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The nanocomposite filtration membranes have emerged as potential water purification and separation
technologies. However, reliable estimation of foulant rejection and permeate flux remains difficult due to the
complicated interaction of many components. Traditional modeling techniques fail to capture the complex dynamics
at work. In this paper, we provide a Refined Support Vector Machine (RSVM) strategy to solve this issue and increase
the performance of nanocomposite filtration membranes. To normalize the features, the data are pre-processed using
min-max normalization. Data features like foulant rejection rates, permeate flux values, membrane features, and
experimental setup are displayed. Furthermore, the proposed RSVM to determine the best input factors for the
effectiveness of each nanocomposite membrane. Due to the strong resilience of RSVM and the great generalization
ability of the ML model, the obtained results demonstrated that the RSVM model's prediction efficiency (R2 = 0.995)
outperformed the mathematical model in terms of prediction performance. To conduct training, validation and testing
for this work, we employed statistical data including 764 samples of the input variables (five) and output variables
(two). The RSVM approach provides a dependable and effective way to forecast membrane fouling and water
filtration by predicting foulant rejection and permeate flux.
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1. INTRODUCTION

The thin film nanocomposite filtration membrane has
been conducted during the past two decades for both
industrial and domestic uses, with a focus on
nanocomposite-filtered ~ membranes. Both  organic
materials (polymers) and inorganic materials (ceramics)
can be used to make membranes; polymeric materials
have been studied due to their chemical stability,
mechanical strength and flexibility. The term "permeate
flux" defines the rate at which a fluid that has been
filtered or treated permeates the membrane surface per
unit area throughout a particular period. The capacity of
the membrane to prevent or reject the passage of
unwanted chemicals (foulants) between the permeate
side and the feed solution is referred as foulant rejection.
To extend the membrane's life and increase its function,
nanocomposites are used in membrane technology [1].

Polymeric membrane performance, mainly ultra
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filtration (UF) membranes, the application of nano-
filtration such as TiOgz, SiO2, GO, Ag, SWCNTSs, and
Cuinpolymer matrices has generated significant.
Commercialization of membranes modified with
nanocomposite was impeded by concerns for the long-term
effects of exposure to nano-filtration leached from the
polymer and a reluctance to change their current
manufacturing lines [2], which include the combination of
polymer, solvent and nano-filtration filler, without an
accurate cost-benefit analysis. A design platform to speed up
the development of innovative nanocomposite membranes is
desired by membrane groups. When machine learning (ML)
is used instead of conventional experimental and
computational methods, the production time of UF
nanocomposite membranes can be decreased [3-4].

2. RELATED WORK

The article [5] suggested that commercial and in-
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house polyether sulfone (PES) membranes, and thin TiO2
nanoparticle mesoporous coatings in a range of pore sizes
were produced utilizing a hydrothermal low temperature
(HLT) method. After dip-coating titanic sol-gel particles
onto membrane substrates, the other organic templates
were separated using heat and Ultraviolet (UV) light
treatments. To improve the coating's surface qualities
and microstructure, dip-coating parameters were varied,
such as the number of coating cycles, dipping and
withdrawal velocities drying and holding times. The
research [6] proposed these membranes to vast regions
are visible, Graphene-based membranes have great
potential for creative separation platforms because of
their accurate molecular filtration of dissolved molecules
and gas as well as their rapid water transfer. The ideal
filtration membrane structure consists of a thin, dense,
and defect-free serving as a practical filter; porous and
more permeable support is mechanical strength.

The study [7] suggested the wastewater from the
production of cheese puts pressure on the environment. The
use of the convolutional neural network (CNN)modelling in
dynamic whey flux data studies has wider use, as it can be
used to improve whey recovery efficiency by sensor tuning
that in effect enables online flux monitoring. The author [8]
proposed that membrane technologies have become
increasingly prevalent in wastewater and water treatment
operations. Al allows simpler system operation, including
better planning, tracking, and real-time comprehensive
understanding of resource loss, thus maximizing revenue
capture and water quality satisfaction. The research [9]
presented the difference between the output values of the
model and the real values suggested by the study. To create
materials with intrinsic composite features, membrane
technology and polymeric materials have continued to
concentrate on membrane modification. The article [10]
proposed the ML approach can handle complex nonlinear
interactions; it has been widely used in many fields, such as
water chemistry. The possible use of ML in desalination
research holds great potential in developing sustainable and
effective desalination technologies. The author [11]
suggested membrane technologies are becoming more useful
and adaptable for sustainable development. An optimal
framework for integrating ML techniques with particular
application goals in membrane design and discovery is
provided along with best practices. The study [12] developed
membranes using nanotechnology that are gaining widely
recognized as an eco-friendly technology for significant
separation processes, capable of resolving the trade-off
dispute seen in conventional methods for the separation of
membranes. The main topics of this area include
desalination, food, energy and biomedical fields, as well as
air and water purification, as well as the latest
developments in advanced nanocomposite membranes and
their potential applications. The article [13] suggested that
Green nanotechnology is the generation of safe technology to
reduce potential risks for the health of humans and the
environment both the manufacturing and consumption of
nanotechnology products [14-16].
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3. METHODOLOGY

