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Abstract. Vibration reduction of induction motors is a significant problem that requires effective models for the 

effects of mechanical and electromagnetic unbalanced forces. This article presents a mathematical model of dynamics 

for induction motors with rotor mass eccentricity and static and dynamic magnetic eccentricity. The model allows for 

the influence of the gyroscopic torque of the rotor and considers the elastic-damping characteristics of each of the stator 

supports and their location. The model has eight degrees of freedom, which makes it possible to simulate transverse 

and axial vibrations of various designs’ rotors and housings of induction motors. The results of modeling the dynamics 

for a three-phase squirrel cage induction motor with 11 kW capacity agreed with those obtained by other authors. 

Simultaneously, new results were also obtained within the research. The simulation results showed that the static 

magnetic eccentricity causes the appearance of additional critical speed of the motor, and its value decreases in 

proportion to the growth of the number of pole pairs. The change of the moment of inertia of the motor at a mismatch 

of the main axis of symmetry of the stator and the rotor axis of rotation allowed for obtaining an actual frequency 

spectrum of free oscillations, including the rotational motion of the stator. Since the actual static magnetic eccentricity 

can additionally increase at operating frequencies due to the increase of bearing clearance caused by dynamic 

unbalanced load, it should be considered in the analysis of unbalanced magnetic pull. The angle of static magnetic 

eccentricity significantly affects the magnitude of radial vibrations. This feature should also be considered when 

selecting the locations of balancing weights during the rotor balancing procedure. 

Keywords: induction motor, eccentricity of rotor mass, magnetic eccentricity, unbalanced magnetic pull, axial 

vibration, process innovation.

1 Introduction 

Due to their high operational efficiency, induction 

machines are among the most commonly used engines in 

various industrial fields [1]. For induction machines, 

bearings fixed in special risers are applied to support the 

rotor. The risers are bolted to the lower half of the end 

shield. Induction machine bearing failures account for 

about 40 % of the total number of failures [2, 3]. Bearing 

failures are mainly caused by their increased wear. The 

main wear factors are rotor mechanical unbalance due to 

rotor mass eccentricity and unbalanced magnetic pull 

(UMP) due to magnetic eccentricity. Since induction 

machines have a relatively small air gap, they are more 

susceptible to UMP. The dynamic forces and moments 

caused by rotor eccentricity are additional internal 

excitations for the motor subsystem, which include 

centrifugal force, friction-impact force, UMP, unbalanced 

force torque, and friction torque [4]. 

Mechanical unbalance occurs due to inevitable 

technological deviations during manufacturing, assembly 

inaccuracy, and rotor design features. Consequently, axial 

symmetry is broken, and the center of inertia in some 

cross-sections does not coincide with the geometric center 

of sections and the rotor rotation axis. Magnetic 

eccentricity and UMP cause additional radial force on the 

bearing, which reduces its service life. In addition, UMP 

reduces the overall stiffness of the system, which can 

increase vibrations within the system [5]. 

2 Literature Review 

According to various sources, eccentricity accounts for 

20–40 % of induction motor (IM) failures [6, 7]. Rotor 

eccentricity often occurs in IMs, leading to non-uniformity 

of the machine’s air gap [8, 9]. Magnetic eccentricity 

occurrence is caused by errors in the production and 

assembly of the machine and unfavorable conditions of its 
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operation. A distinction is made between static and 

dynamic eccentricity. Static eccentricity is caused by the 

eccentric position of the rotor in the stator bore, so the 

uneven configuration of the air gap does not change in time 

as the rotor rotates. The static eccentricity of the air gap 

should not exceed 10 % [4]. 

At dynamic eccentricity, which occurs due to the 

eccentric position of the rotor relative to the shaft axis, the 

configuration of the air gap changes during rotor rotation, 

which is caused by the rotation of the rotor axis relative to 

the stator axis. Due to the small size of the air gap of the 

IM, even a small eccentricity of the rotor, breaking the 

symmetry of the machine design, significantly worsens its 

performance. 

Therefore, timely detection of eccentricity in the early 

stages of its development is of great practical importance, 

and it is one of the essential tasks of monitoring the 

technical condition of the IM and diagnosing its defects. 

The most effective method is electromagnetic vibration 

diagnostics – monitoring and analysis of changes in the IM 

vibrations of electromagnetic origin depending on the type 

and degree of eccentricity development [10]. 

Both analytical approaches to UMP analysis and 

methods based on the finite element method are known 

[11, 12]. In general, it is necessary to consider separately 

the influence of static rotor mass eccentricity and static 

rotor eccentricity, which is the cause of the non-uniformity 

of the air gap of the electric machine. In the worst case, the 

centrifugal force caused by rotor unbalance and radial 

vibration-inducing force of an electromagnetic nature can 

add up and cause increased IM vibrations. 

Therefore, some authors [13–15] conducted research 

works to create mathematical models that would most 

effectively describe the rotor dynamics of an IM. Chuan 

and Shek propose monitoring systems for the online 

detection of faults due to eccentricity due to unbalanced 

magnetic tension in induction machines [10]. Werner 

analyzed the analytical model and steady motion sections 

of rotating machines whose “feet” are mounted on a pliable 

foundation [16]. Werner explained how to consider 

electromagnetic field damping and established an 

analytical model of vibration of the IM housing and shaft 

is considered, considering dynamic mass eccentricity, 

deflection of the deformed shaft, and magnetic eccentricity 

for an IM with sliding bearings mounted on a pliable 

foundation [17]. 

Other researchers investigated the effect of static, 

dynamic, and mixed eccentricity of an electric machine 

[18–20]. Du and Li studied an analytical method for 

calculating the UMP in a rotating coordinate system [21]. 

Lei et al. [22] conducted a study where the electromagnetic 

force waves and vibration response at air gap eccentricity 

were calculated using an analytical approach and the finite 

element method (FEM). They quantitatively analyzed the 

effect of eccentricity on the electromagnetic force wave 

and vibration response of a squirrel cage motor. 

Essen [23] used fractional order in the finite element 

model to analyze the harmonic response. As a result, an 

optimal design for the rotor of a traction IM for transport 

was proposed. 

The duration of its operation and the frequency of 

unplanned maintenance depend on how the IM is mounted 

on a special welding structure, a reinforced foundation 

with a mortgage frame, or concrete anchors. In order to 

correctly and reliably fix the electric motor, it is necessary 

to consider the location of the bearings and shaft ends 

relative to the fastening elements and the spatial position 

of the machine relative to the driven mechanism. The most 

common engines in the industry are the engines with feet 

on the body, the ones with feet and a flange on one or both 

bearing shields, and those without feet with a flange on a 

bearing shield or shields. Studies [16–18] show a yielding 

foundation’s influence on the rotor dynamics. 

In the models considered in the research mentioned 

earlier, it is assumed that inertia is concentrated in a plane, 

dividing the length of the rotor in half, and eccentricity 

causes a centrifugal force under which the rotor carries out 

only translational movements. In contrast to such works, 

this article set the task of developing a model with an 

arbitrary location of the center of mass and the magnetic 

center of the rotor. This will allow us to consider the static 

mass imbalance and the magnetic eccentricity of the rotor, 

taking into account the torques of the imbalance force and, 

accordingly, the rotational movements of the stator. In the 

proposed model, a rigid motor stator housing must have 6 

degrees of freedom (DOF) and can perform translational 

motion in the directions of the x, y, and z axes, as well as 

rotations around these axes.  

