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Abstract. Most refined bending models of medium-thick plates, which consider transverse shear and partial 

compression deformations, differ little. However, despite a significant increase in the order of the governing differential 

equations, the results obtained from their equations give mainly a small increase in accuracy compared to the existing 

theories. On the other hand, such an increase in the order of the constructed systems of differential equations requires 

a significant increase in the effort required to solve them, complicates their physical interpretation, and narrows the 

range of people who can use them, primarily engineers and designers. Therefore, developing a plate-bending model 

that incorporates all the above factors and is on par with previously applied theories regarding the complexity of the 

calculation equations remains relevant. For example, most of the applied theories that do not consider transverse 

compression cannot be used to solve problems of contact interaction with rigid and elastic dies and bases because it is 

impossible to satisfy the conditions at the contact boundary of the outer surface of the plate, as well as the boundary 

conditions at the edges of the plate. Therefore, to provide guaranteed accuracy of the results, some researchers of these 

problems have introduced such a concept as “energy consistency” between the functions of representation of the 

displacement vector components, their number, the order of equations, and the number of boundary conditions. The 

authors, based on the developed version of the model of orthotropic plates of medium thickness, investigate the problem 

of taking into account the so-called “energy consistency” effect of the bending model, depending on the order of the 

design equations and the number of boundary conditions, as well as its usefulness and disadvantages in practical 

calculations. The equations of equilibrium in displacements and expressions for stresses in terms of force and moment 

forces are recorded. For rectangular and circular plates of medium thickness, test problems are solved, and the 

numerical data are compared with those obtained using spatial problems of elasticity theory, as well as the refined 

Timoshenko and Reissner theories. An analysis of the obtained results is provided. 

Keywords: models of plate bending, orthotropic material, hypothesis method, plates of medium thickness, boundary 

conditions, normal stresses, self-equilibrium stress state. 

1 Introduction 

The many refined theories of plates and shells can be 

divided into two subgroups: one that uses the flat section 

hypothesis and the other where this hypothesis does not 

apply. The former is used to calculate thin shells and 

plates, and the latter is used to calculate shells and plates 

of medium thickness. This subgroup must consider not 

only transverse shear but also transverse compression, 

normal stress, and functions that consider the self-

equilibrating stress states. Therefore, in this case, in 

addition to the hypothesis method, there are several other 

theories of bending of medium-thickness plates that should 

be used in some instances of complex loads. At the same 

time, the refinements proposed by researchers must have a 

particular justification and be physically feasible. 

In this work, based on the hypothesis method, the 

authors derive equilibrium equations for composite plates 

of medium thickness and formulaу for normal stresses for 

some plate loads under various boundary conditions. 

Comparisons are made with the results obtained by more 
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accurate iterative methods of calculating plate bending or 

elasticity theory. 

2 Literature Review 

Currently, many refined models of bending plates made 

of isotropic and composite materials describe the stress-

strain state of plates with greater or lesser accuracy 

compared to the classical Kirchhoff–Love theory. 

These theories are described in detail in [1–3]. For 

shells, similar bending models are discussed in detail in a 

large review [4, 5]. The review of these theories usually 

begins with the elementary ones by Timoshenko [6] and 

Reissner [7] in the following form: 

 𝑢 = 𝑧𝛾𝑥; 𝑣 = 𝑧𝛾𝑦; 𝑤 = 𝑤(𝑥, 𝑦), (1) 

where u, v, w – the components of the plate 

displacement vector in the respective directions of the 

coordinate axes x, y, z; γx, γy – the unknown generalized 

angles of rotation of the normal sections of the plate in the 

planes xz and yz. 

It can also be presented in the form [8]: 

 
𝑈(𝑥, 𝑦, 𝑧) = ∑ 𝑃𝑛𝑢𝑛

5
𝑛=0 , (𝑈, 𝑉; 𝑢, 𝑣);

𝑊(𝑥, 𝑦, 𝑧) = ∑ 𝑃𝑛𝑤𝑛+1
,4

𝑛=0
 (2) 

where𝑃𝑛 = 𝑃𝑛(𝑧/ℎ) − Legendre polynomials; σx, σy, 

τxy – stress components [9]. 

Simultaneously, most of the authors of the proposed 

models of plate bending use a method of decomposing the 

displacement vector components into infinite power series 

along the transverse coordinate zn [10]. 

For a specific ordering of such expansions and a 

correct analysis of the level of refinement of the proposed 

bending theories [3] introduced such a concept as “energy 

consistency” between the functions of representing the 

components of the displacement vector, their number, the 

order of equations, and the number of boundary conditions 

to them. In particular, if we take only n = 1 in the 

expansions (2), the order of the calculated equations 

should be p = 4 + 6n = 10. 

Simultaneously, within a formal approach, for the 

parameter n = 3, the system (2) will require integration by 

a 22nd-order equation. Therefore, without additional 

hypotheses, it is challenging to integrate such a system and 

satisfy the corresponding boundary conditions. 

Different variants of physically correct models of 

two-dimensional shell and plate theories can be obtained 

using various approaches to minimize the weighted 

inconsistencies of such representations, which differ only 

in coefficients. To achieve this “consistency”, the authors 

propose to use specific variational methods of Lagrange, 

Castigliano, or Reissner [3, 4, 8]. The main disadvantage 

of such coherence is that their formal application leads to 

a significant increase in the order of differential equations 

and, consequently, a significant increase in the 

mathematical difficulty of obtaining solutions. 

At the same time, the authors of [11, 12] showed how 

important the method of setting the boundary conditions 

and the influence of the degree of transverse anisotropy of 

the material itself plays an essential role in obtaining 

reliable results. 

