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Abstract. The article discusses one of the most widely used distribution laws for reliability analysis – Weibull 

distribution. It describes a wide range of processes for all stages of the life cycle of technical objects, including yield 

stress of steel distribution and failures in the reliability theory regarding the wide range of technical objects (e.g., metal 

cutting tools, bearings, compressors, and wheels). A significant number of works are devoted to evaluating distribution 

law parameters based on empirical data in search of the most precise one, ignoring the probabilistic character of the 

parameters themselves. Parameters may have a relatively wide confidence range, which can be considered the 

parameter estimation error compared to biases of parameters estimated by different methods. Moreover, many 

approaches should be used for certain selection volumes, including comprehensive calculating procedures. Instead, this 

paper suggested and statistically confirmed a universal simplified approach. It demands a minimal set of data and 

connects the shape and scale parameters of the Weibull distribution with the variation coefficient as one of the leading 

statistical characteristics. This approach does not demand variational sequence arrangement. Nevertheless, it is 

supposed to be quite efficient for the engineering practice of reliability analysis. The adequacy of the results was 

confirmed using generated selections analysis and experimental data on cutting tool reliability. Within the achieved 

results, it was also demonstrated that the variation coefficient reflects not only selection stability and variable volatility 

degree, which are its main aim, but the cause of failure as well. 

Keywords: cutting tool life, least squared estimation, maximum likelihood estimation, confidence interval, variation 

coefficient, bias, empirical data.

1 Introduction 

One of the most essential tasks solved in engineering 

and industry is providing reliable, uninterrupted operation 

of objects designed, manufactured, or operated objects. 

Ones can be united by the general term “technical object”. 

This especially applies to objects subject to friction and 

wear [1]. One of the most illustrative examples of such 

objects is metal cutting tools, which are related mainly to 

friction and wear [2]. 

Simultaneously, the cutting tool is a critical part of any 

CNC machining, and its reliability directly affects the 

efficiency and stability of the machining process in general 

[3]. Due to the tool wear, the machine outage reaches up 

to 25 % of the CNC machine outage. Moreover, the tool 

and retooling cost reaches up to 12 % of the cost per part 

[4]. If the cost of the machined part is broken due to a 

cutting tool failure during the machining process or failure 

of some vital part during exploitation will be additionally 

considered, the need to control and ensure the reliability of 

the technical object becomes apparent. 

To simulate the reliability of any technical object, 

including prediction of the failure probability or that of the 

no-failure operation during a certain time, prediction of the 

no-failure time, determination of the mean time between 

failures or time to failure, and planning of the test 

programs, it is necessary to establish what kind of 

theoretical distribution law describes available empirical 

(selective) data, referring to the operation time to failure. 

In other words, it is necessary to establish a 

correspondence between the empirical and the theoretical 

distribution laws and evaluate the parameters of such laws 

based on the empirical data [5]. From the formal point of 

view, this correspondence can be established by Pearson’s 
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chi-square, Kolmogorov-Smirnov type, and other criteria. 

However, it is not only the formal side that is important – 

namely, how close the form of the theoretical distribution 

law is to the available empirical data, but also physical 

interpretation, connecting the type of theoretical 

distribution law and its parameters with the process 

mechanism [6]. 

Different theoretical distribution laws can be used to 

describe the same empirical data [7, 8]. In addition, one 

distribution law can be a particular case of another. In 

reliability analysis and modeling, it is essential to consider 

the period of the life cycle at which the object operates: 

wear-in, normal operation, or wear-out, which affects, first 

of all, the nature of the dependence between time and 

failure rate. The Weibull distribution is one of the most 

widely used distribution laws [8]. This law, or rather a 

family of distributions, describes a wide range of 

processes, such as yield stress of steel distribution [6, 7] 

and failures in the reliability theory. 

2 Literature Review 

The Weibull distribution probability density is 

described as the function of time t as follows: 

𝑓(𝑡) =
𝛼

𝛽𝛼 𝑡𝛼−1𝑒𝑥𝑝 [− (
𝑡

𝛽
)

𝛼

],                     (1) 

where α > 0 and β > 0 are the shape and scale 

parameters, respectively. 

Some basic general characteristics of the Weibull 

distribution are shown in Table 1. 

Table 1 – General characteristics of the Weibull distribution* 

Name Value 

Argument 0 ≤ 𝑡 ≤ +∞ 

Mathematical expectation 𝜇 = 𝛽 ∙ Г(1 + 1 𝛼⁄ ) 

Variance 𝜎2 = 𝛽2 ∙ Г(1 + 2 𝛼⁄ ) − 𝜇2 

Failure rate 𝜆(𝑡) =
𝛼

𝛽𝛼 𝑡𝛼−1 

Median 𝑀𝑒 = 𝛽𝑙𝑛(2)1 𝛼⁄  

Mode 
𝑀𝑜 = 𝛽 (

𝛼 − 1

𝛼
)

1 𝛼⁄

 

* Г(𝑋) – Eiler’s general gamma function. 