The purpose of this article is to create a mathematical 

model of oscillations of the IM housing, which would 

allow for the eccentricity of the rotor mass, the static 

magnetic eccentricity of the rotor, the influence of the 

gyroscopic moment of the rotor, and the rigidity of the 

stator supports to the foundation, allowing 6 DOF (three 

translational and three rotational); taking into account the 

unequal rigidity of the stator supports, their number and 

places of connection to the stator; general case of spatial 

mismatch of the centers of mass of the stator and rotor with 

the axis of rotation along all three axes x, y, z. 

3 Research Methodology 

3.1 Considering the eccentricity of the rotor 

In the proposed model, the absolutely rigid motor stator 

housing has six degrees of freedom and can perform 

translational motion in the directions of the x, y, and z axes, 

as well as rotations around these axes. The rotor, rotating 

at a constant angular velocity , can make small 

translational movements in the direction of the x and z 

axes, having 2 DOF. Since the rotor movement is 

independent of the stator movement, the stator-rotor 

system has 8 DOF in total. 

In the model shown in Fig. 1, the following 

assumptions are made: 

– the elastic characteristics of all supports are linear; 

– the rotor is considered rigid, and its deformations are 

neglected; 

– the position of the rotor center of mass mC is known. 



 

D68 Dynamics and Strength of Machines 

 

To specify the stator position in this system’s space, it 

is necessary to have 8 generalized coordinates. For such 

coordinates, we will take Cartesian coordinates of the 

stator center of inertia x, y, z, angles , , , which specify 

the rotations of these coordinate axes rigidly connected to 

the stator and two coordinates of the rotor center of inertia 

xr and zr. In these coordinates, stator oscillations can be 

represented as a superposition of six screw movements 

with fixed screw axes x, y, z. The stator generally performs 

six-circuit oscillations. The mass eccentricity is equal to 

eU = SD, where point D(xD, yD, zD) is obtained due to the 

intersection of the rotor rotation axis with a plane drawn 

through the mass center S perpendicular to the rotation 

axis. Distance DO equals the distance from the rotation 

axis to the stator’s center of mass. The distance from point 

D to the central axis of the stator’s symmetry will be 

considered static magnetic eccentricity 𝑒𝑚𝑠 = √𝑥𝐷
2 + 𝑧𝐷

2 . 

 

Figure 1 – Dynamic model of an IM  

with rotor mass eccentricity 

The movement of the stator-rotor system can be 

considered as the movement of the moving coordinate 

system а1b1c1 relative to the fixed xyz (Fig. 2). 

 

Figure 2 – Calculation diagram of the stator-rotor system 

In the initial position at  = 0, both coordinate systems 

coincide. We assume that the center of mass of the stator 

О1 does not lie on the rotation axis. 

For a separate study of the translational and rotating 

motion of the stator, consider an additional coordinate 

system x1y1z1 with a translationally moving center О1, the 

axes of which, during movement, always remain parallel 

to the corresponding fixed axes of the xyz coordinate 

system. 

The position of the moving system а1b1c1 relative to the 

stationary system xyz will be determined by the 

coordinates of its pole О1(x, y, z) and the angles , ,  of 

rotations of the coordinate system а1b1c1 around the 

translationally moving axes x1, y1, z1. It also can be 

considered the coordinates x, y, z of point О1, the rotation 

angles , ,  and coordinates а1, c1 of the system а1b1c1 

to be generalized coordinates. 

3.2 Determination of stator movements 

The displacement ir  of an arbitrary і-th point of the 

stator associated with the moving system of axes а1, b1, c1 

is the sum of displacement vectors during translational 
( )tr

r  and rotational motion ( )rot

ir . The translational 

vector looks like this: 

 Δ𝑟̄(𝑡𝑟) = 𝑥𝑖̄ + 𝑦𝑗̄ + 𝑧𝑘̄, (1) 

where x, y, z – displacement projections onto fixed 

coordinate axes; 𝑖̄, 𝑗̄, 𝑘̄ – unit vectors along these axes. 

The displacement vector due to rotational motion 
( )rot

ir  of the і-th point of the stator is equal to  

 
Δ𝑟̄𝑖

(𝑟𝑜𝑡)
= 𝜓̄ × 𝑟̄𝑖

(𝑟𝑜𝑡)
= (𝛽𝑧1𝑖 − 𝛾𝑦1𝑖)𝑖̄ +

+(𝛾𝑥1𝑖 − 𝛼𝑧1𝑖)𝑗̄ + (𝛼𝑦1𝑖 − 𝛽𝑥1𝑖)𝑘̄,
 (2) 

where 𝜓̄ – the vector of the small angle of rotation of 

the system а1b1c1 relative to x1, y1, z1 axes; 𝑟̄𝑖
(𝑟𝑜𝑡)

 – the 

position vector of the і-th point relative to the origin О1. 

The projections of the total displacement ri and 

velocity Δ𝑟̇𝑖 of the і-th point, considering expressions (1) 

and (2), are as follows: 

{

Δ𝑟𝑥𝑖 = 𝑥 + 𝛽𝑧1𝑖 − 𝛾𝑦1𝑖;
Δ𝑟𝑦𝑖 = 𝑦 + 𝛾𝑥1𝑖 − 𝛼𝑧1𝑖;

Δ𝑟𝑧𝑖 = 𝑧 + 𝛼𝑦1𝑖 − 𝛽𝑥1𝑖;
⇒ {

Δ𝑟̇𝑥𝑖 = 𝑥̇ + 𝛽̇𝑧1𝑖 − 𝛾̇𝑦1𝑖;
Δ𝑟̇𝑦𝑖 = 𝑦̇ + 𝛾̇𝑥1𝑖 − 𝛼̇𝑧1𝑖;

Δ𝑟̇𝑧𝑖 = 𝑧̇ + 𝛼̇𝑦1𝑖 − 𝛽̇𝑥1𝑖 .

 (3) 

3.3 Determination of the kinetic energy of the 

stator-rotor system 

Let’s ms – the stator mass; 𝐽𝑎1

(𝑠)
, 𝐽𝑏1

(𝑠)
, and 𝐽𝑐1

(𝑠)
 – the 

moments of inertia of the stator relative to the principal 

central axes а1, b1, c1, respectively; mr – the mass of the 

rotor; 𝐽𝑎2

(𝑟)
, 𝐽𝑏2

(𝑟)
, and 𝐽𝑐2

(𝑟)
 – the moments of inertia of the 

rotor relative to the principal central axes а2, b2, c2, 

respectively ( 𝐽𝑎2

(𝑟)
= 𝐽𝑐2

(𝑟)
 ). Therefore, the kinetic energy 

of the stator is defined using the König’s theorem[23]: 

 
𝑇𝑠 =

1

2
[𝑚𝑠(𝑥̇2 + 𝑦̇2 + 𝑧̇2) +

𝐽𝑎1

(𝑠)
𝜓̇𝑎1

2 + 𝐽𝑏1

(𝑠)
𝜓̇𝑏1

2 + 𝐽𝑐1

(𝑠)
𝜓̇𝑐1

2 ],
 (4) 

where 𝑥̇, 𝑦̇, 𝑧̇ – the projections of the translational 

velocity on the x, y, z axes; 𝜓̇𝑎1
, 𝜓̇𝑏1

, and 𝜓̇𝑐1
 – the 
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projections of the angular velocity vector 𝜓̇ = 𝛼̇ + 𝛽̇ + 𝛾̇ 

on the axes 1a , 1b , and 1c , respectively. 

To formulate an expression for the rotor’s kinetic 

energy, let us consider its motion in the general case 

(Fig. 3) when the center of the rotor mass S does not 

coincide with the stator center of mass О. 