In the papers [13, 14], a 3D system of homogeneous 

differential equations of motion of an anisotropic body in 

a cylindrical coordinate system and the corresponding 

boundary conditions within the framework of elasticity 

theory were constructed. The equations of motion and the 

boundary conditions allow us to consider layered 

anisotropic structures with variable thickness parameters. 

Similar thorough studies were carried out in the 

research works [15, 16] for a multilayer cylindrical 

composite cantilever beam under its bending by a load at 

the ends and elastic axial tension-compression. 

3 Research Methodology 

For the case studies presented in [3, 11], the 

hypotheses of Ambartsumyan, Vlasov, and Reissner [17] 

were considered. Compared with other models, transverse 

compression was considered for studying the “energy 

consistency” effect and its helpfulness and disadvantages 

in practical applications. 

Using solutions of well-known model problems, it 

was shown that in some cases of material anisotropy, a 

more accurate consideration of boundary conditions 

allows for obtaining results that cannot be obtained from 

standard generalized boundary conditions (e.g., for cases 

of slab support along the bottom edge, or for cylindrical 

surfaces pinching at the edges for a round one). 

Lagrange’s variational principle for the total potential 

energy of an elastic system and several other assumptions 

also allows for obtaining similar equations for medium-

thickness slabs of higher order. According to this principle, 

 𝛿П̃ = 𝛿П − 𝛿А, (3) 

where δП – variation of potential energy: 

𝛿П = ∬ ∫ [𝜎𝑥𝛿𝜀𝑥 + 𝜎𝑦𝛿𝜀𝑦 + 𝜎𝑧𝛿𝜀𝑧 +
ℎ

−ℎ𝑆

 

+𝜏𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜏𝑦𝑧𝛿𝛾𝑦𝑧]𝑑𝑧𝑑𝑦𝑑𝑥; 

δA – variation of work of volumetric and surface 

forces: 

𝛿А = ∭ (𝐹𝑥𝛿𝑈 + 𝐹𝑦𝛿𝑉 + 𝐹𝑧𝛿𝑊)𝑑𝑉𝑝
𝑉𝑝

+ 

+ ∬(𝑞−𝛿�̄�− + 𝑞+𝛿�̄�+)
𝑆

𝑑𝑆. 

Here, elements of slab volume dVp and surface dS are 

introduced, as well as limit values of Naghdi 

approximation [18], used in determination of compression 

deformations: 

�̄�(𝑥, у, 𝑧) ≃ 𝑤(𝑥, 𝑦) + 𝑧2𝑤2(𝑥, 𝑦), 

where 𝑞±– corresponding values of the external load 

on the external surfaces 𝑧 = ±ℎ of the slab; Fx, Fy, Fz – 

projections of volumetric forces on the corresponding 



 

 

D38 Dynamics and Strength of Machines 

 

coordinate axes, referred to the unit volume; εx, εy, εz and 

γxy, γyz, γzx – Cauchy dependencies. 

After substituting into equation (1), instead of the 

deformations 𝜀𝑖 and 𝛾𝑖𝑗 (i = {x, y, z}), through the Cauchy 

dependencies, the expressions for the displacements in the 

slab in the form of attracted series at the coordinate z 

(instead of infinite ones) [10]: 

 

𝑈(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦) + ∑ 𝑢𝑛(𝑥, 𝑦)𝑧𝑛3
𝑛=1 ;

𝑉(𝑥, 𝑦, 𝑧) = 𝑣(𝑥, 𝑦) + ∑ 𝑣𝑛(𝑥, 𝑦)𝑧𝑛3
𝑛=1 ;

𝑊(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦) + ∑ 𝑤𝑛(𝑥, 𝑦)𝑧𝑛,4
𝑛=1

 (4) 

where u, v, w – the displacements of the points of the 

slab center surface in the directions x, y, and z, 

respectively; un, vn, wn – arbitrary functions determined 

from the equilibrium equations of the slab element and the 

boundary conditions on its outer surfaces. 

For integrating the expression for δП with the 

variable z, the expression for the variation of the potential 

energy due to internal forces can be obtained: 

𝛿П = ∬ [𝑁𝑥𝛿(
𝜕𝑢

𝜕𝑥
) + 𝑁𝑦𝛿(

𝜕𝑣

𝜕𝑦
) + 𝑁𝑥𝑦𝛿(

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
) +

𝑆

+𝑀𝑥𝛿(
𝜕𝛾𝑥

𝜕𝑥
) + 𝑀𝑦𝛿(

𝜕𝛾𝑦

𝜕𝑦
) + 𝑀𝑥𝑦𝛿(

𝜕𝛾𝑦

𝜕𝑥
+

𝜕𝛾𝑥

𝜕𝑦
) +

+𝑄𝑥𝛿(𝛾𝑥 +
𝜕�̃�

𝜕𝑥
) + 𝑄𝑦𝛿(𝛾𝑦 +

𝜕�̃�

𝜕𝑥
) +

4

5
ℎ2𝑞2𝛿𝑤2]𝑑𝑦𝑑𝑥,

 (5) 

where the following expressions were introduced: 

�̃� = 𝑤 +
1

5
ℎ

2𝑤2; 

𝑞1 = 0,5(𝑞+ − 𝑞−);  𝑞2 = 𝑞− + 𝑞+; 

𝑁х = 𝑁х − 2ℎ𝐴1𝑞1;  𝑁𝑦 = 𝑁𝑦 − 2ℎ𝐴2𝑞1; 

𝛾𝑥 =
3

2ℎ
3 ∫ 𝑈𝑧𝑑𝑧

ℎ

−ℎ

;  𝛾𝑦 =
3

2ℎ
3 ∫ 𝑉𝑧𝑑𝑧

ℎ

−ℎ

. 