The Weibull distribution was first applied in the 

aerospace and automotive industries. It is employed in 

electric power, nuclear, medical, dental, and components 

such as bearings, compressors, cables, and wheels. 

Chemical, oil, instrumentation, electronics, and railroads 

are the newest converts to Weibull [9]. It suggests a great 

variety of forms depending on the shape factor: 

1) for α < 1, the failure rate is a decreasing function, and 

the law describes the wear-in phase; 

2) at α = 1, the failure rate is constant, and the 

distribution goes exponentially and describes sudden 

failures – normal operation phase. However, it is possible 

only for the objects that are not subjected to wear [10]; 

3) for α > 1, the failure rate is an increasing function, 

and the distribution law describes failures associated with 

wear; 

4) if 1 < α < 2, the failure rate is a convex function 

bounded above; 

5) if α = 2, the failure rate is a straight line, and the 

distribution law coincides with Rayleigh one; 

6) if α > 2, the failure rate is the concave curve that is 

not bounded from above. 

A traditional and most common method for estimating 

Weibull distribution parameters is the least squared 

estimation (LSE) [6], which is considered classical. 

Empirical data are approximated by the linear function of 

empirical time tu, corresponding to interval u: 

𝑌 = 𝑏𝑜 + 𝛼̂ ∙ 𝑋;                                (2) 

{

𝑋 = ln(𝑡𝑢) ;

𝑏𝑜 = −𝛼̂ ∙ 𝑙𝑛(𝛽̂);

𝑌 = 𝑙𝑛 [𝑙𝑛 (
1

1−𝐹̂(𝑡𝑢)
)] ,

                        (3) 

where equations 𝛼̂, 𝛽̂ – empirical shape and scale 

parameters, respectively; 𝐹̂(𝑡𝑢) – empirical cumulative 

proportionate failure frequency of hitting the interval u. 

Any distribution law is restored by constructing an 

interval variational series based on the sample of volume 

N. In this case, neither shape nor scale parameters are 

known (they should be found by estimation analysis). 

Contrarily, the comparison of different estimation 

methods is based on simulation experiments when 

selection is generated with known theoretical parameters, 

which are then compared with ones obtained from the 

selection. 

Many works are devoted to numerous methods for 

determining shape and scale parameters that differ by 

complexity, aiming to find the most “precise” in the given 

conditions. Moreover, many proposed methods are based 

on rather complicated calculation algorithms. 

Let’s consider some of them, representing a far from 

exhaustive list. The work [11] compares the Bayesian 

method with maximum likelihood estimates (MLE), 

indicating that the first is better for small samples. 

The article [12] proposes a new method based on 

transforming the cumulative distribution function 

constructed as a mapping from the value of the random 

variable and its corresponding cumulative distribution 

probability to the scale parameter. The proposed method’s 

accuracy gives more accurate results compared with the 

LSE and the MLE. 

The paper [13] estimates parameters utilizing the MLE 

approach, the maximum product spacing (MPS) technique, 

and the Bayesian assessment approach. Monte Carlo 

Simulation was utilized to compare the three techniques 

above. Bayes estimators have been computed using the 

Lindley Approximation approach. It was found that 

Bayesian estimation behaves better. 
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Work [14] compares the following methods: the L-

moment estimator (LM), MLE approach, moment 

estimation (MoE), LSE, the modified MLE (MMLE), 

modified MoE (MMoE), and the maximum product 

spacing (MPS), for example, for some of them the best-fit 

area is defined. 

The LM method is almost always close to the best 

estimation method, including the scenario where a 

significant shape parameter α > 6 is coupled with a small 

sample size. The MLE best fits when the shape parameter 

1.5 ≤ α ≤ 4.0, even for a small sample of n = 10. 

The MPS estimator is better than others when 

0.5 < α < 1.5. 

For large α > 6.0 and sample size n > 50, the best 

method is MMLE. 

Instead, the paper [15] analyzes the following methods: 

Justus empirical method, method of moment estimation 

(MoE), graphical method, energy pattern factor method 

(EPM), energy trend method, and MLE, using manta-ray 

foraging optimization (MRFO) method as metaheuristic 

algorithm, indicate that MLE method as well as EPM are 

the least successful. Paper [16] has almost the same results 

regarding MLE and proposes its iterative method. 

The work [17] is dedicated to comparing the following 

estimation methods: MLE, MME, and median rank 

regression (MRR), and does not find any sufficient 

difference between the above methods.  

Article [18] indicates that classical parameter 

estimation methods, e.g., MLE and LSE, do not provide 

robust estimates for large and heavily censored samples 

and develop their own novel parameter estimation method 

based on information extracted from censored 

observations and evaluate the accuracy and robustness of 

the proposed method through a numerical experiment. 

