digital
business (Es, Et, Ews are −0.112, −0.112, and −0.076, respectively) suggest that an increase
in the levels of digital business is associated with a decrease in energy intensity in the EU.
This implies that as the share of enterprises with e-commerce sales, the share of enterprises
with e-commerce sales of at least 1% turnover, and the share of enterprises with web sales
increase, the energy intensity in the EU is expected to decline. These findings have signifi-
cant implications for the EU’s sustainability goals and its efforts to reduce carbon emissions.
The results indicate that embracing digitalization and promoting e-commerce practices con-
tribute to improving energy efficiency and potentially lead to reduced energy consumption
across various sectors. By actively supporting and encouraging digital business practices,
the EU could enhance its energy efficiency measures, mitigate environmental impacts, and
progress toward a more sustainable and environmentally friendly economy. The R2 values
range from 0.978 to 0.981, suggesting that the independent variables collectively explain a
substantial portion of the variation in energy intensity. Additionally, the outputs for the
variable SDG7co2 reveal that the adoption and expansion of digital business practices in the
EU could also contribute to the reduction of CO2 emissions. The coefficients for Es, Et, and
Ews are −0.179 (p = 0.003), −0.118 (p = 0.002), and −0.056 (p = 0.033), respectively. However,
the R2 values range from 0.215 to 0.245, indicating a moderate level of explanation.

In contrast, the components of digital business have a positive impact on the share
of renewable energy in the total primary energy supply (Es, Et, Ews are 0.033 (p = 0.046),
−0.011 (p = 0.018), and 0.020 (p = 0.046), respectively). This implies that when digitization
is implemented in the business sector, it leads to an increase in the adoption of renewable
energy sources. By embracing digitalization and integrating modern technologies (big
data and cloud computing) into the business sector, the EU countries could enhance their
efforts to promote renewable energy. These technologies enable businesses to optimize their
energy consumption, improve resource efficiency, and facilitate the integration of renewable
energy sources. Conversely, the results of Table 10 suggest that the variables Es, Et, and Ews
have varying impacts on final energy consumption. While the share of enterprises with
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e-commerce sales of at least 1% turnover shows a statistically significant positive impact
(Et = 0.152, p = 0.018), the relationship for the share of enterprises with e-commerce sales
(Es = 0.130, p = 0.089) and the share of enterprises with web sales (Ews = 0.021, p = 0.668)
is not statistically significant. This finding underscores the importance of considering
the characteristics and scale of enterprises when assessing the energy implications of e-
commerce activities and highlights the need for targeted policies and measures to encourage
energy-efficient practices among businesses with significant e-commerce operations. The
R2 values for both models range from 0.837 to 0.853, suggesting that the independent
variables collectively explain a substantial portion of the variation in the explanatory
variables. The Wald chi2 statistics for all models demonstrate the overall significance of
the regression models, with high chi2 values indicating a significant relationship between
the independent variables Es, Et, Ews and EI, FEC, SDG7co2 , and SDG7ren. The intraclass
correlation (rho) values for all models in the analysis range from 0.663 to 0.904. These
values indicate that a substantial proportion of the variance in the output is attributable
to the differences across entities, accounting for approximately 66.3% to 90.4% of the
total variance.

Table 10. The results of regression analysis: PCSE estimations.

Variables

EI FEC

Es Et Ews Es Et Ews

Coef. Prob. Coef. Prob. Coef. Prob. Coef. Prob. Coef. Prob. Coef. Prob.

Ei −0.112 0.001 −0.112 0.000 −0.076 0.002 0.130 0.089 0.152 0.032 0.021 0.668
GDP 0.628 0.000 0.622 0.000 0.639 0.000 0.284 0.003 0.291 0.002 0.311 0.001
WGI −0.170 0.000 −0.166 0.000 −0.153 0.001 −0.011 0.916 −0.027 0.797 0.020 0.810
TO −0.176 0.000 −0.178 0.000 −0.175 0.000 1.958 0.000 1.968 0.000 1.849 0.000
LST −0.096 0.023 −0.085 0.036 −0.103 0.018 −0.280 0.000 −0.286 0.000 −0.215 0.001
PD −0.055 0.091 −0.068 0.034 −0.046 0.163 0.848 0.000 0.861 0.000 0.799 0.000

const 11.461 0.000 11.413 0.000 11.412 0.000 5.817 0.000 5.715 0.000 5.399 0.000
Wald chi2 527.73 0.000 507.37 0.000 547.35 0.000 699.06 0.000 737.31 0.000 533.59 0.000