The generalized angles of rotation γx and γy for the 

normal to the median surface of the slab can be rewritten 

as follows: 

{𝛾𝑥, 𝛾𝑦} = − {
𝜕�̄�

𝜕𝑥
,
𝜕�̄�

𝜕𝑦
} +

4

5
{𝜓𝑥 , 𝜓𝑦}, 

where the following unknown functions have the 

nature of transverse shear deformations of the slab’s 

median surface: 

�̄� = 𝑤 + ℎ2𝑤2(𝑥, 𝑦) = �̄�±; 

𝜓𝑥 = −3ℎ2𝑢3;  𝜓𝑦 = −3ℎ
2𝑣3. 

The second term δA of the variational equation (5), in 

the absence of volumetric forces and with an accuracy of 

𝑘ℎ
2/𝑎2 can be reduced: 

 𝛿𝐴 = ∬ 𝑞2𝛿�̃�𝑑𝑆
𝑆

+
4

5
ℎ2 ∬ 𝑞2𝛿𝑤2𝑑𝑆

𝑆
. (6) 

After choosing the unknown functions of 

displacements and angles of rotation 𝑢, 𝑣, �̃�, 𝛾𝑥, 𝛾𝑦 as 

extremes in the variational equations (5), (6) and 

considering the formulas for integration by parts, the 

variation operation 𝛿П̃ can be performed: 

 

𝛿П̃ = − ∬ {(
𝜕𝑁𝑥

𝜕𝑥
+

𝜕𝑁𝑥𝑦

𝜕𝑦
)𝛿𝑢

𝑆
+ (

𝜕𝑁𝑥𝑦

𝜕𝑥
+

𝜕𝑁𝑦

𝜕𝑦
)𝛿𝜐 +

+(
𝜕𝑀𝑥

𝜕𝑥
+

𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥)𝛿𝛾𝑥 + (

𝜕𝑀𝑥𝑦

𝜕𝑥
+

𝜕𝑀𝑦

𝜕𝑦
− 𝑄𝑦)𝛿𝛾𝑦 +

+(
𝜕𝑄𝑥

𝜕𝑥
+

𝜕𝑄𝑦

𝜕𝑦
+ 𝑞2)𝛿�̃�}𝑑𝑦𝑑𝑥 +

+ ∫ [(𝑁𝑥𝑛 − 𝑁𝑥𝑛
∗ )

𝐿
𝛿𝑢 + (𝑁𝑦𝑛 − 𝑁𝑦𝑛

∗ )𝛿𝑣 +

+(𝑀𝑥𝑛 − 𝑀𝑥𝑛
∗ )𝛿𝛾𝑥 + (𝑀𝑦𝑛 − 𝑀𝑦𝑛

∗ )𝛿𝛾𝜑 +

+(𝑄𝑛 − 𝑄𝑛
∗ )𝛿�̃�]𝑑𝐿 = 0,

 (7) 

where L – the boundary of the contour S, 𝑙 =
𝑐𝑜𝑠(𝑛, 𝑥), 𝑚 = 𝑐𝑜𝑠(𝑛, 𝑦) – the directional cosines of the 

normal n to the contour S. 

It also contains the following parameters: 

𝑄𝑛 = 𝑄𝑥𝑙 + 𝑄𝑦𝑚; 

𝑁𝑥𝑛 = 𝑁𝑥𝑙 + 𝑁𝑥𝑦𝑚; 𝑁𝑦𝑛 = 𝑁𝑥𝑦𝑙 + 𝑁𝑦𝑚; 

𝑀𝑥𝑛 = 𝑀𝑥𝑙 + 𝑀𝑥𝑦𝑚; 𝑀𝑦𝑛 = 𝑀𝑥𝑦𝑙 + 𝑀𝑦𝑚; 

{𝑁𝑥 , 𝑁𝑦} = {𝑁𝑥, 𝑁𝑦} − 2ℎ{𝐴1, 𝐴2}𝑞1. 

The asterisked values in the contour integral (7) 

denote the forces acting on the contour of the plate. The 

following formula writes the expressions for internal 

forces and moments: 

 

{𝑁х, 𝑁𝑦 , 𝑁𝑥𝑦 , 𝑄𝑥 , 𝑄𝑦} = ∫ {𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦 , 𝜏𝑥𝑧 , 𝜏𝑦𝑧}
ℎ

−ℎ
𝑑𝑧;

{𝑀𝑥, 𝑀𝑦 , 𝑀𝑥𝑦} = ∫ {𝜎𝑥, 𝜎𝑦 , 𝜏𝑥𝑦}
ℎ

−ℎ
𝑧𝑑𝑧;

𝑀𝑥 = −𝐷1 (
𝜕

2
𝑤𝑏

𝜕𝑥2 + 𝜈12
𝜕

2
𝑤𝑏

𝜕𝑦2 ) −

−
4

5
𝐷1(1 − 𝜈12)

𝜕
2

𝛺

𝜕𝑥𝜕𝑦
+ �̄�1𝑞2;

𝑀𝑦 = −𝐷2 (
𝜕

2
𝑤𝑏

𝜕𝑦2 + 𝜈21
𝜕

2
𝑤𝑏

𝜕𝑥2 ) +

+
4

5
𝐷2(1 − 𝜈21)

𝜕
2

𝛺

𝜕𝑥𝜕𝑦
+ �̄�2𝑞2;

𝑀𝑥𝑦 = −2𝐷66 [
𝜕

2
𝑤𝑏

𝜕𝑥𝜕𝑦
−

2

5
(

𝜕
2

𝛺

𝜕𝑥2 −
𝜕

2
𝛺

𝜕𝑦2)] ;

𝑄𝑥 = 𝐾1 (
𝜕�̃�𝜏

𝜕𝑥
−

𝜕𝛺

𝜕𝑦
) ;  𝑄𝑦 = 𝐾2 (

𝜕�̃�𝜏

𝜕𝑦
+

𝜕𝛺

𝜕𝑥
) ;

�̃�1 =
𝐸1

1−𝜈12𝜈21
;  𝐾1 =

4

3
𝐺13ℎ; 𝐷1 =

2

3
�̃�1ℎ3;

𝑤𝑏 = �̃� −
4

5
�̃�𝜏;  �̃�𝜏 = 𝑤𝜏 − ℎ2𝑤2(𝑥, 𝑦);

𝐷66 =
2

3
𝐺12ℎ3;  𝐴1 =

𝜈31+𝜈32𝜈21

1−𝜈12𝜈21
.

