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ABSTRACT 

Note: 33 рages, 6 figures, 2 tables, 23 references, 1 app. 

Justification of the relevance of the work's theme - Modern neural networks are 

highly over-parameterized. And what does it mean by this? Simply put, It means that a 

model has more parameters that seemingly exceed the dataset for training. Some Pruning 

techniques have the capability to remove a significant fraction of network parameters 

with little loss in accuracy. Recent methods based on dynamic reallocation of non-zero 

parameters have emerged allowing direct training of sparse networks such as Stochastic 

gradient descent (SGD), AdaDelta, AdaMax and Adabelief. We will be using models that 

require shorter training times and lower hardware requirements and have removed the 

hyperparameters to observe that the optimiser works with various models 

Object of study: Process of Optimizing Neural Networks For Parameter Efficiency 

 
Objective of study: The aim of this research is to provide an in-depth 

understanding of the modern neural networks, its role in various organizations, and its 

impact on operational efficiency information systems. 

 
Research methods: Comparative analysis, experimental research, literature 

reviews, deductive analysis. 

 
Results: An algorithm for optimizing the correspondence of the neural network 

model to the training data was proposed. The performance criteria of the neural network 

in the training and validation set are defined. The algorithm is implemented in software, 

which provides a better understanding of the step-by-step process of learning the model 

and implementing the optimization algorithm. 

 
NEURAL NETWORK, TRAINING SET, VALIDATION SET, VALIDATION LOSS, 

TRAINING LOSS     
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INTRODUCTION 

Justification of the relevance of the work's theme - Modern neural networks are 

highly over-parameterized. And what does it mean by this? Simply put, It means that a 

model has more parameters that seemingly exceed the dataset for training. Some Pruning 

techniques have the capability to remove a significant fraction of network parameters 

with little loss in accuracy. Recent methods based on dynamic reallocation of non-zero 

parameters have emerged allowing direct training of sparse networks such as Stochastic 

gradient descent (SGD), AdaDelta, AdaMax and Adabelief. We will be using models that 

require shorter training times and lower hardware requirements and have removed the 

hyperparameters to observe that the optimiser works with various models 

Object of study: Process of Optimizing Neural Networks For Parameter Efficiency 

Subject of study. The main subject of this study is methodological aspects of 

neural network optimization.  

Novelty. An algorithm for optimizing the correspondence of the neural network 

model to the training data was proposed. The performance criteria of the neural network 

in the training and validation set are defined. The algorithm is implemented in software, 

which provides a better understanding of the step-by-step process of learning the model 

and implementing the optimization algorithm. 

Structure. This work consists of an introduction, a literary review, an optimization 

algorithm, a proposed methodology, conclusions, a list of used sources, and appendices. 

.  
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1 LITERARY REVIEW 

Neural Network can be referred to as a computational model which is inspired by 

the structure and functioning of the human brain. The model is designed to process 

information by learning from examples and recognising patterns in data, particularly in 

complex and high-dimensional datasets, just in a similar pattern to the human brain. 

Recent findings suggest that backpropagation is related to the synaptic updating method 

of the human brain bringing in the possibility for insight into understanding more of the 

exact learning mechanism in the cortex. However, it remains far from fully understanding 

the human brain's learning mechanics. However, these networks are widely used in 

different fields such as natural language processing, computer vision and speech 

recognition. 

 

 

Figure 1.1 – Biological Neuron and Artificial Neuron 

 

There are different types of neural networks which are popularly used today. Such 

as; 

Multilayered Perceptrons(MLPs), Recurrent Neural Networks(RNN) and 

Convolutional Neural Networks (CNN). 

 

1.1 Multilayered Perceptrons (MLPs)  

MLPs go like the name states, a neural network with multiple and fully connected 

layers its layers are deeply connected and usually consist of the Input layer, the Hidden 

layer and the Output layer. The input layer consists of neurons that receive the initial 
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input data and is determined by the dimensionality of the input of data whereas the hidden 

layer is made up of layers of neurons which are in between the input and output layer. 