R2 0.979 0.981 0.978 0.837 0.836 0.853
rho 0.663 0.682 0.656 0.736 0.728 0.851

SDG7co2 SDG7ren

Ei −0.179 0.003 −0.118 0.002 −0.056 0.033 0.033 0.046 0.011 0.018 0.020 0.046
GDP −0.044 0.731 −0.053 0.681 −0.064 0.620 0.022 0.048 0.019 0.083 0.018 0.073
WGI −0.044 0.020 −0.058 0.044 −0.075 0.027 0.032 0.087 0.038 0.052 0.036 0.053
TO 0.816 0.563 0.852 0.493 0.806 0.542 0.462 0.000 0.458 0.000 0.452 0.000
LST 0.100 0.057 0.106 0.051 0.106 0.049 −0.082 0.028 −0.084 0.024 −0.085 0.018
PD 0.197 0.008 0.189 0.007 0.206 0.008 0.416 0.000 0.416 0.000 0.417 0.000

const −3.804 0.071 −4.060 0.053 −3.999 0.063 7.128 0.000 7.153 0.000 7.096 0.000
Wald chi2 47.06 0.000 47.90 0.000 41.62 0.000 196.83 0.000 190.72 0.000 178.35 0.000

R2 0.232 0.245 0.215 0.844 0.844 0.846
rho 0.904 0.889 0.903 0.836 0.840 0.852

Based on the provided results, governance efficiency (WGI) has a significant influence
on the dependent variables, excluding final energy consumption. This indicates that the
effectiveness of governance in terms of efficiency and regulatory frameworks directly
affects energy intensity, CO2 emissions, or the adoption of renewable energy sources in the
analyzed context. At the same time, WGI is conducive to extending renewable energy, and
the growth of WGI provokes a decline in carbon dioxide emissions and energy intensity.
GDP has a significant positive impact on final energy consumption, renewable energy, and
energy intensity, but it does not significantly affect CO2 emissions. The results show that
TO has different effects on the dependent variables. It is positively associated with final
energy consumption and the share of renewable energy, suggesting that countries with
more open trade policies tend to prioritize the use of renewable energy sources. However,
it has a negative effect on energy intensity. This means that countries with more open trade
policies tend to have less energy intensity. Growth of TO leads to declining EI on average
for all models with variables Es, Et, and Ews by 0.17.
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Land surface temperature (LST) is negatively associated with all dependent variables,
excluding CO2 emissions. It allows the conclusion that countries experiencing higher tem-
peratures tend to have lower energy intensity, renewable energy, and energy consumption.
This shows that countries with higher temperatures could face obstacles in increasing the
adoption of renewable energy sources. Thus, LST growth led to declining energy intensity
on average by 0.09, final energy consumption by 0.25, and renewable energy consumption
by 0.08. However, LST is positively associated with CO2 emissions, indicating that higher
land surface temperatures may contribute to higher carbon emissions. Increasing LST
provokes an increase in CO2 emissions by 0.1. Population density has significant positive
effects on all variables, excluding energy intensity. This means that higher population
density is associated with less energy intensity and with higher final energy consumption,
CO2 emissions, and renewable energy. The significant positive effect between population
density and the share of renewable energy indicates that areas with higher population den-
sity have a greater potential for adopting and integrating renewable energy sources. This
could be driven by factors such as policy support, economies of scale, and the availability
of infrastructure for renewable energy installations.

5. Discussion

The empirical findings from this investigation support our four hypotheses, indicating
that digital business, the share of enterprises with e-commerce sales, enterprises with
e-commerce sales of at least 1% turnover, and enterprises with web sales have a statistically
significant impact on energy efficiency.