 

Figure 3 – Rotor displacement diagram 

Let’s consider additional coordinate systems: 

translationally moving x2y2z2 with origin at S and 

coordinate system x3y3z3 with origin at D, as well as 

rigidly connected with the rotor system а2b2с2 with origin 

at S and system а3b3с3 with origin at D. The axes of system 

а2b2с2 will be considered as the main central axes of 

inertia of the rotor. At absence of eccentricity (eU= 0) 

point S coincides with point D, axis а2 coincides with axes 

x2, а3, x3; axis b2 coincides with axes y2, b3, y3, axis c2 

coincides with axes z2, c3, z3. It considered that in the 

initial state, the axes y, y1, y2, y3 and b1, b2, b3 are parallel 

to the rotor rotation axis. 

A case of static mass unbalance occurs if DО = 0, but 

the center of mass of the rotor lies outside the rotational 

axis and eU = SD  0. The causes of such unbalance of the 

rotor are manufacturing errors or its deformation during 

operation, e.g., thermal deformation. 

In the case of eU  0 and yD  0, there is a case of torque 

unbalance of the rotor. In practice, a solid rotor, such as 

the rotor of an IM, is characterized by dynamic unbalance. 

Due to the eccentric position of the rotor in the stator bore, 

the rotor rotation axis and the main central axis of inertia 

of the stator do not coincide: xD0, yD0, zD0. The effect 

of unbalance is accounted for by considering the 

eccentricity eU and the coordinates of the point D in the 

stationary coordinate system. 

In the adopted coordinate system, the rotor motion, in 

general, can be represented as a complex one: 

translational motion with the center of mass S and rotation 

around this center of mass with the angular velocity of 

𝛺 = 𝜓̇ + 𝜔. 

The translational velocity of a point S is the sum of 

translational velocities of displacements: 

 𝑉̄𝑆 = 𝑉̄𝐷𝑂 + 𝑉̄𝑆𝐷 = (𝑉̄𝑂1
+ 𝑉̄𝐷𝑂1

) + 𝑉̄𝑆𝐷, (5) 

where 𝑉̄𝐷𝑂 – absolute velocity of the pole D in system 

xyz relative to the pole О; 𝑉̄𝑂1
 – the transfer velocity of the 

stator center of mass О1 (stator velocity in the xyz system); 

𝑉̄𝐷𝑂1
 – the relative velocity of the pole D (rotor velocity 

relative to the stator center of mass О1); 𝑉̄𝑆𝐷 – the velocity 

of the center of mass S of the rotor in the coordinate 

system x3y3z3 relative to the pole D. 

Applying the König’s theorem, the expression for the 

kinetic energy of the rotor has the form: 

 
𝑇𝑟 =

1

2
[𝑚𝑟(𝑉𝑆𝑥

2 + 𝑉𝑆𝑦
2 + 𝑉𝑆𝑧

2 ) +

+𝐽𝑎2

(2)
(𝛺𝑎2

2 + 𝛺𝑐2
2 ) + 𝐽𝑏2

(2)
𝛺𝑏2

2 ].
 (6) 

The kinetic energy T of the IM system is the sum of 

stator kinetic energy Ts and rotor kinetic energy Tr. 

Denoting 𝑉̄𝑂1
= 𝑥̇𝑖̄ + 𝑦̇𝑘̄ + 𝑧̇𝑘̄, 𝑉̄𝐷𝑂1

= 𝑥̇𝑟𝑖̄ + 𝑧̇𝑟𝑘̄, and 

using expressions (4) and (6), limiting the values of the 

second order of smallness, it can be obtained: 

 

𝑇𝑟 =
𝑚

2
(𝑥̇2 + 𝑦̇2 + 𝑧̇2 ) +

+
1

2
(𝐽𝑎1

𝛼̇2 + 𝐽𝑏1
𝛽̇2 + 𝐽𝑐1

𝛾̇2) +

+𝑚𝑟𝑥̇(𝛽̇𝑧𝐷 − 𝛾̇𝑦𝐷 + 𝜔𝑒𝑈 𝑐𝑜𝑠 𝜔 𝑡) −

𝑚𝑟𝛾̇𝑦𝐷(𝛽̇𝑧𝐷 + 𝜔𝑒𝑈 𝑐𝑜𝑠 𝜔 𝑡) +

+𝑚𝑟𝛽̇𝜔𝑒𝑈(𝑧𝐷 𝑐𝑜𝑠 𝜔 𝑡 + 𝑥𝐷 𝑠𝑖𝑛 𝜔 𝑡) +

𝑚𝑟𝜔2𝑒𝑈
2 𝑐𝑜𝑠2 𝜔 𝑡 + 𝑚𝑟𝑦̇(𝛾̇𝑥𝐷 − 𝛼̇𝑧𝐷) −

−𝑚𝑟𝛾̇𝛼̇𝑥𝐷𝑧𝐷 +
𝑚𝑟

2
(𝑥𝑟

2 + 𝑧𝑟
2) +

+𝑚𝑟𝑧̇(𝛼̇𝑦𝐷 − 𝛽̇𝑥𝐷 − 𝜔𝑒𝑈 𝑠𝑖𝑛 𝜔 𝑡) −

−𝑚𝑟𝛼̇𝑦𝐷(𝛽̇𝑥𝐷 + 𝜔𝑒𝑈 𝑠𝑖𝑛 𝜔 𝑡) +
1

2
𝐼𝑏2

(𝑟)
𝜔[𝜔 + 2(𝛽̇ + 𝛼𝛾̇ − 𝛼̇𝛾)] +

+𝑚𝑟[𝑧̇𝑧̇𝑟 + 𝑥̇𝑟(𝛽̇𝑧𝐷 − 𝛾̇𝑦𝐷) +

+𝑧̇𝑟(𝛼̇𝑦𝐷 − 𝛽̇𝑥𝐷) + 𝑥̇𝑥̇𝑟 +

+𝜔𝑒𝑈(𝑥̇𝑟 𝑐𝑜𝑠 𝜔 𝑡 − 𝑧̇𝑟 𝑠𝑖𝑛 𝜔 𝑡)],

 (7) 

where 𝑚 = 𝑚𝑠 + 𝑚𝑟 – the mass of the stator-rotor 

system; 𝐽𝑎1
= 𝐽𝑎1

(𝑠)
+ 𝐽𝑎2

(𝑟)
+ 𝑚𝑟(𝑦𝐷

2 + 𝑧𝐷
2) – the main 

moment of inertia of the system with respect to the axis 

а1; 𝐽𝑏1
= 𝐽𝑏1

(𝑠)
+ 𝐽𝑏2

(𝑟)
+ 𝑚𝑟(𝑧𝐷

2 + 𝑥𝐷
2) – the main moment of 

inertia of the system with respect to the axis b1; 𝐽𝑐1
=

𝐽𝑐1

(𝑠)
+ 𝐽𝑐2

(𝑟)
+ 𝑚𝑟(𝑥𝐷

2 + 𝑦𝐷
2) – the main moment of inertia 

of the system with respect to the axis c1. 

3.4 Determination of potential energy and 

dissipation energy of the system 

Elastic deformations of the supports determine the 

system’s potential energy during oscillations. Let the 

stator be connected to the foundation through n elastic 

elements and m dampers. To simplify the dependencies, 

let us assume that n = m and the principal axes of 

stiffnesses and viscous friction constants of all elastic 

elements or dampers are parallel to the system’s principal 

central axes of inertia. 