The problem of the above works, including [14, 17], is 

that they are searching for the most “precise” method 

comparing the theoretical value of parameters and ones 

obtained from simulation (numerical experiment) based on 

the generated selection. Instead, in real-life tests, 

distribution parameters are unknown, and as with any 

random values, interval estimation is in the form of a 

confidence interval (CI) that covers unknown parameters 

with a given confidence probability should be considered. 

Thus, the parameters can take any value inside the CI. 

Moreover, the confidence interval can be considered an 

error in determining the parameter’s actual value. 

The upper and lower confidence limits of the shape 

parameter for confidence probability 0.95 from [6] can be 

found as follows: 

𝛼𝑈 = 𝛼̂ ∙ 𝑒𝑥𝑝 (
1.53

√𝑁
) ;                         (4) 

𝛼𝐿 = 𝛼̂ ∙ 𝑒𝑥𝑝 (−
1.53

√𝑁
).                       (5) 

The length of the shape parameter CI: 

𝐷𝑎 = 𝛼𝑈 − 𝛼𝐿 .                              (6) 

As for the scale parameter, its upper and lower 

confidence limits for confidence probability 0.95 can be 

defined as follows [6]: 

𝛽𝑈 = 𝛽̂𝑒𝑥𝑝 (
2.058

𝛼 ̂√𝑁
) ;                        (7) 

𝛽𝐿 = 𝛽̂𝑒𝑥𝑝 (−
2.058

𝛼 ̂√𝑁
).                      (8) 

The length of the scale parameter CI, respectfully: 

𝐷𝑏 = 𝛽𝑈 − 𝛽𝐿 .                             (9) 

The results of the shape parameter CI calculation by 

formulas (4)–(6), based on the data given in [17] for 

different methods and samples of size N, and their 

comparison with the biases of the recovered shape 

parameters relative to the theoretical value (α = 5.0) are 

shown in Figure 1. 

 

Figure 1 – Comparison of the CI length with biases of the  

shape parameter for different estimation methods  

and sample size for α = 5 and β = 90 

The same trend persists for small values of the shape 

and scale parameters. 

Figure 2 compares the scale parameter CI length and 

biases for the above estimation methods [17]. The 

formulas (7)–(9) calculate CI length for α = 2 and β = 2.5. 

As seen from Figures 1, 2, CI lengths are orders of 

magnitude higher the biases obtained for different 

estimation methods. Confidence interval as well as biases 

completely depends on the sample size and it is seen in 

formulas (4), (5), (7), (8). Thus, from a statistical point of 

view, it does not matter how “precise” the estimation 

method is, since the parameter value is inside the 

confidence interval – in real life, the parameter’s 

theoretical values are unknown, besides simulation 

experiments. The method should be adequate to the 

conditions and accuracy defined by the CI. In addition, the 

above methods demand rather complicated calculation 

algorithms. 
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Figure 2 – Comparison of the CI length with biases of the  

scale parameter for different estimation methods  

and sample size for α = 2 and β = 2.5 

Thus, in this article, for the case when there are good 

reasons, based on the broad engineering practice, to 

assume Weibull distribution in reliability analysis, we 

would like to achieve the following goal: develop a 

universal, simple, and precise method for distribution 

parameters estimation with a minimal set of data, giving 

adequate results from the statistical point of view. 

To achieve this aim, the following objectives should be 

solved: 

1. Development of a methodology for conducting a 

simulation experiment, during which a sample is 

generated, following the Weibull distribution law, with 

known parameters, imitating the time to failure of a 

technical object. 

2. Develop a methodology for estimating distribution 

law parameters based on basic statistical indicators of a 

sample; confirm its statistical adequacy and assess the 

possibility of its application at different sample sizes and 

theoretical values of distribution parameters. 

3. Establishing a statistical relationship between 

defined distribution parameters and statistical 

characteristics of the sample to ensure the relevance of the 

methodology developed. 

4. Evaluation of the obtained results by comparing them 

with similar ones obtained by a known method taken as a 

reference, including using confidence intervals. 

5. To perform the transition from simulation modeling 

to the results of physical reliability testing of metal-cutting 

tools as an example of application of the methodology in 

real conditions for technical objects subject to wear and 

aging. 

6. Draw conclusions from the results obtained. 

3 Research Methodology 

The research methodology for this article is based on 

the mathematical and statistical analysis of the distribution 

laws of random variables in the context of the reliability of 

technical objects. The adequacy of the resulting 

dependencies is checked in the following ways. 

Firstly, setting up a simulation experiment. During the 

experiment, a random sample of size N is generated, 

simulating the time ti to failure of a certain technical object. 

The sample obeys the Weibull distribution law with shape 

and scale parameters α and β, respectively. 