 (8) 

The variations of the independent functions 𝑢, 𝑣, �̃�,
𝛾𝑥, 𝛾𝑦, determining the displacements and generalized 

angles of rotation of the normal in the plate have arbitrary 

values everywhere except the contour. Consequently, all 

the factors near each of the variations of equation (7) 

should be equal to zero. 

Therefore, by equating the coefficients near the 

independent variations to zero in the surface integral 

𝛿𝑢,  𝛿𝑣,  𝛿�̃�,  𝛿𝛾𝑥,  𝛿𝛾𝑦, a system of five differential 
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equations of equilibrium in forces for an orthotropic plate 

can be obtained: 

 

�̃�1

𝐺12

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 + (1 + 𝜈12
�̃�1

𝐺12
)

𝜕2𝑣

𝜕𝑥𝜕𝑦
= 0;

𝜕2𝑣

𝜕𝑥2 +
�̃�2

𝐺12

𝜕2𝑣

𝜕𝑦2 + (1 + 𝜈21
�̃�2

𝐺12
)

𝜕2𝑢

𝜕𝑥𝜕𝑦
= 0;

𝐷66𝛥𝛺 + (𝐷1 − 𝐷16)
𝜕2𝛺

𝜕𝑥2 =
5

4
𝐾1𝛺, (

𝑥 ↔ 𝑦
1 ↔ 2

) ;

 (9) 

 

𝐷1
𝜕4�̃�

𝜕𝑥4 + 2𝐷16
𝜕4�̃�

𝜕𝑥2𝜕𝑦2 + 𝐷2
𝜕4�̃�

𝜕𝑦4 =

= 𝑞2 + (𝐾2 − 𝐾1)
𝜕2𝛺

𝜕𝑥𝜕𝑦
+

+
4

5
(𝐷1

𝜕4�̃�𝜏

𝜕𝑥4 + 2𝐷16
𝜕4�̃�𝜏

𝜕𝑥2𝜕𝑦2 + 𝐷2
𝜕4�̃�𝜏

𝜕𝑦4 ) +

+ (�̄�1
𝜕2

𝜕𝑥2 + �̄�2
𝜕2

𝜕𝑦2) 𝑞2;

𝐾1�̄��̃�𝜏 + (𝐾2 − 𝐾1)
𝜕2𝛺

𝜕𝑥𝜕𝑦
= −𝑞2;

�̄� =
𝜕2

𝜕𝑥2 +
𝐺23

𝐺13

𝜕2

𝜕𝑦2 .

 (10) 

After analyzing the resulting system of differential 

equations (9) and (10), it can be seen that it has a total 12th 

order. However, given that the last equation of system (10) 

is not decisive since the value of �̃�𝜏, can be expressed 

through the other values of the system (10) in the form 

(here for trans-tropic material): 

𝐾 ′�̃�𝜏 = −𝐷𝛥�̃� +
2

5
(

𝐸

𝐺 ′
+

𝜈″

1 − 𝜈
) ℎ

2𝑞2. 

Therefore, the independent system will be of the 10th 

order. Timoshenko’s shear theory [6] (with the parameter 

n = 3) or Reissner’s theory [17], which does not consider 

transverse compression at the plate bend. 

Simultaneously, if approaching it formally, then 

system (8) is equivalent to the 22nd-order equations 

(without additional hypotheses) despite the contradictions 

regarding the order of the design equations. 

The transverse compression through the dependence 

for W in the system (4) allows for new closed solutions to 

the problems of contact interaction of thin-walled 

structural elements, which adequately reflects the physical 

content of such problems. 

Integration of the system of equations (9) and (10) 

requires the satisfaction of five boundary conditions at the 

edge of the slab. The equations for formulating the 

boundary conditions can be obtained by equating each of 

the components of the contour integral in the equation (7) 

to zero: 

 

(𝑁𝑥𝑛 − 𝑁𝑥𝑛
∗ )𝛿𝑢 = 0; (𝑁𝑦𝑛 − 𝑁𝑦𝑛

∗ )𝛿𝑣 = 0;

(𝑄𝑛 − 𝑄𝑛
∗ )𝛿�̃� = 0; (𝑀𝑥𝑛 − 𝑀𝑥𝑛

∗ )𝛿𝛾𝑥 = 0;

(𝑀𝑦𝑛 − 𝑀𝑦𝑛
∗ )𝛿𝛾𝜑 = 0.

 (11) 

Particularly, for slab edges x = const: 

 

(𝑁𝑥 − 𝑁𝑥
∗)𝛿𝑢 = 0; (𝑁𝑥𝑦 − 𝑁𝑥𝑦

∗ )𝛿𝑣 = 0;

(𝑄𝑥 − 𝑄𝑥
∗)𝛿�̃� = 0; (𝑀𝑥 − 𝑀𝑥

∗)𝛿𝛾𝑥 = 0;

(𝑀𝑥𝑦 − 𝑀𝑥𝑦
∗ )𝛿𝛾𝑦 = 0.