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The potential energy U of the stator-rotor system is the 

sum of the potential energy Us stored in n stator supports 

and potential energy Ur stored in two rotor bearings: 

 

𝑈 = 𝑈𝑆 + 𝑈𝑟 =

=
1

2
∑ (𝑐𝑠𝑥𝑖

Δ𝑟𝑥𝑖
2 + 𝑐𝑠𝑦𝑖

Δ𝑟𝑦𝑖
2 + 𝑐𝑠𝑧𝑖

Δ𝑟𝑧𝑖
2)𝑛

1 +

+
1

2
∑ (𝑐𝑟𝑥𝑖

Δ𝑟𝑥𝑖
2 + 𝑐𝑟𝑧𝑖

Δ𝑟𝑧𝑖
2),2

1

 (8) 

where Δ𝑟𝑥𝑖
, Δ𝑟𝑦𝑖

, and Δ𝑟𝑧𝑖
 – displacements along the x, 

y, and z axes of the points of connection of the stator 

support elastic elements to the moving system; 𝑐𝑠𝑥𝑖
,  𝑐𝑠𝑦𝑖

, 

and 𝑐𝑠𝑧𝑖
 – projections of the stiffness vector of the i-th 

elastic element of the stator support; Δ𝑟𝑟𝑥𝑖
 Δ𝑟𝑟𝑧𝑖

 – relative 

displacements along the axes а1, b1, c1 of the points of 

connection to the supports; 𝑐𝑟𝑥𝑖
, 𝑐𝑟𝑧𝑖

 – projections of the 

stiffness vector of the i-th elastic element of the bearing 

support. 

Considering (3), the dependence (8) takes the form: 

 

𝑈 =
1

2
∑ [𝑐𝑠𝑥𝑖

(𝑥 + 𝛽𝑧𝑖 − 𝛾𝑦𝑖)2 +𝑛
1

+𝑐𝑠𝑦𝑖
(𝑦 + 𝛾𝑥𝑖 − 𝛼𝑧𝑖)

2 +

+𝑐𝑠𝑧𝑖
(𝑧 + 𝛼𝑦𝑖 − 𝛽𝑥𝑖)

2] +

+
1

2
∑ (𝑐𝑟𝑥𝑖

𝑥𝑟
2 + 𝑐𝑟𝑧𝑖

𝑧𝑟
2)2

1 .

 (9) 

The dissipation of mechanical energy D in the system 

supports due to viscous friction can be represented as the 

sum of the damping energy Ds of the stator supports and 

the rotor bearing energy Dr: 

 

𝐷 = 𝐷𝑆 + 𝐷𝑟 =

=
1

2
∑ (ℎ𝑠𝑥𝑖

Δ𝑟̇𝑥𝑖
2 + ℎ𝑠𝑦𝑖

Δ𝑟̇𝑦𝑖
2 + ℎ𝑠𝑧𝑖

Δ𝑟̇𝑧𝑖
2)𝑛

1 +

+
1

2
∑ (ℎ𝑟𝑥𝑖

𝛥𝑟̇𝑟𝑥𝑖
2 + ℎ𝑟𝑧𝑖

𝛥𝑟̇𝑟𝑧𝑖
2 )2

1 ,

 (10) 

where ℎ𝑠𝑥𝑖
, ℎ𝑠𝑦𝑖

, and ℎ𝑠𝑧𝑖
 – the projections of the vector 

of the viscous friction constant of the i-th stator support; 

𝛥𝑟̇𝑥𝑖
, 𝛥𝑟̇𝑦𝑖

, and 𝛥𝑟̇𝑧𝑖
 – velocities along the x, y, and z axes 

of the points of connection of supports to the stator; ℎ𝑟𝑥𝑖
 

and ℎ𝑟𝑧𝑖
 – the projections of the vector projections of the 

vector of the viscous friction constant of bearing 

arrangements; 𝛥𝑟̇𝑟𝑥𝑖
 and 𝛥𝑟̇𝑟𝑧𝑖

 – the relative velocities 

along the axes а1, b1, c1 the points of support connection 

to the rotor. 

After considering (3), dependence (10) takes the form: 

𝐷 =
1

2
∑ [ℎ𝑠𝑥𝑖

(𝑥̇ + 𝛽̇𝑧𝑖 − 𝛾̇𝑦𝑖)
2

+

𝑛

1

+ℎ𝑠𝑦𝑖
(𝑦̇ + 𝛾̇𝑥𝑖 − 𝛼̇𝑧𝑖)

2 +

+ℎ𝑠𝑧𝑖
(𝑦̇ + 𝛼̇𝑦𝑖 − 𝛽̇𝑥𝑖)

2
] +

+
1

2
∑(ℎ𝑟𝑥𝑖

𝑥̇𝑟
2 + ℎ𝑟𝑧𝑖

𝑧̇𝑟
2 )

2

1

.

 

3.5 Mathematical model of motor vibrations with 

rotor mass eccentricity 

The differential equations of oscillations of the IM 

system are obtained from the Lagrange equation of the 

2nd kind, considering energy dissipation at Rayleigh 

damping: 

 
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞̇𝑗
) −

𝜕𝑇

𝜕𝑞𝑗
+

𝜕𝑈

𝜕𝑞𝑗
+

𝜕𝐷

𝜕𝑞̇𝑗
= 0, (11) 

where j = 1, 2, …, 8 – the number of generalized 

coordinates; T and U – the kinetic and potential energy of 

the system, respectively; D – a dissipative function 

describing energy dissipation in the system dampers due 

to viscous friction. 

Performing mathematical operations provided by the 

Lagrange equation (11) on eight generalized coordinates 

x, y, z, , , , xr, and zr, putting  = const, a system of 8 

differential equations can be obtained, which in matrix 

form has the following form: 

 𝑴𝒒̈ + (𝑮 + 𝑫)𝒒̇ + 𝑨𝒒 = 𝐐, (12) 

where q = [x, y, z, , , , xr, zr]T – vector of generalized 

coordinates; Q = [Fx, 0, Fz, Mx, My, Mz, Fx, Fz]T – vector 

of generalized force factors; 𝑴 = [𝑚𝑖𝑗]
1

8
, 𝑮 = [𝑔𝑖𝑗]

1

8
,  

𝑫 = [𝑑𝑖𝑗]
1

8
, and 𝑨 = [𝛼𝑖𝑗]

1

8
– the inertia, gyroscopic, 

damping, and stiffness matrices, respectively. 

3.6 Analysis of motor vibration model with rotor 

eccentricity 

Analysis of equation (12) shows that for the lowest 

vibration activity of the IM in the presence of rotor mass 

eccentricity eU0, it is necessary that matrices М, D, and 

А are diagonal: Ɐij, mij = 0, dij = 0, and aij = 0.  

If the center of mass of the stator lies on the rotor 

rotation axis and coincides with the center of mass of the 

balanced rotor, i.e., the condition is satisfied  

 xD = yD = zD = 0, (13) 

and the inertia matrix М has a diagonal form: 

 M = diag{m, m, m, Jx, Jy, Jz, mr, mr}, (14) 

where m = ms + mr – the mass of the rotor-stator 

system; Jx = Jsx + Jrx, Jx = Jsy + Jry, and Jz = Jsx + Jrx – 

moments of inertia of the rotor-stator system with respect 

to coordinate axes. 

If condition (13) is not satisfied, the matrix М contains 

off-diagonal elements: static mass moments with respect 

to coordinate axes mij, i, j  3, i  j, and centrifugal 

moments of inertia mij, (3 < i  6, j  6, i  j). 