The sample is generated using the built-in functions of 

Microsoft Excel: 

〈𝑡〉 = 〈𝛽〉 ∙ {− ln[𝑅𝐴𝑁𝐷(𝐴)]}
−

1
〈𝛼〉.   

For the generated sample, the range A, the number of 

partitioning intervals k, and the length of the interval Δm 

[19] are determined, respectively: 

𝐴 = 𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛;                  (10) 

𝑘 = 1 + 3.32 ∙ lg(𝑁) ;              (11) 

∆𝑚 =
𝐴

𝑘
.                            (12) 

It should be noted that the number of intervals is 

adjusted to an integer such that it is odd and k ≥ 5. 

Second, the boundaries of the intervals are determined – 

left and right, respectively, where u is the number of the 

interval (𝑢 = 1, 𝑘̅̅ ̅̅̅), as well as the middle of the interval 𝑡𝑢̅: 

𝑡𝑢−1 = 𝑡𝑚𝑖𝑛 + ∆𝑚 ∙ (𝑢 − 1);           (13) 

𝑡𝑢 = 𝑡𝑚𝑖𝑛 + ∆𝑚 ∙ 𝑢;                      (14)                             

𝑡𝑢̅ =
𝑡𝑢−1+𝑡𝑢

2
.                           (15) 

After that, the number of sample elements that fall into 

each of the intervals is designated mu, the relative 

frequency pu, the empirical probability density 𝑓(𝑡𝑢̅) and 

the empirical cumulative failure frequency 𝐹̂(𝑡𝑢) are 

determined: 

𝑝𝑢 =
𝑚𝑢

𝑁
;                             (16) 

𝑓(𝑡𝑢̅) =
𝑝𝑢

∆𝑚
;                          (17) 

𝐹̂(𝑡𝑢) = 𝐹̂(𝑡𝑢−1) + 𝑝𝑢.                 (18) 

Formulas determine the distribution parameters (2) and 

(3) with the imposition of confidence intervals defined by 

formula (4). 

The correspondence of the empirical distribution to the 

theoretical one is checked by a nonparametric best-to-fit 

test of the Kolmogorov–Smirnov type, adjusted for 

parameter estimates in the theoretical law instead of their 

actual values [20–22]. For a confidence probability of 
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0.95, the hypothesis about the form of the distribution law 

is not rejected if the condition is met: 

√𝑁 ∙ 𝑠𝑢𝑝|𝐹̂(𝑡𝑢) − 𝐹(𝑡𝑢)| ≤ 0.895,          (19) 

where 𝐹(𝑡𝑢) is the value of the integral distribution 

function of the Weibull law, which is defined in the 

following way: 

𝐹(𝑡) = 1 − 𝑒𝑥𝑝 [− (
𝑡

𝛽
)

𝛼

].                      (20) 

Consequently, it needs to be determined whether the 

theoretical parameter values fall within the confidence 

range defined based on the proposed equations. At the 

same time, the LSE method will be taken as a reference 

one. 

Finally, the results obtained according to the developed 

dependencies with the results of full-scale real-life 

independent experiments on studying the metal-cutting 

tool life and its reliability should be compared. 

4 Results 

The variation coefficient [7] is a significant indicator 

specifying stability or the variable volatility degree of the 

selection and, hence, is connected with the time to failure. 

The following equation can define it: 

𝑉 =
𝑆

𝑇̅
,                                        (21) 

where S is the standard deviation of the time to failure 

and 𝑇̅ is the mean time to failure (MTTF). 

For Gamma distribution [7], which also has form and 

scale parameters 𝑟 and 𝜆0, respectively, their values are 

directly depend on the variation coefficient: 

𝑟 =
1

𝑉2 ;                                  (22) 

𝜆0 =
𝑟

𝑇̅
.                                  (23) 

Since the conformity of failures to the Gamma 

distribution corresponds to the cumulative failure scheme, 

physically, r is the number of damages leading to failure, 

and 𝜆0 is the number of damages per unit time to failure. 

A similar dependence can be obtained for the Weibull 

distribution using equations from Table 1 of general 

characteristics. 1, replacing them with the corresponding 

statistical estimates. As a result, the following outcome is 

obtained: 

𝑉 = √2 ∙ 𝛼 ∙
Г(

2

𝛼
)

Г2(
1

𝛼
)

− 1,                               (24) 

where Г(𝑋) is the general Gamma function, the 

computational solution of which can be obtained by in-

built functions of Microsoft Excel soft: 

〈Γ(X)〉 = 𝐸𝑋𝑃[𝐺𝐴𝑀𝑀𝐴𝐿𝑁(〈𝑋〉)].                (25) 

As seen from equation (25), the variation coefficient is 

the function of the shape parameter only and, thus, vice-

versa. The reverse function of equation (25) – shape factor 

from variation coefficient – can be approximated by the 

following empirical regression: 