 (12) 

Based on the conditions (11), various boundary 

conditions at the slab edges can be generated. For example, 

to rigidly anchor a slab edge, the following five conditions 

should be met: 

 𝑢 = 𝑣 = �̃� = 𝛾𝑥 = 𝛾𝑦 = 0. (13) 

The conditions for hinging the edge of x = const may 

vary. Examples of such conditions may include: 

 
𝑎) 𝑤 = 0; 𝑁𝑥 = 𝑁𝑥у = 𝑀𝑥𝑦 = 𝑀𝑥 = 0; 

𝑏) 𝑤 = 𝑣 = 𝛾𝑦 = 0; 𝑁𝑥 = 𝑀𝑥 = 0.
 (14) 

If the edge of x = const is free of load (𝑁𝑥
∗ = 𝑁𝑥𝑦

∗ = 

= 𝑄𝑥
∗ = 𝑀𝑥

∗ = 𝑀𝑥𝑦
∗ = 0), then the following 

homogeneous conditions can be obtained according to 

conditions (7): 

 𝑁𝑥 = 𝑁𝑥𝑦 = 𝑀𝑥 = 𝑀𝑥𝑦 = 𝑄𝑥 = 0. (15) 

Thus, it can be argued that the theory describing the 

stress-strain state of a plate by equations (9), (10) and 

conditions (11), (13) obtained as a result of minimizing the 

Lagrange functional (7) is equivalent to the energy-

consistent one (n = 3). 

Simultaneously, it should be noted that neither the 

equilibrium equations nor the boundary conditions differ 

in form from the corresponding equations and conditions 

of plate theories obtained by other methods. 

At the same time, the internal content of the elements 

of these dependencies differs significantly. For example, 

the displacement of the plate center surface w in applied 

theories such as Timoshenko’s, a similar generalized 

displacement in Reissner’s theory, and the averaged 

displacement �̃�. 

The same is true for other characteristics, such as 

generalized rotation angles 𝛾𝑖 or bending moments 𝑀і. 

Simultaneously, as shown in [11], such generalizations of 

boundary conditions in displacements only at the level of 

the median surface can lead to less accurate results. Thus, 

it can be concluded that energy consistency optimizes the 

results within only a specific model (e.g., the Timoshenko 

model or the improved Ambartsumyan–Vlasov model 

[3]). 

Considering formulas (8) and (10), the expressions 

for the stresses in the cross-sections of the slab can be 

obtained as dependencies on forces and moments: 

 

𝜎𝑥 =
𝑁𝑥

2ℎ
+

3𝑀𝑥

2ℎ3 𝑧 +
�̃�1

𝐾1
(

𝜕𝑄𝑥

𝜕𝑥
+

𝜈12

𝑔

𝜕𝑄𝑦

𝜕𝑦
) 𝑓(𝑧) +

+А1(𝜎𝑧 − 𝜎0) + �̃�𝑥;

𝜎𝑦 =
𝑁𝑦

2ℎ
+

3𝑀𝑦

2ℎ3 𝑧 +
�̃�2

𝐾2
(

𝜕𝑄𝑦

𝜕𝑦
+ 𝜈21𝑔

𝜕𝑄𝑥

𝜕𝑥
) 𝑓(𝑧) +

+А2(𝜎𝑧 − 𝜎0) + �̃�𝑦;

𝜏𝑥𝑦 =
𝑁𝑥𝑦

2ℎ
+

3𝑀𝑥𝑦

2ℎ3 𝑧 +

+𝐺12 (
𝜕�̄�𝑥

𝜕𝑦
+

𝜕�̄�𝑦

𝜕𝑥
+ 2ℎ2 𝜕2𝑤2

𝜕𝑥𝜕𝑦
) 𝑓(𝑧);

𝜏𝑥𝑧 = 𝐺13(1 − 𝑧2/ℎ2)�̄�𝑥;

𝜏𝑦𝑧 = 𝐺23(1 − 𝑧2/ℎ2)�̄�𝑦

 (16) 

with the following parameters, functions, and features: 
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�̃�𝑥 = �̃�1ℎ2 (
𝜕2𝑤2

𝜕𝑥2
+ 𝜈12

𝜕2𝑤2

𝜕𝑦2
) 𝑓(𝑧); 

�̃�𝑦 = �̃�2ℎ2 (
𝜕2𝑤2

𝜕𝑦2
+ 𝜈21

𝜕2𝑤2

𝜕𝑥2
) 𝑓(𝑧); 

𝑤2 =
3

8

𝛼𝑧𝑞2

𝐸3ℎ
−

1

2
(𝐴1

𝜕𝛾𝑥

𝜕𝑥
+ 𝐴2

𝜕𝛾𝑦

𝜕𝑦
) ; 

𝛼𝑧 = 1 − (𝜈13𝐴1 + 𝜈23𝐴2);  𝑔 =
𝐺23

𝐺13

; 

𝑓(𝑧) =
𝑧

5
(1 −

5𝑧2

3ℎ2
) ; ∫ 𝑓(𝑧)

ℎ

−ℎ

𝑑𝑧 = ∫ 𝑧𝑓(𝑧)
ℎ

−ℎ

𝑑𝑧 = 0; 

𝜎0 = 𝑞1 +
3𝑧

5ℎ
𝑞2;  𝜎𝑧 = 𝑞1 +

1

4
(3

𝑧

ℎ
−

𝑧3

ℎ3
) 𝑞2; 

𝑞1 =
1

2
(𝑞+ − 𝑞−);  𝑞2 = 𝑞− + 𝑞+; 

�̄�𝑥 =
𝑄𝑥

𝐾1

;  �̄�𝑦 =
𝑄𝑦

𝐾2

. 