The diagonal stiffness matrix A has the form: 

 

𝐀 = 𝑑𝑖𝑎𝑔{∑ 𝑐𝑠𝑥𝑖

𝑛
𝑖=1 , ∑ 𝑐𝑠𝑦𝑖

𝑛
𝑖=1 , ∑ 𝑐𝑠𝑧𝑖

𝑛
𝑖=1 ,

∑ (𝑐𝑠𝑧𝑖
𝑦𝑖

2 + 𝑐𝑠𝑦𝑖
𝑧𝑖

2)𝑚
𝑖=1 , ∑ (𝑐𝑠𝑥𝑖

𝑧𝑖
2 + 𝑐𝑠𝑧𝑖

𝑥𝑖
2)𝑚

𝑖=1 ,

∑ (𝑐𝑠𝑦𝑖
𝑥𝑖

2 + 𝑐𝑠𝑥𝑖
𝑦𝑖

2)𝑚
𝑖=1 , ∑ 𝑐𝑟𝑥𝑖

𝑚
𝑖=1 , ∑ 𝑐𝑟𝑧𝑖

𝑚
𝑖=1 },

 (15) 

where 𝑐𝑠𝑥𝑖
, 𝑐𝑠𝑦𝑖

, 𝑐𝑠𝑧𝑖
 – the stiffness projections of n 

stator supports (i = 1…n); 𝑐𝑟𝑥𝑖
, 𝑐𝑟𝑧𝑖

 – projections of 

stiffnesses of rotor supports (i = 1, 2). 
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Elements aii (i  3) are total stiffnesses of stator 

supports, aii; (3 < i  6) – torsional stiffnesses of stator 

supports; aii (i > 6) – total stiffnesses of rotor supports. 

For the diagonal form of the stiffness matrix, it is 

necessary that the off-diagonal elements are equal to zero: 

static stiffness moments relative to the coordinate planes 

of the system aij (i, j  3, i  j) and centrifugal stiffness 

moments relative to pairs of coordinate planes aij 

(3 < i, j  6, i  j). 

In [24], it is substantiated that these conditions are 

satisfied if the stator support system’s stiffness center 

coincides with the center of inertia and the main stiffness 

axes of the supports coincide with the rotor’s main central 

axes of the inertia. 

The diagonal inertia matrix D has the form: 

𝑫 = 𝑑𝑖𝑎𝑔 {∑ ℎ𝑠𝑥𝑖

𝑛

𝑖=1

, ∑ ℎ𝑠𝑦𝑖

𝑛

𝑖=1

, ∑ ℎ𝑠𝑧𝑖

𝑛

𝑖=1

, ∑(ℎ𝑠𝑧𝑖
𝑦

𝑖
2 + ℎ𝑠𝑦𝑖

𝑧𝑖
2)

𝑚

𝑖=1

,

∑(ℎ𝑠𝑥𝑖
𝑧𝑖

2 + ℎ𝑠𝑧𝑖
𝑥𝑖

2)

𝑚

𝑖=1

, ∑(ℎ𝑠𝑦𝑖
𝑥𝑖

2 + ℎ𝑠𝑥𝑖
𝑦

𝑖
2)

𝑚

𝑖=1

, ∑ ℎ𝑟𝑥𝑖

𝑚

𝑖=1

, ∑ ℎ𝑟𝑧𝑖

𝑚

𝑖=1

} ,

 

where ℎ𝑠𝑥𝑖
, ℎ𝑠𝑦𝑖

, ℎ𝑠𝑧𝑖
 – the projections of the viscous 

friction constant n of the stator supports (i = 1…n); 

ℎ𝑟𝑥𝑖
, ℎ𝑟𝑧𝑖

 – the projections of the viscous friction constant 

of the rotor supports (i = 1, 2). 

The elements dii – total damping coefficients of stator 

supports (i  3); dii – torsional damping coefficients of 

stator supports (3 < i  6); dii – total damping coefficients 

of rotor supports (i > 6). 

For the diagonal form of the stiffness matrix, the off-

diagonal elements must be equal to zero: static moments 

of viscous friction with respect to coordinate planes of the 

system dij (i, j  3, i  j) and centrifugal moments of 

viscous friction with respect to pairs of coordinate planes 

dij (3 < i, j  6, and i  j). 

These conditions are satisfied if the principal axes of 

the stator support’s viscous friction constants coincide 

with the stator’s principal central axes of inertia [24]. 

The components and moments of the perturbing force 

of vector Q are equal to: 

 

𝐹𝑥 = 𝑚𝑟𝜔2𝑒𝑈 𝑠𝑖𝑛 𝜔 𝑡; 𝐹𝑦 = 0;

𝐹𝑧 = 𝒎𝒓𝝎𝟐𝒆𝑼 𝒄𝒐𝒔 𝝎 𝒕;

𝑴𝒙 = 𝒎𝒓𝝎𝟐𝒆𝑼𝒚𝑫 𝒄𝒐𝒔 𝝎 𝒕;

𝑴𝒚 = 𝑚𝑟𝜔2𝑒𝑈(𝑧𝐷 𝑠𝑖𝑛 𝜔 𝑡 − 𝑥𝐷 𝑐𝑜𝑠 𝜔 𝑡);

𝑀𝑧 = −𝑚𝑟𝜔2𝑒𝑈𝑦𝐷 𝑠𝑖𝑛 𝜔 𝑡,

 (16) 

where the forces Fx, Fy, and Fz – projections of the radial 

unbalanced force 𝐹 = 𝑚𝑟𝜔2𝑒𝑈, caused by mechanical 

eccentricity; the moments Mx, My, and Mz – torques with 

respect to the coordinate axes, that arise in case of a 

mismatch of the rotor rotation axis with the stator central 

axis of inertia (xD  0, zD  0) and displacement of the rotor 

center of mass along the rotation axis (yD  0). 

3.7 Mathematical model of motor vibrations with 

magnetic rotor eccentricity 

Mixed magnetic eccentricity em is a combination of 

magnetic static and magnetic dynamic eccentricities. In 

general, it is not equal to the mass eccentricity eU because 

it characterizes the deviation of the magnetic centers of the 

stator and rotor, which may not coincide with the 

geometric center of the stator and the rotor rotation axis, 

respectively. 

Thus, static magnetic eccentricity ems creates a load on 

the rotor, which the resultant radial force can characterize 

𝐹𝑈𝑀𝑃
𝑠 , which acts on the minimum air gap. The value of the 

static magnetic eccentricity is equal to the distance ОD 

between the stator axis of inertia and the rotor axis of 

rotation in Fig. 1 is 𝑒𝑚𝑠 = √𝑥𝐷
2 + 𝑧𝐷

2 . The dynamic 

eccentricity emd creates a force vector 𝐹𝑈𝑀𝑃
𝑑 , which acts on 

the rotor and rotates at the rotor speed. 

Since UMP does not depend on the parameters included 

in the model (12), the influence of UMP can be accounted 

for by the additional radial nonlinear force FUMP and its 

moments in (12). Under the assumption of constant 

angular speed  = const), the theoretical expressions 

proposed in [4, 11] can be applied can be applied to 

estimate the UMP force (Fig. 4). 

 

Figure 4 – Diagram of the magnetic eccentricity of the rotor 

The value of the air gap of the eccentric rotor for an 

arbitrary eccentricity at any time is approximated: 

 𝛿(𝜓, 𝑡) ≈ 𝛿0 − 𝑒𝑚(𝑡) 𝑐𝑜𝑠[𝜓 − 𝜑(𝑡)], (17) 

where 0 – the average value of air gap at rotor 

centering;  – the stator position angle; em(t) – the value of 

magnetic eccentricity at time t; (t) is the position angle of 

eccentricity (rotation of the rotor center) at time t. 

At static eccentricity ems, the air gap at an arbitrary point 

on the inner surface of the stator is defined as 

 ( ) ( )0 cosmse     − − , (18) 

where  – the position angle of static eccentricity. 