𝛼̂ = 𝑏0𝑉𝑏1                                    (26) 

For the wide range of α – namely from 0.2 to 25, the 

following regression was found, having a very high 

determination factor 𝑅2 = 0.999968, which is the 

empirical estimation of the shape parameter: 

𝛼̂ = 𝑉−1.09.                              (27)                             

Since the estimate criterion for the adequacy is the fact 

that the actual value belongs to the confidence interval, for 

the range of α ≤ 2.0 that covers the portion of the Weibull 

distribution shape parameter domain where it describes 

wear-in, sudden failures, and gradual wear-out [7], 

equation (27) can be further simplified and take the 

following form: 

𝛼̂ ≈ 𝑉−1.                              (28) 

Notably, when using formula (28), finding an estimate 

of the shape parameter within the confidence interval is 

limited by the sample size. The condition for which can be 

obtained from equations (5), (27), and (28) for confidence 

probability 0.95: 

𝑁 ≤
295

ln2(𝑉)
.                                    (29) 

The maximum sample size varies widely, having a 

breakpoint at V = 1: from 81 at V = 0.15 to 26474 at 

V = 0.9 and from 32474 at V = 1.1 to 614 at V = 2. 

This is sufficient for research on many technical objects 

and metal-cutting tools. A more accurate approximation 

(28) should be used in other cases. 

The graph of the dependence of the maximum sample 

size on the coefficient of variation is shown in Figure 3. 

 

Figure 3 – Maximum sample size vs variation coefficient 
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As an example, for bearings for which the well-known 

estimate of the shape parameter is α = 1.5, the maximum 

sample size will be estimated at 1700 pcs from the above 

reasons. 

The scale factor can be found using general 

characteristics from Table 1, namely math expectation and 

median. Since the MTTF 𝑇̅ is a statistical estimate of math 

expectation μ, from Table 1 and equation (27), the scale 

factor can be found as in equation (30): 

𝛽̂ =
𝑇̅

Г(1+𝑉1.09)
.                              (30) 

The second approach is to find the scale factor, knowing 

the median of the selection: 

𝛽̂ =
𝑀𝑒

(ln2)𝑉1.09.                              (31) 

5 Discussion 

Discussion of the obtained results is based on analysis 

of sets of 30 samples with the size of N = 100 elements 

each according to the above methodology. Typical results 

are shown below. 

First of all, the results of the analysis of the correlation 

relationship between the values of the shape parameter, 

which varies within wide limits (from 0.4 to 6.0), namely 

the theoretical one, determined by the LSE method and by 

equation (27), as well as the coefficient of variation V, 

were obtained. Figure 4 shows the correlation matrix 

indicating the correlation coefficients R and the nature of 

the relationships. 

 
Figure 4 – Correlation matrix between results of different 

approaches to the form parameter α estimation  

and variation coefficient V 

The provided data demonstrate the strength of the 

relationship from significant to very significant, which 

indicates the presence of an actual strong relationship 

between the values of the variation coefficient and the 

shape parameter, as well as the equivalence in this sense of 

the reference and proposed methods. 

For generated samples with predetermined theoretical 

parameters – varying shape parameter and scale parameter 

β = 100, their empirical shape parameters were estimated 

by the LSE method and equations (27) and (28). Belonging 

to the Weibull distribution for all the samples was 

confirmed by both Pearson chi-square and Kolmogorov–

Smirnov type goodness-of-fit criteria described above. 

The theoretical values, values obtained by equations (27) 

and (28), as well as those estimated by the LSE method, 

happened to be inside the exact confidence intervals, 

except those obtained by equation (28) for α > 2.5 (that 

was indicated above). 

Some estimation results are presented in Figure 5, 

where theoretical shape factors are shown as the sample 

identification. 

 
Figure 5 – Comparison of the form parameter  

estimation methods within CI 

Thus, equation (27) can be applied to estimate the shape 

parameter and equation (28) with the above limitations. 

The accuracy of the shape parameter estimates will be 

analyzed based on its deviation from the theoretical value 

to the CI width: 

𝐸𝛼 =
|𝛼̂−𝛼|

𝐷𝑎
.                               (32) 

The share of the best results is shown in Figure 6. 

 
Figure 6 – The most accurate shape for  

parameter estimation approaches 
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It can be seen that estimates based on the coefficient of 

variation give the best result in a much greater number of 

cases, while shape parameter changes in a wide range from 

0.4 to 6.2. However, when the shape parameter increases 

and takes the value α > 7, the number of estimates 

determined by equation (28) that fall outside the 

confidence interval increases. 