The resulting formulas are the same as in [6], except 

for the terms that include the crimping function 𝑤2(𝑥, 𝑦). 

4 Results 

4.1 Bending of a square transtropic slab  

hinged at the edges 

To quantify these refinements for different slab 

models, we compare them with the exact solutions of the 

elasticity theory problem [3]. Let’s consider the test 

bending problem for a square transtropic slab hinged at the 

edges (x = [0, a], y = [0, a]) under the first condition (14) 

with a surface load 𝑞− = 𝑞0 𝑠𝑖𝑛 𝜆 𝑥 𝑠𝑖𝑛 𝜆 𝑦 (𝜆 = 𝜋/𝑎), 

which varies in both directions of the outer surface 

according to the law of sine. 

In this case, the displacement of the center surface 

and the normal stress 𝜎𝑥 in the center of the slab are found 

by the following formulas: 

 

𝑤𝑐 =
𝑞0а

4

4𝜋4𝐷
(1 + 2𝜀1̄𝛿2 − 4𝜀2̄𝛿4);

𝜎х
𝑐 =

3𝑞0𝑎2𝑧

8𝜋2ℎ3 (1 + 𝜈)[1 +
4𝜈″𝛿2

5(1+𝜈)
+

+
𝛿2𝑅

1−𝜈2
(

𝑧2

3ℎ2 −
1

5
)] −

𝜈″

(1−𝜈)

𝑞0

2
,

 (17) 

with the following parameters: 

𝑅 =
𝐸

𝐺 ′
− 𝜈″(3 + 𝜈) + 𝛿2 (

𝐸

𝐸′
− 𝑟 ′𝐴′) ;  

𝛿 = 𝜆ℎ;  𝜀1̄,2 =
𝜀1,2

(ℎ2, ℎ4)
; 𝑟 ′ =

2𝐸

𝐺 ′
+ 𝜈″(3 − 2𝜈). 

The calculations for the relative displacements  

�̄� = 𝑤𝐸/(2𝑞0ℎ) of the middle surface and stresses  

�̄� = 𝜎/𝑞0 in isotropic and transtropic (GRP 27-63c) plates 

are given in Tables 1, 2, where the data are plotted for the 

relative thickness 2h/a = 1/3 and equal Poisson’s ratios 

𝜈 = 𝜈″= 0.3. 

Table 1 – Values of relative normal displacements �̄�  

and stresses �̄� in a slab for an isotropic material  

for equal Poisson’s ratios 𝜈 = 𝜈″= 0.3 

Parameter 
Classical  

theory 

3D  

model  

[3] 

Reissner’s  

theory  

[7] 

The  

developed  

model 

�̄� 2.27 3.49 3.48 3.50 

�̄� 1.78 2.12 1.87 2.15 

Table 2 – Values of relative normal displacements �̄�  

and stresses �̄� in the slab for transtropic material  

for 𝐸/𝐸′ = 3.1 and 𝐺/𝐺 ′ = 1.8 

Parame

ter 
Reissner’s model [15] The developed model 

�̄� 4.62 4.56 

�̄� 1.87 2.37 

 

The data analysis in Tables 1 and 2 shows that using 

the Lagrange variational method and trimmed rows in the 

construction of refined bending theories for medium-thick 

plates is quite effective. The error margins of the 

constructed model in terms of displacements and stresses 

in the given test problem (isotropic material), compared to 

the 3D solution by Vlasov [16], are 0.2% and 1.2 %, 

respectively. Errors in the classical theory are 35% and 

16%, respectively. 

The error margins of the theory of Reissner’s theory 

(“energy consistent” for n = 1) in determining normal 

stresses are of the same order as in the classical Kirchhoff–

Love theory, both for isotropic and transtropic materials. 

The Timoshenko’s theory, without considering the 

stress 𝜎𝑧 does not specify the values of normal stresses and 

gives the same results as the classical theory. 

In Figure 1, using formula (15), graphs of changes in 

normal stresses 𝜎𝑥(0, 𝑧)/𝑞0 in the central section of the 

slab (𝑥 = 𝑎/2;  𝑦 = 𝑏/2) are plotted as a function of the 

thickness coordinate z, when the relative thickness of the 

slab is 2ℎ/𝑎 = 1/3. 

 

Figure 1 – Variation of normal stresses 𝜎𝑥(0, 𝑧)/𝑞0  

in the cross-section of the slab 

Curves 1 (solid and dashed-dotted) were constructed 

for an isotropic material (𝜈 = 𝜈″ = 0.3) using formula (15) 

and according to the exact Vlasov’s solution [16] to the 

spatial problem of elasticity theory, respectively. 

The dashed and solid (next to each other) lines 2 are 

constructed according to a variant of Reissner’s model 
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[14]. Also, the solid line (next to each other) refers to the 

solution of the classical Kirchhoff–Love theory. 

These curves are very close for the isotropic case 

(with the same Poisson’s ratio) and for all other transtropic 

materials. Curve 3 was constructed for unidirectional 

graphite plastic with the following characteristics: 𝐸/
𝐺 ′ = 50; 𝐸/𝐸′ = 25; 𝜈 = 𝜈″ = 0.25. 

Simultaneously, for an isotropic material, the curves 

of stresses with thickness obtained based on different plate 

models are approximately close to each other (Table 1, 

Figure 1). For graphite-plastics with low shear stiffness 

and transverse resistance, they are more than three times 

(𝜎𝑥
1(0, −ℎ) = −5.44𝑞0 and 𝜎𝑥

2(0, −ℎ) = −1.78𝑞0) 

different from each other. 