At dynamic eccentricity emd, the eccentricity position 

angle is a function of time (t) = 0 + t, therefore  

 𝛿(𝜓, 𝑡) ≈ 𝛿0 − 𝑒𝑚𝑑 𝑐𝑜𝑠(𝜓 − 𝜑0 − 𝜔𝑡), (19) 

where 0 – the initial position angle of the dynamic 

eccentricity;  – the angular speed of rotor rotation. 
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UMP is highly nonlinear. Nonlinear methods of UMP 

calculation use the energy method or integration of the 

Maxwell stress tensor in the air gap between the stator and 

rotor [10]. The expression for the unbalanced magnetic 

pull on the rotor surface is defined as 

 

𝐹𝑈𝑀𝑃𝑥 = 𝑓1 𝑐𝑜𝑠 𝜑 + 𝑓2 𝑐𝑜𝑠(2𝜔𝑒𝑡 − 𝜑) +

+𝑓3 𝑐𝑜𝑠(2𝜔𝑒𝑡 − 3𝜑) , 𝑝 = 1,

𝑓1 𝑐𝑜𝑠 𝜑 + 𝑓3 𝑐𝑜𝑠(2𝜔𝑒𝑡 − 3𝜑) +

+𝑓4 𝑐𝑜𝑠(2𝜔𝑒𝑡 − 5𝜑) , 𝑝 = 2,

𝑓1 𝑐𝑜𝑠 𝜑 + 𝑓4 𝑐𝑜𝑠(2𝜔𝑒𝑡 − 5𝜑) , 𝑝 = 3,
𝑓1 𝑐𝑜𝑠 𝜑 , 𝑝 ≥ 4;

𝐹𝑈𝑀𝑃𝑧 = 𝑓1 𝑠𝑖𝑛 𝜑 + 𝑓2 𝑠𝑖𝑛(2𝜔𝑒𝑡 − 𝜑) +

+𝑓3 𝑠𝑖𝑛(2𝜔𝑒𝑡 − 3𝜑) , 𝑝 = 1,

𝑓1 𝑠𝑖𝑛 𝜑 + 𝑓3 𝑠𝑖𝑛(2𝜔𝑒𝑡 − 3𝜑) +

+𝑓4 𝑠𝑖𝑛(2𝜔𝑒𝑡 − 5𝜑) , 𝑝 = 2,

𝑓1 𝑠𝑖𝑛 𝜑 + 𝑓4 𝑠𝑖𝑛(2𝜔𝑒𝑡 − 5𝜑) , 𝑝 = 3,
𝑓1 𝑠𝑖𝑛 𝜑 , 𝑝 ≥ 4,

 (20) 

where FUMPx and FUMPz – projections of the magnetic 

pull force on the x and z axes, respectively; e – the angular 

frequency of the stator winding power supply source; p is 

the number of pole pairs of stator windings; f1, f2, f3, f4 – 

the amplitudes of the components of the UMP: 

   

𝑓1 = 0.25𝑅𝑙𝜋𝜇0
−1𝐹𝑗

2(2𝛬0𝛬1 + 𝛬1𝛬2 + 𝛬2𝛬3);

𝑓2 = 0.25𝑅𝑙𝜋𝜇0
−1𝐹𝑗

2 (𝛬0𝛬1 +
1

2
𝛬1𝛬2 +

1

2
𝛬2𝛬3) ;

𝑓3 = 0.25𝑅𝑙𝜋𝜇0
−1𝐹𝑗

2 (𝛬0𝛬3 +
1

2
𝛬1𝛬2) ; 𝛬2𝛬3,

𝑓4 = 0.125𝑅𝑙𝜋𝜇0
−1𝐹𝑗

2,

 (21) 

where R – the rotor radius; l – the rotor length; Fj – the 

amplitude of the fundamental wave of magnetomotive 

force (MMF) of rotor excitation; 0 – the air permeance; 

i – the Fourier coefficients in the expression of the 

magnetic permeability of the air gap: 

 𝛬𝑖 = {

𝜇0

𝛿0

1

√1−𝜀2
, 𝑖 = 0;

2𝜇0

𝛿0

1

√1−𝜀2
(

1

1+√1−𝜀2
)

𝑖

, 𝑖 > 0,
 (22) 

where ε = em / δ0 – relative eccentricity. 

The angular speed of rotation of the rotor, considering 

the slip s of the IM, is related to the angular speed of 

rotation of the magnetic field m and the angular frequency 

of the electric current supplying the winding e as follows: 

 𝜔 = (1 − 𝑠)𝜔𝑚 = (1 − 𝑠)
𝜔𝑒

𝑝
. (23) 

The resultant magnetic tension force FUMP is defined as 

a vector sum of forces 𝐹̄𝑈𝑀𝑃 = 𝐹̄𝑈𝑀𝑃
𝑠 + 𝐹̄𝑈𝑀𝑃

𝑑 . To consider 

the rotor’s mechanical and magnetic eccentricity, the 

vector of magnetic force factors QUMP should also be 

added to the vector Q of the system (12). 

Thus, equation (12) takes the following form: 

 ( ) UMP+ + + = +Mq G D q Aq Q Q , (24) 

where QUMP = [FUMPx, 0, FUMPz, MUMPx, MUMPy, MUMPx, 

MUMPz, FUMPx, FUMPz]T. 

Denoting the magnetic center of the rotor as 

𝐷𝑚(𝑥𝐷 , 𝑦𝐷
𝑚 , 𝑧𝐷), the moments of the unbalanced tension 

force can be determined analogously (Fig. 5): 

 

𝑀𝑈𝑀𝑃𝑥 = 𝐹𝑈𝑀𝑃𝑧𝑦𝐷
𝑚;

𝑀𝑈𝑀𝑃𝑦 = 𝐹𝑈𝑀𝑃𝑥𝑧𝐷 − 𝐹𝑈𝑀𝑃𝑧𝑥𝐷;

𝑀𝑈𝑀𝑃𝑧 = −𝐹𝑈𝑀𝑃𝑥𝑦𝐷
𝑚 ,

 (25) 

where 𝑦𝐷
𝑚 – the axial displacement of the rotor magnetic 

center is generally not equal to the axial displacement of 

the rotor mass center yD. 

 

Figure 5 – Diagram of the UMP force and its moments 

4 Results 

4.1 Refinement of elastic-inertia and damping 

parameters of the model 

An 11 kW IM with a squirrel cage rotor with an 

allowable vibration displacement level of 70 µm was 

selected for modeling. The motor is used in metalworking 

and woodworking machines, as well as in fans, pumps, and 

other industrial systems. The main characteristics of the 

IM are given in Table 1. 

The accuracy and reliability of modeling significantly 

depend on the way of installation of the IM and the 

accuracy of values of elastic-inertial and damping 

characteristics of the system, so let us consider in detail the 

process of their selection. 

The IM under consideration is fixed to the foundation 

by means of “feet”. The stator supports are bolted 

connections between the stator feet and the foundation. 

The diameter of the bolts is 10 mm. The international 

standards ISO 10816 and IEC 60034-14 regulate the 

stiffness of IM foundations: foundations must be designed 

so that their critical frequency lies above the IM operating 

frequency and 2 times the supply frequency for 2nd-pole 

IMs. The stiffness of such foundations should be greater 

than 1·109 N/m. In practice, achieving these values with 

steel foundations is often impossible. The actual stiffness 

of this type of IM foundation is much lower at 108 N/m. 