Correlation matrices will be constructed to analyze the 

approaches mentioned above for the scale parameter 

estimation (characteristic time), with one of them featuring 

a wide variation in the theoretical value of the scale 

parameter ranging from 5 to 280. The shape parameter 

remains constant at α = 2 (Figure 7a). For the other matrix, 

the scale parameter will be held constant (β = 120). The 

shape parameter varies from 0.4 to 6.2 (Figure 7b). 

 
a 

 
b 

Figure 7 – Correlation matrix between results for different 

approaches to estimate the scale parameter β  

and variation coefficient V: a – α = const; b – β = const 

As can be seen from Figure 7a, there is a highly 

significant strength of relationships between the 

theoretical value of the scale parameter and its estimates 

by the LSE reference method, by equation (30) based on 

the MTTF, and by equation (31) based on the sample 

median time to failure. The relationship between the 

considered estimation methods is also very significant. 

There is no relationship between the variation coefficient 

and the considered estimation methods, which is quite 

natural due to the presence of exclusively random 

fluctuations in the values of the empirical variation 

coefficient when α = const. 

As for the strength of the relationship when β = const 

and α is variable, Figure 7b shows a very significant 

strength of the relationship between the values of the scale 

parameters obtained by different estimation methods. The 

influence of the variation coefficient is present, as 

predicted by equations (30) and (31), and its strength is 

estimated from moderate to noticeable, which is also 

explained by a significant random component. 

Comparison of different scale parameter estimates with 

confidence intervals also shows that they, together with the 

theoretical value, are within the limits of the intervals. 

Figure 8a shows the results of estimations with variable 

shape parameter β and a constant scale parameter α = 2. 

Figure 8b shows the estimates within the confidence 

intervals with a constant scale parameter β = 120 and 

variable shape parameter α. 

 
a 

b 

Figure 8 – Comparison of the scale parameter estimation 

methods within CI: a – α = const; b – β = const 

The above gives grounds for asserting that equations 

(30) and (31) can be used for estimation based on empirical 

data within a wide range of the estimated parameters. 
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The accuracy of the assessment for different methods 

will be determined by a criterion similar to (32): 

𝐸𝛽 =
|𝛽̂−𝛽|

𝐷𝑏
.                             (33) 

The weighted mean values are shown in Figure 9. 

 

Figure 9 – The most accurate scale for  

parameter estimation approaches 

As can be seen, the proposed approaches give a better 

result in more cases than the reference one. 

The transition from simulation to the results of real-life 

experiments will be carried out by using the independent 

experimental data obtained for a wide range of metal 

cutting tools, the operating conditions of which are 

significantly different, such as cutters, drills, multi-flute 

drills, screw taps, and threading dies – totally 43 lots. The 

data reflect the dependence of the γ-percent time-to-failure 

factor G upon the following variation coefficient: 

𝐺 =
𝑇𝛾

𝑇̅
,                                   (34) 

where 𝑇𝛾 is γ-percent time-to-failure when the 

probability of failure-free operation is equal to γ. For the 

Weibull distribution, it is equal to  

𝑇𝛾 = 𝛽 ∙ [−𝑙𝑛(𝛾)]1 𝛼⁄ .                    (35) 

According to the experiment’s conditions, the no-

failure probability was ensured at γ = 0.9. 

After applying equations (27), (30), (34), and (35), a 

theoretical model of the above G factor can be obtained: 

𝐺 =
[−ln (𝛾)]𝑉1.09

𝑉1.09Г(𝑉1.09)
.                    (36) 

A comparison of the empirical data and simulation 

results by equation (36) is represented in Figure 10. 

Correlation analysis of variation coefficient G, 

empirical data, and ones obtained by theoretical model 

equation (36) shown in Figure 11 indicates sufficient 

strength of the relationship between all these factors. 

 

Figure 10 – Dependence of the γ-percent time-to-failure factor 

G upon the variation coefficient 

 

Figure 11 – Correlation matrix between variation coefficient V, 

theoretical and empirical values of the G-factor 

 

Most importantly, the analysis of the theoretical model 

according to the Fisher criterion demonstrates its adequate 

reflection of empirical data with a confidence probability 

of 0.98, the estimated value of the Fisher criterion is 

F = 2.29, while the critical value is 𝐹0.02,17,26 = 2.66, i.e., 

𝐹 < 𝐹0.02,17,26. 

Thus, the validity of using the proposed approach to 

estimating the Weibull distribution parameters is 

confirmed by both simulation and real-life physical 

experiments on the reliability of the metal-cutting tools. 

6 Conclusions 

In literary sources, numerous methods of estimating the 

parameters of the Weibull distribution are proposed to find 

the most accurate one, many of which, among other things, 

require complex calculation procedures. The accuracy of 

parameter estimation is determined by proximity to the 

theoretical value of the generated sample, while the 

estimated parameters are random values, and in real-life 
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conditions, the theoretical value is unknown and is not 

considered. 