The substantial impact of all digital business indicators on energy intensity reinforces
the potential of digitalization to enhance energy efficiency and reduce energy consumption
in the EU. This aligns with the conclusions drawn by previous scholars [73–75], providing
further evidence of the positive relationship between digital business practices and energy
intensity reduction. These consistent findings highlight the importance of embracing digital
technologies and strategies to promote energy efficiency across various sectors.

However, it is essential to acknowledge the presence of contrasting results in some
studies [77–80], suggesting a nonlinear effect of digitalization on energy intensity. These
divergent outcomes emphasize the complexity of the relationship, indicating that the
impact of digital business practices on energy efficiency may vary based on specific con-
textual factors or interactions with other influencing variables. Such complexities warrant
further investigation and in-depth analysis to better understand the nuanced nature of
this relationship.

Additionally, the statistically significant positive impact of the share of enterprises
with e-commerce sales of at least 1% turnover on final energy consumption echoes find-
ings from another study [76]. This finding indicates that the energy demands associated
with e-commerce activities, including order fulfillment, warehousing, and transportation,
contribute to increased energy consumption. It underscores the importance of consider-
ing energy-efficient measures in e-commerce operations and implementing strategies to
mitigate their energy-intensive processes.

6. Conclusions

This study aims at analyzing the impact of the share of enterprises with e-commerce
sales, enterprises with e-commerce sales of at least 1% turnover, and enterprises with
web sales (via websites, apps, or online marketplaces) on energy efficiency. This study
arises from the increasing significance of digital business practices in the EU and their
potential impact on energy efficiency and sustainability. As digitalization and e-commerce
continue to expand, there is a growing need to understand how these trends influence
energy consumption, CO2 emissions, and the adoption of renewable energy sources. By
exploring the associations between digital business indicators and energy efficiency, this
research aims to provide valuable insights for policymakers and businesses to enhance
energy-saving strategies, promote renewable energy integration, and advance the transition
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to a more sustainable and low-carbon economy. Understanding the implications of digital
business on energy efficiency is essential in shaping effective policies and practices to tackle
environmental challenges and meet energy sustainability targets in the EU.

The empirical results demonstrate the significant impact of digital business on energy
intensity, CO2 emissions, and the share of renewable energy in the EU. All indicators of
digital business exhibit a statistically significant negative association with energy intensity,
indicating that increased levels of digital business contribute to improved energy efficiency
and reduced energy consumption. Moreover, the findings highlight the positive role of
digital business practices in reducing CO2 emissions. By embracing digitalization and
integrating modern technologies like big data and cloud computing, EU countries can
enhance their efforts to promote renewable energy implementation and mitigate carbon
emissions. The share of enterprises with e-commerce sales of at least 1% turnover has a
statistically significant positive impact on final energy consumption, emphasizing the need
for energy-efficient measures in e-commerce operations. However, the relationships for the
share of enterprises with e-commerce sales and the share of enterprises with web sales are
not statistically significant.

7. Policy Implications

Considering the findings, the following policy implications for improving energy
efficiency within digital business could be outlined:

1. It is necessary to establish energy efficiency standards specifically tailored for digital
businesses, including e-commerce platforms. These standards should cover areas such
as data centers, server utilization, packaging practices, and logistics operations. Im-
plementing mandatory energy efficiency standards will promote sustainable practices
and optimize energy consumption in the digital business sector.

2. The government should incentivize and facilitate the adoption of renewable energy
sources by digital businesses, including e-commerce platforms. This could be achieved
by providing financial incentives, tax breaks, or grants for investing in renewable
energy infrastructure, such as on-site solar panels or wind turbines.

3. Policymakers should facilitate collaboration between digital businesses and energy
providers to optimize energy consumption and promote energy efficiency. This
should involve partnerships that offer preferential energy pricing for e-commerce
platforms based on their commitment to energy efficiency and demand response
programs. By collaborating with energy providers, digital businesses access expertise
and technologies to improve their energy efficiency performance.