This stiffness value can be assumed to be the vertical 

stiffness of the support csz. The stiffness of supports in the 

horizontal plane is determined by the stiffness of bolted 

connections and was calculated according to the 

methodology described in [25]. The elastic characteristics 

of bolted connections were considered linear. The 

calculated values of stator support stiffnesses csx, csy are 

given in Table 1. 

x
y

z
O is the center
 of stator mass

Dm O

The central axes
 of stator inertia

The axis of rotation 
of the rotor

zD

yD

xD

FUMPx

FUMPz

ems

MUMPy

MUMPx

MUMPz

FUMP
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Table 1 – Parameters of the three-phase induction motor 

Notation Description Value 

Motor data 

n Rated speed, rpm 3000 

s Rated slip 0.033 

R Radius of the rotor, mm 63.5 

l Length of the rotor, mm 130 

mr Mass of the rotor, kg 14.22 

ms Mass of the stator, kg 57.78 

0 Mean air-gap length, mm 0.45 

0 Air permeance, N/m 410–7 

Fj 

Fundamental MMF 

amplitude of the rotor 

excitation current, A 

945 

p Number of pole pairs 1 

crx, crz 
Stiffness of bearing housing 

and end shield, N/m 
5.52107 

e Permissible eccentricity (m) 20 

y1, y2 

Coordinates y of rotor 

bearing connection points 

(mm) 

(–65, 65) 

Foundation data 

csz 

Vertical stiffness of the 

foundation at each motor 

support (N/m) 
2.5107 

csx, csy 

Horizontal stiffness of the 

foundation at each motor 

support (N/m) 
2108 

tg(s) 
Mechanical loss factor of the 

foundation 
0.08 

xi 
Coordinates of stator support 

connection points, mm 

 

(i = 1, 2, …, 4) 

(–108, 108,  

108, –108) 

yi 
(–89, –89,  

89, 89) 

zi 
(–132, –132,  

–132, –132) 
 

The rotor supports are 6208 ZZ-C3 rolling ball bearings 

seated in cast iron bearing shields. Assuming that the cast 

iron bearing shields are non-deformable, the stiffness of 

the rotor supports is entirely determined by the radial 

stiffness of the bearings. In general, the radial stiffness of 

the bearings is nonlinear, as it depends on the bearing load 

and its radial clearance. The radial stiffness of the bearing 

can be calculated using the methodology described in [26]: 

 𝑐𝑟 = 8.41·106 · √𝐷𝑄𝑧2 𝑐𝑜𝑠5 𝛼
3

, (26) 

where z – the number of rolling elements; D – the 

diameter of the ball, m; Q – the equivalent dynamic radial 

load, N;  – the contact angle, rad. 

In the ideal case, when there is no mass unbalance, the 

radial load is determined only by the weight of the rotor, 

and the bearing stiffness calculated by formula (26) is 

4.93107 N/m. 

In case of imbalance, the dynamic load will increase, 

and the bearing stiffness will increase. Let’s the rotor be 

pre-balanced, and the vibration amplitude does not exceed 

70 µm (under the recommendations of the international 

standard ISO 20816-1:2016 “Mechanical vibration. 

Measurement and evaluation of machine vibration. Part 1: 

General guidelines”). 

In this case, the mechanical unbalance of the rotor is 

0.28 g·mm, which corresponds to the eccentricity eU = 20 

m. At rotation of the rotor with operating speed 

 = 314 rad/s due to the mass eccentricity, there is an 

additional radial unbalanced force with an amplitude of 

𝐹 = 𝑚2𝑒𝑈𝜔2 = 28 (N). Thus, the equivalent dynamic 

radial load on the bearing without considering axial load 

and the rotor gravity force is equal to Q = 97.6 N, and the 

bearing stiffness increases by 12 %: cr = 5.52107 N/m. 

The model (24) analysis shows that the pliability of the 

considered bearings in the frequency range from 0 to 

1000 rad/s does not affect the appearance of dangerous 

resonances in the system. The change of bearing stiffness 

at load change, according to (26), does not significantly 

influence the frequency response of the IM. The stiffness 

of the stator supports determines the motor case’s 1st 

critical speed. 

The damping coefficients ℎ𝑟𝑥𝑖
, ℎ𝑟𝑧𝑖

 (𝑖 = 1, 2) of the 

bearing housing (rotor supports) can be calculated as 

2.5·10–5cr [27]. The damping coefficients of the stator 

supports were determined according to the method 

described in [17]. The damping coefficients 

ℎ𝑠𝑥𝑖
, ℎ𝑠𝑦𝑖

, ℎ𝑠𝑧𝑖
 (𝑖 = 1, 2, 3, 4) of the supports can be 

calculated by the mechanical loss factor tg(s): 

 ℎ𝑠 =
𝑐𝑠 𝑡𝑔(𝛿𝑠)

𝜔
. (27) 

The simulation was carried out using the MATLAB 

Simulink. The Runge-Kutta approach is applied to solve 

the system of differential equations (24). The block 

diagram of the calculation algorithm is presented in Fig. 6. 

 

Figure 6 – Block diagram of the calculation process 

Data input:

Start
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geometric data,eccentricity data
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4.2 Analysis of critical frequencies 

Consider the transverse vibrations of the IM, whose 

rotor is characterized by mass eccentricity. The value of 

the critical frequencies of the IM is influenced by the 

pliability of the stator supports. In general, the stator has 6 

critical frequencies. In particular, transverse vibrations of 

the stator are characterized by critical frequencies 

fcsx = 117.6 Hz, fcsz = 183.2 Hz, and axial – fcsy = 99.9 Hz. 

Critical frequencies of the rotor are equal to 

fcrx = 132.9 Hz, fcrz = 184.1 Hz. 

The design of this IM is such that the static and 

centrifugal stiffness and viscous friction moments are not 

zero because the coordinate planes about which they are 

defined are not the symmetry planes of the stator support 

system. The stiffness matrix А and the damping matrix D 

are non-diagonal. Fig. 7 demonstrates the dependence of 

the amplitude of transverse horizontal vibrations on the 

frequency at different values of the rotor height above the 

connection points of the coordinate supports 

z = {0, 30, 60, 100, 132} mm. 

 

Figure 7 – Frequency response of stator vibration amplitude 

The results show that to reduce the IM’s vibration 

activity, the best design solution would be to position the 

stator supports in the xOy plane. 

Another solution is to add additional supports 

symmetrically to the existing ones with respect to the rotor 

axis, placing them in the horizontal plane at a distance 

z = 132 mm from the rotor axis. 

Fig. 8 shows the comparative dependences of 

horizontal transverse vibrations of the rotor at different 

types of eccentricity: mass eccentricity eU = 20 m; static 

magnetic eccentricity ems = 4.5 m ( = 0.01); the angle 

 = 0; dynamic magnetic eccentricity ems = 4.5 m 

( = 0.01). 

Fig. 8 shows that the IM has two critical velocities. The 

first is caused by static magnetic eccentricity and the 

second is caused by mass eccentricity. Static magnetic 

eccentricity leads to the appearance of another critical 

velocity on the frequency response, the value of which is 

approximately 2 times smaller. Thus, even an IM with a 

perfectly balanced rotor with zero mass unbalance due to 

its eccentric position in the stator bore always has a critical 

frequency caused by static magnetic eccentricity. Since the 

FUMP force varies with twice the frequency compared to 

the current frequency e (at p = 1), this frequency is about 

2 times the rotor speed. The UMP spectrum contains zero 

frequency and 2e frequency components. 

When the rotational speed is reached 0.5(1 − 𝑠)𝜔𝑐𝑟𝑈
, 

an unbalanced magnetic force acts on the rotor with 

frequency 𝜔𝑐𝑟𝑈
. This gives the IM another critical speed 

𝜔𝑐𝑟𝑚
, which for an arbitrary number of pole pairs p is 

defined as follows: 

 𝜔𝑐𝑟𝑚
=

(1−𝑠)

2𝑝
𝜔𝑐𝑟𝑈

. (28) 

 

Figure 8 – Comparative dependences of horizontal  

stator vibrations at different types of rotor eccentricity 

5 Discussion 

The danger of static magnetic eccentricity is that even 

if the critical frequencies lie above the motor operating 

frequencies, UMP can lead to the appearance of resonance 

in the operating frequency zone. The results obtained agree 

with those obtained by other authors [28–31]. 