Simultaneously, the width of the confidence interval, 

which can be considered the parameter determination 

error, can be defined and is much broader than the 

estimation accuracy based on the generated sample. Thus, 

the search for the most accurate method solely based on 

the above indicator loses its meaning. 

For the case when there are strong reasons, based on the 

broad engineering practice, to consider the subjection of 

the technical object failure probability to the Weibull 

distribution, a universal approach is proposed for 

estimating the distribution parameters based on typical 

indicators from descriptive statistics - variation coefficient 

and the MTTF or the median of the sample and which 

requires a minimal set of data and for which calculation 

procedures are as simple as possible. The proposed 

approach can be used for a wide range of sample sizes and 

parameter values. The values of the parameters obtained 

by the proposed approach are in the confidence interval 

and the theoretical value and determined by the LSE 

method, which is the most widespread and was taken as 

the reference. Thus, they can be used on equal terms. 

The results show a strong correlation between the 

parameters of the Webul distribution and the variation 

coefficient as one of the main statistical indicators. 

Since, as is known, the value of the form parameter of 

the Weibull distribution reflects the physical nature of the 

technical object failure. Thus, it can be concluded that the 

variation coefficient reflects not only the stability and 

degree of variability of the sample, which consists of the 

time to failure, but also the physical nature of the failures 

themselves during different stages of the life cycle of a 

technical object. 

Statistical analysis of the proposed approach showed 

that it reflects a consistent pattern of a sample subject to 

the Weibull distribution and can be used to determine 

parameters within wide limits. The limitations of the 

simplified approach are also shown. 

It is also shown that the approach for determining the 

distribution parameters by the variation coefficient gives 

more accurate results in a more significant number of cases 

than the reference one. Simultaneously, determining the 

scale factor by the selection median gives a more accurate 

result in the more significant number of cases than MTTF. 

The possibility of using the proposed approach to 

estimate the parameters of the Weibull distribution is 

confirmed by simulation tests on generated samples and by 

independent results of experimental reliability studies of a 

wide range of metal-cutting tools that work in very 

different conditions. The proposed approach provides a 

result adequate to the results of experimental studies. 

References 

1. Tsyganov, V.V., Sheyko, S. (2023). Features of engineering the wear-resistant surface of parts with the multicomponent dynamic 

load. Wear, Vol. 494–495. 204255. https://doi.org/10.1016/j.wear.2022.204255 

2. Tsyganov, V. V., Mokhnach, R. E, Sheiko, S. P. (2021). Increasing wear resistance of steel by optimizing structural state of surface 

layer. Steel Transl., Vol. 51, pp. 144–147. https://doi.org/10.3103/S096709122102011X 

3. Gao, T., Li, Y., Huang, X., Li, H. (2022). Turning tool life reliability analysis based on approximate Bayesian theory. Proceedings 

of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, Vol. 236(5), pp. 696–704. 

https://doi.org/10.1177/1748006X211043753 

4. Lin, F., Zhang, H., Zhou, Y., Zhang, Z., Zhang, L. (2021) tool reliability modeling based on gamma process in multiple working 

conditions. In: 2021 Global Reliability and Prognostics and Health Management, PHM-Nanjing 2021. Nanjing, China, pp. 1–6. 

https://doi.org/10.1109/PHM-Nanjing52125.2021.9612765 

5. Bracke, S., Radetzky, M., Rosebrock, C. (2021). Reliability engineering data analytics as the base of operations for maintenance 

planning: A cutting tool case study. IFAC-PapersOnLine, Vol. 54(1), pp. 1260–1265. https://doi.org/10.1016/j.ifacol.2021.08.151 

6. Abernethy, R. B. (2006). The New Weibull Handbook. Dr. Robert. Abernethy (5th ed.), North Palm Beach, FL, USA. 

7. Frolov, M. (2019). Variation Coefficient and some distribution laws in the context of cutting tools and other technical objects 

reliability modeling. In: Advances in Design, Simulation and Manufacturing. DSMIE 2019. Lecture Notes in Mechanical 

Engineering, pp 13–22. Springer, Cham. https://doi.org/10.1007/978-3-319-93587-4_2 

8. Gaddafee, M., Chinchanikar, S. (2020). An Experimental investigation of cutting tool reliability and its prediction using Weibull 

and gamma models: A Comparative assessment. Materials Today: Proceedings, Vol. 24(2), pp. 1478–1487. 

https://doi.org/10.1016/j.matpr.2020.04.467 

9. Kim, J. S., Yum, B.-J. (2008). Selection between Weibull and lognormal distributions: A comparative simulation study. 

Computational Statistics & Data Analysis, Vol. 53(2), pp. 477–485. https://doi.org/10.1016/j.csda.2008.08.012 

10. Zhang, X., Wang, Y., Lu, D.(2021) Parameter optimization estimation based on mixed exponential Weibull distribution. In: 

Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2020. Lecture Notes on Data 

Engineering and Communications Technologies, Vol 88, pp. 1679–1686. Springer, Cham. https://doi.org/10.1007/978-3-030-

70665-4_182 

11. Alshenawy, R., Feroze, N., Tahir, U., Al-Alwan, A., Ahmad, H. H., Ali, R. (2022). On suitability of modified Weibull extension 

distribution in modeling product lifetimes and reliability. Advances in Mechanical Engineering, Vol. 14(11), pp. 1–16. 

https://doi.org/10.1177/16878132221136688 

https://doi.org/10.1016/j.wear.2022.204255
https://doi.org/10.3103/S096709122102011X
https://doi.org/10.1177/1748006X211043753
https://doi.org/10.1109/PHM-Nanjing52125.2021.9612765
https://doi.org/10.1016/j.ifacol.2021.08.151
https://doi.org/10.1007/978-3-319-93587-4_2
https://doi.org/10.1016/j.matpr.2020.04.467
https://doi.org/10.1016/j.csda.2008.08.012
https://www.scopus.com/authid/detail.uri?authorId=25928655600
https://doi.org/10.1007/978-3-030-70665-4_182
https://doi.org/10.1007/978-3-030-70665-4_182
https://doi.org/10.1177/16878132221136688


 

 

A10 Machines and Tools 

 

12. Xie, L., Wu, N., Yang, X. (2023). A minimum discrepancy method for Weibull distribution parameter estimation. International 

Journal of Structural Stability and Dynamics, Vol. 23(08), 2350085. https://doi.org/10.1142/S0219455423500852 

13. Aljeddani, S. M. A., Mohammed, M. A. (2023). Estimating the power generalized Weibull Distribution’s parameters using three 

methods under Type-II Censoring-Scheme. Alexandria Engineering Journal, Vol. 67, pp. 219–228. 

https://doi.org/10.1016/j.aej.2022.12.043 

14. Akram, M., Hayat, A. (2014). Comparison of estimators of the Weibull distribution. J Stat Theory Pract, Vol. 8, pp. 238–259. 

https://doi.org/10.1080/15598608.2014.847771 

15. Bulut, A., Bingöl, O. (2023). Analysis and comparison of Weibull parameters for wind energy potential using different 

estimation methods: A Case study of Isparta province in Turkey. Electric Power Components and Systems, Vol. 51(16), pp. 1829–

1845. https://doi.org/10.1080/15325008.2023.2210574 

16. Yang, X., Xie, L., Zhao, B., Kong, X., Wu, N. (2022). An iterative method for parameter estimation of the three-parameter 

Weibull distribution based on a small sample size with a fixed shape parameter. International Journal of Structural Stability and 

Dynamics, Vol. 22(12), 2250125. https://doi.org/10.1142/S0219455422501255 

17. Nielsen, M. A. (2011). Parameter Estimation for the Two-Parameter Weibull Distribution. BYU ScholarsArchive. Brigham Young 

University, Provo, UT, USA. 

18. Jiang, R. (2022). A novel parameter estimation method for the Weibull distribution on heavily censored data. Proceedings of the 

Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, Vol. 236(2). pp. 307–316. 

https://doi.org/10.1177/1748006X19887648 

19. Jamieson, A. (1989). Computer search for the ideal histogram. Annual Quality Congress Transactions, Vol. 43, pp. 277–283. 

20. Inglot, T., Ledwina, T., Ćmiel, B. (2019). Intermediate efficiency in nonparametric testing problems with an application to some 

weighted statistics. ESAIM: Probability and Statistics, Vol. 23, pp. 697–738. https://doi.org/10.1051/ps/2018022 

21. Wang, F., Xu, R., Zhong, Z. (2011). Low complexity Kolmogorov-Smirnov modulation classification. In: 2011 IEEE Wireless 

Communications and Networking Conference, WCNC 2011. IEEE, Cancun, Mexico, pp. 1607–1611. 

https://doi.org/10.1109/WCNC.2011.5779375 

22. Chen, X. X., Ge, S. L., Lin, M. (2011). An analysis of statistical techniques applying to multi-feature similarity comparison 

between Corpora. Applied Mechanics and Materials, Vol. 66–68, pp. 2323–2329. 

https://doi.org/10.4028/www.scientific.net/AMM.66-68.2323 

https://doi.org/10.1142/S0219455423500852
https://doi.org/10.1016/j.aej.2022.12.043
https://doi.org/10.1080/15598608.2014.847771
https://doi.org/10.1080/15325008.2023.2210574
https://doi.org/10.1142/S0219455422501255
https://doi.org/10.1177/1748006X19887648
https://doi.org/10.1051/ps/2018022
https://doi.org/10.1109/WCNC.2011.5779375
https://doi.org/10.4028/www.scientific.net/AMM.66-68.2323