For example, curve 3, constructed for a plate made of 

unidirectional graphite plastic, changes the sign of the 

normal stress three times with thickness, while other 

models show only one change. This nature of the stress 

change results from the occurrence of quite significant 

self-balancing forces in the cross-sections of the plate, 

which are insignificant in isotropic plates but can occur in 

spatial bodies. The latter remarks on the results of the 

proposed plate model are confirmed by refined higher-

order theories [14, 17] and numerical methods that 

incorporate edge effects more accurately. 

Similar studies based on the equations of elasticity 

theory for an orthotropic material (without taking into 

account the stress 𝜎𝑧 and strain 𝜀𝑧 ) were conducted in [17], 

where it is graphically shown that at a specific ratio 𝐸/𝐺 ′, 

the stresses in the middle of the slab can exceed the stresses 

on its surface, as well as other differences. 

4.2 Bending of a circular slab by a uniformly 

distributed load 

Let’s consider the bending of a circular slab by a 

uniformly distributed load 𝑞− = 𝑞 = const, applied to the 

outer surface of the slab 𝑧 = −ℎ. The slab at the edge r = a 

is rigidly clamped, and the boundary conditions (12) can 

be transposed to the following form: 

 𝑢 = 0; �̃� = 0; 𝛾𝑟 = 0.  (18) 

Simultaneously, for a broader consideration of the 

problem, we will write the boundary conditions, from 

which the previous ones can be derived, in the form: 

 𝑢 = 0;  𝑊|𝑧=𝑧0
= 0; (𝜕𝑈/𝜕𝑧)|𝑧=𝑧0𝑢

 = 0. (19) 

Here, the parameters 𝑧0 and 𝑧0𝑢 are the distances 

from the center surface of the slab in the positive direction 

of the z axis, where the corresponding displacements or 

rotation angles are assumed to be zero. 

For example, at 𝑧0𝑢 = ±ℎ/√5 and 𝑧0 = 0, the 

condition (12) can be obtained. Under these conditions, the 

solution to the problem [10] was obtained and, 

particularly, the formula for the normal stress 𝜎𝑟, including 

the parameter 𝑧0𝑢 affecting the value 𝜎𝑟 is as follows: 

 
𝜎𝑟(𝑟, 𝑧) =

3(1+𝜈)𝑞𝑎2𝑧

32ℎ3 [1 −
(3+𝜈)𝑟2

(1+𝜈)𝑎2 +

+�̄�
ℎ2

𝑎2 +
4ℎ2

(1−𝜈)𝑎2 (�̄�1 + �̄�2
𝑧2

ℎ2 )] − 0,5𝐴′𝑞,
 (20) 

where the following parameters were introduced: 

𝛼 =
𝜈″𝐺 ′

2𝐺
;  �̄� =

8(1 − 𝛼)

1 − 𝜈
(

1

5
−

𝑧0𝑢
2

ℎ2
)

𝐺

𝐺 ′
;

�̄�1 = −
2

5

𝐺

𝐺 ′
+

𝜈″(11 + 𝜈)

5(1 + 𝜈)
; �̄�2 =

2

3

𝐺

𝐺 ′
−

𝜈″(3 + 𝜈)

3(1 + 𝜈)
.

 

In the Reissner’s theory [7], the parameters �̄�, �̄�1, 

and �̄�2 are equal to zero, although it can also be 

considered “energy consistent”. 

Table 3 shows the results of calculating the stresses 

𝜎𝑟 in a slab according to formula (17), the relative 

thickness of which ℎ/𝑎 = 1/5, and the Poisson’s ratios 

𝜈 = 𝜈″ = 0.25. 

Table 3 – Dimensionless stress values �̃�𝒓(𝟎) and �̃�𝑟
∗(а) 

�̃�𝑖 z 

3D  

classical  

theory  

[18] 

𝑧0𝑢 = 0  

(18) 

𝑧0𝑢 = 

= ±ℎ/√5  

(18) 

𝑧0𝑢 = ±ℎ  

(17) 

𝜎𝑟

𝑞
 

−ℎ 
–3.63 

–2.93 

–3.63 

–5.29 

–3.41 

–4.08 

–3.63 

0.80 

ℎ 
3.21 

2.93 

3.29 

4.96 

3.08 

3.74 

3.33 

–1.13 

𝜎𝑟
∗

𝑞
 

−ℎ 
5.94 

4.69 

5.05 

6.72 

4.84 

4.50 

5.09 

8.42 

ℎ 
–5.87 

–4.69 

–5.39 

–7.05 

–5.17 

–5.84 

–5.42 

–8.75 

 

The effect on the values of radial stresses �̃�𝒓(𝟎) and 

𝜎𝑟
∗(𝑎) of the method of clamping by changing a particular 

parameter 𝑧0𝑢 is investigated. The values in the 

denominator (in bold) are obtained for a transversally 

isotropic material (𝐸/𝐸′ = 2; 𝐺/𝐺 ′ = 5). 

The results calculated by the formula (17) are 

compared with the corresponding results (third column) 

obtained in the formulation of the spatial problem of 

elasticity theory by the method of determinant states 

(numerator) and the classical Kirchhoff–Love theory (in 

the denominator). 

From the analysis of the data in Table 3, it can be 

concluded that in the case of an isotropic material, the 

boundary conditions (12) obtained from the contour 

integral (5) lead to less accurate results compared to the 

three-dimensional solution, as well as other cases of 

pinching: 𝑧0𝑢 = 0; 𝑧0𝑢 = ±ℎ. 

Simultaneously, in the case of the transtropic material 

in the last column (𝑧0𝑢 = ±ℎ), the results obtained in the 

center of the slab differ even in sign compared to the case 

of an isotropic material. It is obvious that the component 

�̄�, which partially describes the self-equilibrium stress 

state, is much higher than the component from the moment 

stress state. It is clear that such “anomalies” require 

additional verification by performed calculations of the 

spatial problem or by experimental data. 