In known models, the mass eccentricity eU is only 

considered when calculating the unbalanced radial force 

𝐹 = 𝑚𝑟𝜔2𝑒𝑈. The results show that due to the mismatch 

between the axis of rotation and the central axis of inertia 

of the stator, taking into account in the model the change 

of the motor moments of inertia by the values of moments 

of inertia 𝐽𝑥 = 𝑚𝑟(𝑦𝐷
2 + 𝑧𝐷

2), 𝐽𝑦 = 𝑚𝑟(𝑧𝐷
2 + 𝑥𝐷

2), and  

𝐽𝑧 = 𝑚𝑟(𝑥𝐷
2 + 𝑦𝐷

2) increase the accuracy of modeling. 

Particularly, at an axial displacement of the magnetic 

center relative to the central axis of symmetry of the stator 

by 10 mm, the moments of inertia of the motor relative to 

the x and z axes increase by 0.2 %. Although the effect 

seems negligible, the model also accounts for the effect of 

torques that create additional critical velocities for 

rotational motion. Knowledge of the natural frequency 

spectrum of the motor system seems to be very important. 

Attention should also be paid to the additional increase 

in static magnetic eccentricity due to the increase in 

bearing clearance caused by dynamic loading. In the 

known models in publications [3, 15–17, 28, 29], the 

magnitude of magnetic eccentricity is analyzed without 

considering the change in bearing radial clearance. The 

radial clearance in the bearing is made up of elastic 

deformations and the nameplate clearance. 
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At low bearing loads, elastic deformations are 

insignificant and are neglected, assuming that the radial 

clearance corresponds to the nameplate value. Under the 

influence of magnetic attraction, the radial clearance of the 

bearing and the clearances between the outer surface of the 

bearing ring and the inner surface of the shield, as well as 

between the shield and the bed in the place of shield 

seating, are selected. When a load is applied to the bearing, 

it elastically deforms, increasing the internal clearance. 

The relationship between the radial load and the 

deformation clearance of a ball bearing is determined by 

the relationship established based on the Hertz theory [30]: 

 Δ = 1.285 ⋅ 10−3 · √
𝑄2

𝐷𝑖2𝑧2 𝑐𝑜𝑠5 𝛼

3
, (29) 

where і – the number of bearing rows. 

For the example under consideration, at the operating 

frequency with permissible eccentricity, the radial 

displacement of the inner and outer ring of the bearing is 

 = 5.75 m. At the maximum value of the radial force at 

the critical frequency, the radial displacement will be 

 = 13.4 m. Consequently, adding up with the initial 

static magnetic eccentricity, the resulting value of 

magnetic eccentricity will increase. For the IM we have 

considered, this increase in magnetic eccentricity is 3% of 

the air gap with an accepted allowable relative eccentricity 

of 10 %. Thus, the error in determining the allowable 

eccentricity can reach 30 %. 

However, some authors, for example, in [29], draw 

attention to the problem of determining the actual static 

eccentricity during the system assembly. We believe that 

the eccentricity value should be determined in dynamics, 

considering the actual deformation clearance of the 

bearings. The solution to this problem can become the 

basis for future research. 

The analysis of dependence (25) has shown that the 

increase of FUMP at resonance leads to the increase of rotor 

bearing stiffness up to 8.57107 N/m and, accordingly, to 

the decrease of stator vibrations, but this effect is 

insignificant (2–3 %). 

The known models [1-10, 28] do not consider the 

influence of such parameters: the axial displacement of the 

center of inertia yD and the magnetic center of the rotor 𝑦𝐷
𝑚. 

Usually, the authors explain it by saying that their 

influence is insignificant. Our simulation results show that 

considering these coordinates is necessary for more 

accurate vibration results. In real IMs, both the unbalanced 

force F and the magnetic pull force FUMP do not lie in the 

OXZ plane passing through the stator center of inertia. 

The developed model allowed for investigating the 

influence of the longitudinal displacement yD of the rotor 

center of mass and the axial displacement of the rotor 

magnetic center. Fig. 9 shows the frequency dependencies 

of the axial vibration magnitude obtained at different 

values of the coordinate 𝑦𝐷
𝑚. 

This is explained by an increase in the moment of action 

of the UMP, which leads to an increase in angular 

oscillations relative to the x and z axes due to the action of 

torques MUMPx and MUMPz along the coordinates  and .  

 

Figure 9 – Frequency response at variable displacement 𝑦𝐷
𝑚 

(axial vibrations) 

An increase in angular vibrations causes an increase in 

the displacement of the stator due to the translational and 

rotational movement. These vibrations can negatively 

affect the performance of the bearing node and reduce its 

service life. 

In [10, 29], attention was paid to the dependence of the 

magnitude of magnetic tension on the position of the 

minimum air gap. Our simulation results also showed a 

significant influence of the direction of the smallest air gap 

on the magnitude of vibrations. Fig. 10 shows the 

distribution of the amplitude of transverse horizontal 

vibrations from frequency when the angle  of static 

eccentricity is changed. 

 
а 

 
b 

Figure 10 – Dependence of stator vibrations on the eccentricity 

angle at static magnetic eccentricity: a – horizontal vibrations;  

b – vertical vibrations 
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The horizontal vibrations along the x-axis are maximum 

at  = 0 and  = 180, when FUMPx → max, FUMPz → 0. 

The vibrations along the x-axis are minimum at  = 90 

and  = 270, when FUMPx → 0, FUMPz → max. 

Vertical vibrations along the z-axis are maximum at 

 = 90 and  = 270, when FUMPz → max, FUMPx → 0. 

Vibrations along the z-axis are minimum at  = 0 and 

 = 180, when FUMPx → max, FUMPz → 0. 

Static balancing of a rigid rotor in two correction planes 

will not reduce the unbalance due to magnetic eccentricity. 

The angle of magnetic eccentricity should always be 

considered to improve balancing efficiency. 

6 Conclusions 

A mathematical model of the dynamics of an induction 

motor with 8 degrees of freedom has been created. The 

model allows for eccentricity of the rotor mass, the static 

and dynamic magnetic eccentricity of the rotor, the 

influence of the gyroscopic moment of the rotor, and 

unequal stiffness of the stator and rotor supports and their 

number and places of connection. 

The model differs in considering the influence of the 

rotor’s eccentric position in the stator bore, axial deviation 

of mass, and magnetic unbalance from the stator center of 

mass. For this purpose, degrees of freedom for the 

rotational motion of the stator and longitudinal 

translational motion of the stator are introduced into the 

model. The main results of this study can be summarized 

as follows. 

First, consideration of the moments of mass and 

electromagnetic unbalanced forces and additional degrees 

of freedom allows for modeling the rotor and stator axial 

vibrations. The magnitude of axial vibrations increases 

with increasing distance between the center of inertia of 

the stator, the center of inertia of the rotor, and the 

magnetic center of the rotor. 

Also, static magnetic eccentricity causes an additional 

critical motor speed, which decreases in proportion to the 

increase in the number of pole pairs. The danger of static 

magnetic eccentricity is that even if the critical frequencies 

lie above the operating frequencies of the motor, the 

unbalanced magnetic pull can lead to resonance in the 

operating frequency zone. 

Moreover, the static magnetic eccentricity can increase 

further at IM operating frequencies due to the increase in 

bearing clearance caused by dynamic unbalanced loading. 

The possible error in determining the permissible 

eccentricity without considering the change in bearing 

radial clearance can reach 30 %. 

Finally, the angle of static magnetic eccentricity 

significantly affects the magnitude of transverse 

vibrations. This feature should be considered when 

balancing rotors when selecting the locations of balancing 

weights. 
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