4. The EU countries should intensify investment in smart grid infrastructure to support
the energy needs of an expanding digital business sector. Smart grids enable real-
time monitoring, efficient energy distribution, and demand-side management. This
facilitates the integration of renewable energy sources, enhances energy efficiency,
and enables load balancing to optimize energy consumption. In addition, it is crucial
to allocate funding for research and innovation projects that address energy efficiency
challenges in the digital business sector. Encouraging collaboration between academia,
industry, and research institutions will drive innovation and the development of
energy-efficient practices and technologies.

5. Governments should mandate energy audits and reporting for digital businesses, par-
ticularly those engaged in e-commerce activities. Energy audits help identify energy-
saving opportunities and enable businesses to track their energy consumption over
time. Requiring regular reports of energy performance will drive transparency and
accountability, encouraging businesses to improve their energy efficiency practices.

6. It is necessary to promote skills development and training programs focused on
energy efficiency for digital businesses. This can include initiatives to upskill and
reskill professionals in energy management, data analytics, and sustainable practices.
The EU countries should launch public awareness campaigns to educate consumers
about the energy implications of e-commerce and the importance of sustainable
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purchasing behaviors. This could include raising awareness about energy-efficient
delivery options, encouraging consolidated shipments, and promoting responsible
consumption. Informed consumer choices could drive market demand for energy-
efficient digital services and products.

8. Research Limitations and Further Investigations

Despite the reliable and valuable findings, this study has limitations that could be
investigated in future analyses. The results highlight the importance of digital business
practices in enhancing energy efficiency, reducing energy intensity, and promoting using
renewable energy sources in the EU. Policymakers and businesses should consider the
adoption of digital technologies and e-commerce practices to drive sustainable energy tran-
sitions and achieve environmental goals. However, further research is needed to explore
the mechanisms through which digital business practices impact energy consumption and
better understand these relationships’ nuances. Furthermore, the chosen data series of
analysis include the period of the COVID-19 pandemic. The pandemic’s unprecedented
disruptions to daily life and business operations may have significantly influenced energy
consumption patterns, digital business practices, and overall economic activity. This aspect
should be thoroughly investigated to understand the impact of pandemic-induced changes
in consumer behavior, work-from-home practices, and supply chain disruptions on energy
efficiency and adopting renewable energy sources. In addition, this study focuses on
analyzing the EU countries, limiting the findings’ implications for other countries. Future
studies should extend the list of variables that could boost energy efficiency improve-
ment and digital business development, such as investment, e-governance, and internet
penetration. The study’s limitation lies in the neglect of technology-related cause-effect
relationships and the absence of considering the time-factor influence (time lag), suggesting
that future investigations should incorporate these factors to gain a more comprehensive
understanding of the digital business–energy efficiency relationship. Additionally, future
investigations should incorporate different stakeholders (energy companies; digital enter-
prises; etc.) and develop the recommendations for them for improving energy efficiency.
Future investigations should consider the influence of global indicators, such as GDP per
capita, on both e-commerce and traditional trade. Accounting for these broader economic
factors, the study will consider significant drivers that affect energy efficiency in both
spheres and do not miss the opportunity for a comprehensive comparison between digital
and traditional business models.
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17. Vaníčková, R.; Szczepańska-Woszczyna, K. Innovation of business and marketing plan of growth strategy and competitive

advantage in exhibition industry. Pol. J. Manag. Stud. 2020, 21, 425–445. [CrossRef]
18. Kolosok, S.; Saher, L.; Kovalenko, Y.; Delibasic, M. Renewable Energy and Energy Innovations: Examining Relationships Using

Markov Switching Regression Model. Mark. Manag. Innov. 2022, 2, 151–160. [CrossRef]
19. Karnowski, J.; Miśkiewicz, R. Climate Challenges and Financial Institutions: An Overview of the Polish Banking Sector’s Practices.