In this section, the proposed RSVM attempts to
predict two essential parameters in membrane filtering
processes: permeate flux (the rate of fluid flux through
the membrane) and foulant rejection (the membrane's
capacity to reject or remove undesired substances).

3.1 Dataset

The materials, architectures, and production methods
for incorporating various nanomaterial types into TFN
membranes are designed to raise the efficiency of the
membranes exceeding the level achievable with
conventional manufacturing. The statistical data 764
samples were used in this study. Table 1 show the
statistics data for five input and two output variables.

Table 1 - Input and output variable of statistical data

Variables | Means+ SD [ Range | Description

Input Variables

Thin layer 31.75—

Thickness 224 £200.4 2250 B

Temperature

post- 70.68+16.23 | 26-121 -

treatment(cC)
"Organic solution,"
"PVA solution,"
"Aqueous solution,"
"Grafted on the
TFC  membrane,"

Location  of "Membrane

theNPs 1.40 0-6 support," "PSF
support," and
"Polymer  support
casting  solution."
was changed to O,
1,2,...,6respectively.

Duration  of

post- 17.19+41.45 | 1-241 | —

treatment

(minutes)

Operation

pressure 161.3+91.88 ;ég}_ —

(PSI) )

Output Variables

Foulant 54.60— 92.95 =+

rejection (%) | 99.70 8.45 B

Permeate 0.38— 35.24 =+

flux 137.79 23.60 B

Note: Pounds per square inch (PSI), polyvinyl alcohol
(PVA), Price per Square Foot (PSF)

Input Variables:

1. Thin layer thickness: This refers to the thickness of
the thin layer in the filtration process, which has an
impact on foulant accumulation and permeates flow.

2. Location of nanoparticles (NPs): The arrangement or
spatial distribution of nanoparticles in the filter, which
can have an impact on fouling and filtered efficiency.

3. Temperature post-treatment: The temperature at
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which membrane properties and fouling behavior are
affected by post-treatment performed after filtration.
4. Duration of post-treatment: The length of post-treatment,
which impacts the membrane is cleaned or rejuvenated.
5. Operation pressure: The pressure at which the
filtration system operates, affecting the driving force
for permeation and fouling dynamics.

Output Variables:

1. Permeate flux: The rate which the filtrate passes
through the membrane per unit area and time is
known as the filtration flux or permeation rate.

2. Foulant rejection: The percent of retained foulants
compared to the total amount in the feed shows the
membrane rejects contaminants or foulants.

Min-Max

3.2 Data Pre-processing Using

Normalization

We use Min-Max Normalization for normalize the
input variables to improve accuracy and speed up the
learning phase. Normalization of the RSVM's input data
is becoming more popular in the classification process of
RSVMs. Translation of data into the range (or any other
range) or transferring information onto the unit sphere is
called normalization in ML. Standardization and
normalization can be beneficial for some ML algorithms,
particularly when Euclidean distance is used.

Mmax—Mmin
Whorm = m x (W — Mmin) + Mpin ¢))
When vector X is used as the input or output, the
normalized form of W, is the same. M,,;,, and M,,,, are
the input values, whereas W,,,,, and W,,;,, are the min values
and max values of the output vectors, — 1 and +1, respectively

3.3 Refined Support Vector Machine (RSVM)

The supervised ML algorithm that can be applied to
regression and classification problems is a refined
support vector machine (RSVM). RSVM can be used for a
variety of tasks in the context of nanocomposite filtration
membranes, including the calculation of membrane
presentation, the classification of various membrane
types, and the optimization of membrane properties. In
general, ML uses kernel function implementation and
high dimensional space simplification to perform data
classification and reduce structural risk.

The RSVM technique aims to offer precise and
reliable estimations of permeate flux and foulant
rejection. This accuracy is critical for maximizing
membrane filtering operations, increasing system
efficiency, and maintaining constant product quality. The
RSVM was highly accurate in predicting the pore and
fracture pressures if the coefficient of determining
reporting responsibility (R% was more than 0.995.
It is a crucial component in membrane structure. With a
few real-time surface drilling measurements, it is feasible
to calculate the fracture pressure and estimate the pore
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pressure without the necessity for pressure trends.