Special attention, when calculating slabs of medium 

thickness, requires an assessment of the effect of the 

corrections for the consideration of the transverse 

compression strain 𝜀𝑧 and transverse normal stress 𝜎𝑧 in 
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the model equations, as well as in the calculation formulas 

for displacements and stresses. 

The multiplier denotes the above corrections in 

formulas (15) and (18) 𝜈″ (Poisson’s ratio). Equating it to 

zero, we obtain formulas where only the correction for the 

transverse shear strain is valid. 

For the Timoshenko’s and the Ambartsumyan’s 

theories, where these corrections are not considered, the 

normal displacement �̄� = 3.69 (for a thickness of 

a/(2h) = 3). This result has an error of about 6%. 

The magnitude of the effect of the transverse 

compression strain is characterized by the difference in 

displacements of the outer surfaces (upper and lower), 

which also depends on the value of the modulus ratio 𝐸/𝐸′. 

In particular, in this case, the displacement of the upper 

and lower surfaces will be 3.60 (3.56) and 3.15 (3.19), i.e. 

6–10%. The errors in calculating normal stresses for this 

problem will be approximately the same. Simultaneously, 

for transtropic materials, at large modulus ratios 𝐸/𝐸′, the 

errors (together with the consideration of the transverse 

shear strain) can be relatively large, as observed for the 

case of a round slab. 

At the same time, it should be noted that in the first 

problem for a rectangular slab, the above effects were not 

observed due to the specificity of the given load, where the 

boundary conditions on the side surfaces were satisfied at 

all points of the edges. 

However, when considering transverse compression 

under some loads – the contact interaction of beams and 

slabs with rigid dies - there is no question of a quantitative 

assessment of contact pressure because even qualitative 

information is not preserved. 

For example, the problem of forced bending of a rod 

along a predetermined surface (Figure 2) was considered 

by Tymoshenko in the formulation of hypotheses of the 

classical Bernoulli–Euler rod bending theory, where 

contact pressure was generally considered absent. 

 

Figure 2 – Distribution of contact рressure in a long rod 

5 Discussion 

In a refined formulation, considering transverse shear 

deformations, the problem was first solved by Filonenko–

Borodich [3]. It gives a numerical example for a steel strip 

with a length of 2l = 0.2 m, width t = 0.01 m, and thickness 

2h = 0.001 m, pressed against the rigid base of the pattern 

by concentrated forces applied to its ends (Figure 2). 

The radius of curvature of the pattern base R = 1 m. 

It was necessary to determine the magnitude of the forces 

applied to the strip to bend it according to a given pattern 

and investigate the nature of the pressure distribution on 

the strip. 

According to the Filonenko–Borodich approach, the 

solution to the problem considering only the effect of the 

transverse shear strain (Figure 2) is dashed. However, 

according to the solution given in this article, the 

magnitude of these forces is P / = 339 N. The maximum 

pressure reached at the ends of the strip qmax = 65.6 MPa. 

The results obtained by using the corresponding 

formulas (Figure 2, solid line) give the following values 

for the maximum forces and maximum pressure: 

P / = P/2= 252 N; qmax = 23.7 MPa. 

The numerical analysis of formulas presented in [19] 

shows that the pattern’s response to the strip is 

concentrated near its ends in areas of size about 

a = 0.02 m. The rest of the pattern is practically free of 

load. 
The periodic problem of bending an infinite strip with 

dies based on the equations of plane elasticity theory was 

also considered most consistently and thoroughly by Kier 

and Silva [20], where the size of the contact area could be 

both large and relatively small. The solution was 

constructed in trigonometric series and reduced to pairwise 

integral equations that were solved numerically. A similar 

method was used by other authors [3] without considering 

the sticking effect. 

A similar problem, but for a beam partially supported 

on a rigid base, was checked in the formulation of a plane 

problem of elasticity but by the boundary element method. 

The difference between the numerical results and those 

obtained using the formulas did not exceed 3 %. 

6 Conclusions 

The article considers the problem of construction and 

accuracy of “energy-consistent” models of medium-

thickness slabs. Using the examples of solutions for one of 

these models, numerical results are presented for a 

rectangular slab hinged on a hinge and a circular slab 

clamped on the edge of the slab, made of isotropic and 

transtropic materials. The contact interaction of rigid 

objects with elastic elements (beams, slabs) is considered. 

The influence of a particular refinement on the nature of 

the stress state of a particular structural element is 

investigated. The calculated results are compared with the 

corresponding available results obtained in the 

formulations of the three-dimensional problem of 

elasticity and the classical Kirchhoff–Love theory. 
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Each numerical example for the constructed bending 

model played a particular role in the considered 

refinements at different loads and boundary conditions. 

The first example shows that, provided that the boundary 

conditions are exactly satisfied, the numerical results for 

normal stresses in an isotropic slab coincide with the 

results of the spatial problem to within 1 %. At the same 

time, the data obtained for slabs made of composite 

materials can differ significantly from both the spatial 

problem for an isotropic material and the classical results. 

That is, there is a problem with three-dimensional results 

for composite slabs. 

The analysis of the comparisons shows that the 

accuracy of a particular model depends mainly on the level 

and perfection of the proposed hypotheses and only then 

on the correctness of their use and the application of 

variational methods in the construction and integration of 

the resulting differential equations. This is especially true 

for models for slabs of medium thickness made of 

anisotropic materials when edge effects can extend to the 

entire slab volume, leading to a change in the signs of 

stresses on the outer surfaces (the second problem). Using 

the example of the problem of forced bending of a rod, it 

was shown that any slab model that does not consider 

transverse compression cannot give a correct solution even 

in the first approximation, so such problems should be 

solved only if available. 
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