Eur. Res. Stud. J. 2021, XXIV, 120–139. [CrossRef]
20. Arefieva, O.; Polous, O.; Arefiev, S.; Tytykalo, V.; Kwilinski, A. Managing sustainable development by human capital reproduction

in the system of company‘s organizational behavior. IOP Conf. Ser. Earth Environ. Sci. 2021, 628, 012039. [CrossRef]
21. Kharazishvili, Y.; Kwilinski, A.; Sukhodolia, O.; Dzwigol, H.; Bobro, D.; Kotowicz, J. The systemic approach for estimating and

strategizing energy security: The case of Ukraine. Energies 2021, 14, 2126. [CrossRef]
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25. Miśkiewicz, R. The Impact of Innovation and Information Technology on Greenhouse Gas Emissions: A Case of the Visegrád

Countries. J. Risk Financ. Manag. 2021, 14, 59. [CrossRef]
26. Matvieieva, Y.; Hamida, H.B. Modeling and Forecasting Energy Efficiency Impact on the Human Health. Health Econ. Manag. Rev.

2022, 3, 78–85. [CrossRef]
27. Vakulenko, I.; Lieonov, H. Renewable Energy and Health: Bibliometric Review of Non-Medical Research. Health Econ. Manag.

Rev. 2022, 3, 44–53. [CrossRef]
28. Letunovska, N.; Saher, L.; Vasylieva, T.; Lieonov, S. Dependence of public health on energy consumption: A cross-regional

analysis. In Proceedings of the E3S Web of Conferences, Odesa, Ukraine, 16 April 2021; p. 250. [CrossRef]
29. Zhou, X.; Zhou, D.; Zhao, Z.; Wang, Q. A framework to analyze carbon impacts of digital economy: The case of China. Sustain.

Prod. Consum. 2022, 31, 357–369. [CrossRef]
30. Sovacool, B.K.; Upham, P.; Monyei, C.G. The “whole systems” energy sustainability of digitalization: Humanizing the community

risks and benefits of Nordic datacenter development. Energy Res. Soc. Sci. 2022, 88, 102493. [CrossRef]
31. Katal, A.; Dahiya, S.; Choudhury, T. Energy efficiency in cloud computing data centers: A survey on software technologies. Clust.

Comput. 2022, 26, 1845–1875. [CrossRef] [PubMed]
32. Dzwigol, H.; Trushkina, N.; Kwilinski, A. The organizational and economic mechanism of implementing the concept of green

logistics. Virtual Econ. 2021, 4, 41–75. [CrossRef]
33. Ziabina, Y.; Kovalenko, Y. Regularities in the Development of The Theory of Energy Efficiency Management. SocioEconomic Chall.

2021, 5, 117–132. [CrossRef]

https://doi.org/10.3390/pr9071103
https://doi.org/10.34021/ve.2022.05.03(4)
https://doi.org/10.34021/ve.2022.05.02(4)
https://doi.org/10.21272/mmi.2022.3-07
https://doi.org/10.21272/bel.7(1).105-112.2023
https://doi.org/10.23762/FSO_VOL10_NO3_6
https://doi.org/10.23762/FSO_VOL9_NO3_7
https://doi.org/10.34021/ve.2021.04.02(5)
https://doi.org/10.21272/mmi.2022.4-20
https://doi.org/10.3390/en14206840
https://doi.org/10.34021/ve.2020.03.01(1)
https://doi.org/10.17512/pjms.2020.21.2.30
https://doi.org/10.21272/mmi.2022.2-14
https://doi.org/10.35808/ersj/2344
https://doi.org/10.1088/1755-1315/628/1/012039
https://doi.org/10.3390/en14082126
https://doi.org/10.3390/en14206776
https://doi.org/10.34021/ve.2021.04.01(5)
https://doi.org/10.3390/en15103805
https://doi.org/10.3390/jrfm14020059
https://doi.org/10.21272/hem.2022.2-09
https://doi.org/10.21272/hem.2022.2-05
https://doi.org/10.1051/e3sconf/202125004014
https://doi.org/10.1016/j.spc.2022.03.002
https://doi.org/10.1016/j.erss.2022.102493
https://doi.org/10.1007/s10586-022-03713-0
https://www.ncbi.nlm.nih.gov/pubmed/36060618
https://doi.org/10.34021/ve.2021.04.02(3)
https://doi.org/10.21272/sec.5(1).117-132.2021


Information 2023, 14, 480 17 of 20
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