Using a dataset that includes observations of the input
variables (thin layer thickness, NP location, temperature
post-treatment, duration of post-treatment, operation
pressure) and corresponding values of the output variables
(permeate flux, foulant rejection), the RSVM approach
involves creating an ML model. To create accurate
predictions or estimations for unseen data, the model is
trained to identify the underlying patterns and
connections between the inputs and outputs.

Ming, ol (0,f) = S0 +y Ty Ws @)
Such that

Zj(@Wi+a)+ei=1;620;i=12..,n (3
. _ 1 2 1 n 2
Mingarl @ f) = ol +2y B, f; @

Here I, W}, and Z; are representative of the binary target,
slack variable and the risk bound, respectively. Along with the
bias, slack variable, weight matrix, error and regularization
parameter are represented by the symbols y, 7, a, €i, ¢, W; and
Z;j in that order. This method of determining the Lagrangian
function was used to solve the problem:

Kissvow == SN0l 42y Ty f2 = Zi @ (0.6 (@) +a+ fi — 2} (5)

The Lagrangian multipliers are represented by a; in
Eq. (3) Eq.(4) provides the derivatives of Eq. (3) for
a,f,w, and ak are used to determine the parameters.

aKléS(f)VM _ 6KZ§ZVM _ aKfanS,VM _ akgs;:,,.,, —0 ©)

w= 2L ad(w) (7

2%1 a=0 (€)

al=yfil=1,...M ©))

(w.ow)+a+fl—zl=01l=1,..M (10)
s

- +]yM—1/M] &= [g] (D

Using the equations mentioned above, the definition
of a linear system as follows:

Nge = @ (Ws)D(W,) = L(ws, we) (12)

In several domains, such as water treatment,
wastewater management, membrane filtered process, the
application of RSVM for measuring penetrates flux and
foulant rejection is important. By reducing energy
consumption and maintenance needs, precise estimation
of these parameters can enhance the performance of
systems for filtration, increase process efficiency and
reduce operating expenses. In conclusion, an RSVM
technique was developed to predict foulant rejection and
permeate flow in a filtered or separation system based on
two output variables and five input variables.
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4. RESULT AND DISCUSSION
4.1 Statistical Analysis

The data indicates that the polyamide layer (PA) is the
primary polymer utilized in the production of TFN. An
attribute of nanocomposite membranes, which consist of
two or more polymers which is produced one or more
support layers that are porous is a thin polymer barrier
layer. TEN fabrication has the use of major polymers. One
important feature of membrane construction that will
affect TFN economics is the ability to coat the porous sub-
layer with a thick, ultrathin layer of material specialized
to nanoparticles using a variety of ways. The existing focus
on membrane research must be on developing with
creating efficient nanocomposite membranes that have
high solute rejection, improved water flux, improved
physicochemical integrity, and small surface fouling.

The PIP solution and trimethyl chloride solution react
at a slow rate. An acid acceptor with a higher
concentration value and acyl halide is required for the
polyamide-increased activity layer. However, the
integrated acid acceptor in MPD-based membranes is the
high tertiary amine focused. The trend shows that the
two common reactive monomers are increasing. Table 2
shows the evaluation of TFN membrane performance.

Table 2 - TFN membrane performance

Name No of membranes

Water 62

Na2504 55

MgCle 30

MgSO4 46

NaCl 111

4.1.1. Evaluation of TFN Membrane Performance

In spite of being widely used in separation methods,
polymeric membranes, the TFN membrane's performance
has been restricted by the compatibility of their
permeability and selectivity. Robeson's upper bound can be
used to show this trade-off in gas separation applications.
They investigate whether this upper bound idea can also
apply to water separation in this study, in addition to
restricted gas separation membranes. Desalination and
water purification are two uses for TFN membranes, a type
of membrane technology. To confirm laboratory-scale results
and evaluate real-world performance, pilot- or field-scale
testing is frequently required. In general, more permeable
membranes reflect an increase in Naz2SO4 and a decrease in
MgCls and MgSOs separation factor. Fig. 1 (a) and (b) shows
a scatter plot of the water permeance of PA nanocomposite
membranes in TFN with and without nanoparticles against
the separation factors of MgClz (1/Sa), and Na2SO4 (1/Sa).
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Fig. 1 — Water penetration scatter graph a) MgCls, b) Na2SO4

4.2 Correlations of Input Variables

Evaluating the connection between each set of
variables is essential for machine learning models since
high correlation coefficients between RSVM models' input
parameters could result in excessive fitting. Table 3
shows the RSVM models permeate flux input variables
correlation coefficients. Because of the extremely low
correlation coefficient values (less than 0.6), the
suggested RSVM models' inputs haves no bond.

Table 3 — Input variables for correlation coefficients in the
RSVM model for permeate flux

Opera- |Thickness Temperature|Duration
. . |NPs
tion of  thin . |post- of  post-
location
pressure|layer treatment treatment
Operation 1.00
pressure
Thin layer
thickness 0.33 1.00
Location of]
the NPs -0.39 |-0.03 1.00
Temperature
post- 0.50 0.06 -0.12 (1.00
treatment
Duration of]
post- 0.02 0.17 0.06 -0.10 1.00
treatment
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The trimethyl chloride (TMC in n-hexane) organic
phase concentration, rejection, NP position, operation
pressure, particle concentration, temperature, duration,
contact angle, and thin layer thickness, were chosen as
the eight variables of the RSVM models to estimate
foulant rejection and permeate flux.

5. CONCLUSION

This study utilizes ML for nanocomposite filtration
membranes, to calculate foulant rejection and permeates
flux. Through an extensive study of various input
variables including thin layer thickness, post-treatment
duration, operation pressure, NP location and post-
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HamorxommosuTHi (pUIBTpAIHI MEeMOpPAHU 3SIBAJIACS SIK TIOTEHINIAHI TEXHOJIOTI] OYMINEHHSA Ta POSIICHHS BOIH.
OpHak HATHA OLHKA BIATOPIHEHHS 3a0pyIHIOIUIX PEYOBHH 1 ITOTOKY HEePMeary 3aJIHIIaeThCA BAYKKOK Yepes CRIIAIHY
B3aeMOJIi10 6araTboxX KOMIIOHEHTIB. TpaIuiiitHi MeToqy MOIeIOBAHHS He MOYKYTh TIOBHICTIO IIPOKOHTPOJILIOBATH CKJIAITHY
IUHAMIKY B po0OoTi. VY ITiif CTATTl 3alpOIOHOBAHA CTPATEris YIOCKOHAJIEHOI OmopHOI BekTopHoi Marmmun (RSVM) mis
BHUPIIIIEHHS ITiel mpo0/eMy Ta INOBUINEHHS IPOMAYKTMBHOCTI HAHOKOMIIOSHTHHX (OLIBTpAIfHIX MeMOpan. Jlia
HOpMaJH3ami (QyHKINi OaHl IOIepesHbO OOpOOJIAIOTECA 34 JOINOMOIOK MIHIMAJIBHO-MAKCHMAJIBLHOI HOPMAJIISALnI.
BinoOpakaoTbes XapaKTeprUCTUKY JAHNX: PIBEHb BIITOPIHEHHS 3a0pyIHIOIUNX PEYOBUH, SHAYEHHS IIOTOKY II€PMeary,
XapaAKTEPUCTUKA MeMOPaH! Ta eKCIepPUMeHTaJIbHA ycraHoBka. Kpim Toro, samporoHoBanmit RSVM 1ist BusHaveHHs
HaMKpaNX BXITHUX (PaKTOPIB IS epeKTUBHOCTI KOMKHOI HAHOKOMIIO3WTHOI MeMOpaH!. 3aBISKH BHICOKIM CTIMKOCTI
RSVM i Besmxkiit amatHOCTI Mogesi ML 10 y3araJibHeHHs, OTPUMAHI Pe3yJIBTATH TIPOJIEMOHCTPYBAJIH, ITI0 e)eKTUBHICTE
nporuodyBamusa momemi RSVM (R: = 0,995) mepeBepillye MaTeMaTWdHy MOIEIb 3 TOYKH 30py €(EKTHBHOCTI
TporHo3yBaHHsA. JIJIs1 IpoBeIeHHsT HABUAHHS, TIEPEBIPKY TA TECTYBAHHS JIJIA ITi€l PoO0TH OyJIM BUKOPHCTAHI CTATHCTIYHI
JIaHl, BRJOUAour 764 3paskyl BXITHUX 3MIHHUX (ITSTh) 1 BuxiqHuX aviauux (mBi). [Tixxim RSVM sabesmneuye HamiiiHwmiz 1
e(beKTHBHMI CIT0CI0 TIPOTHO3YyBaHHSA 3a0pyJHEHHS HAHOKOMIIOSUTHOI MeMOpaHw Ta QUIBTpAIi BOOM IILISXOM
TIPOTHO3YBAHHS BITOPIHEHHST 3a0PY/THIOIOUMX PEYOBHH 1 (piIiocy Tiepmeary.

Kimouosi ciosa: Torkomniskosuit HanokoMmmosuT (TFN), Mamunaue Hasuanusa, [lepmearnuii morik, Bimmosa
Bif 3a0pyaHens, Brockonasiena onopua Bekropua mammuuaa (RSVM).
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