Each neuron in the hidden layer receives input from the neurons in the previous layer(the 

input layer or possibly another hidden layer) and produces output that is passed to the 

next layer and the output layer consists of the neurons that produce the final output for 

the neural network and the output number depends solely on the nature of the tasks. MLPs 

use a Backpropagation algorithm for training the model which increases the output by 

reducing the error in the predicted output and actual output. 

 

 

Figure 1.2 – Multilayered Perceptron 

 

1.2 Recurrent Neural Networks  

Recurrent Neural Networks are the neural network that allows previous outputs to 

be used as inputs and handle sequential data while having hidden states, While traditional 

deep neural networks assume the inputs and the outputs are independent of each other, 

unlike the MLPs which process data in a single pass. They are distinguished by their 

memory as they take information from prior inputs to influence the current input and 

output. RNNs share parameters across each layer of the network and have different 

weights across each node, recurrent neural networks share the same weight parameter 

within each layer of the network. It also uses the BackPropagation through time (BPTT) 
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algorithm to determine the gradients, which is slightly different from traditional 

backpropagation as it is specific to sequence data. They are usually used in Natural 

language processing. 

 

 

Figure 1.3 – Recurrent Neural Network 

 

1.3 Convolutional Neural Networks  

(CNNs) are specialized types of neural networks that are designed mainly for 

object recognition, Convolutional neural networks are distinguished from other neural 

networks by their superior performance including in image classification and detection. 

It is used widely for vision tasks to extract features from visual data. Convolutional neural 

networks are distinguished into convolutional layer, pooling layer and fully-connected 

layer. The Convolutional layer is the core of the CNNs where the majority of computation 

occurs and it requires a few components which are the input data, filter and a feature map. 

Another convolution layer can follow the initial convolution layer. when this happens the 

structure of the CNN can become hierarchical as the later layers. Ultimately the 

convolutional layer converts the image into numerical values. The pooling layer is known 

as downsampling and reducing the number of parameters in the input. Fully connected 

layers are fully connected to each node in the output layer which connects directly to a 

node in the previous layer. 
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Figure 1.4 – A-CNN-sequence-to-classify-handwritten-digits 

 

We will be talking about the convolution neural network in this context which was 

invented by researchers to improve image recognition technology. The model is trained 

to recognize and familiarize itself with patterns in visual objects and images to identify 

the shapes of certain objects or objects in an image. When training a convolutional model 

in the neural network a dataset of the image is required, once it is trained it can identify 

different objects and specific or identify the objects in images. 

 In Neural networks, they are dense and Sparse neural networks. A dense neural 

network is a type of neural network that uses multiple players of neurons to process data. 

Each neuron is given a layer which is deeply connected to the previous layer of neurons. 

 The difference between a sparse and dense neural network is based on the number 

of connections which each neuron has in the network. Sparse network, every neuron in 

the network is connected to a few neurons unlike in a dense network, in which each 

neuron is deeply connected to many other neurons around it which means the sparse has 

fewer connections than the dense network proving there is a going to be less performance 

and efficiency in carrying out a task especially ones required to be processed in a large 

amount of data. That’s the main advantage of using a dense neural network because it 

can process more complex tasks due to its deep connections with each and every neuron. 
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 In a neural network, the major components are the input layer, hidden layers, and 

the output layers. The process starts with the inputs which are received through the input 

layer, they are then processed and sent through the hidden layers and finally to the output 

layers. The hidden layers are important because they store information in the neurons 

until a sufficient amount of information is stored to be processed by the output layer 

which gives the trainer the prediction. 

 The main goal and objective of any deep neural network algorithm is to predict 

outputs. closer to the actual outputs. Optimization algorithms serve an important role in 

the propagation of the neural network while training. It speeds up the training process 

and finds the optimal parameters for a neural network. It helps to reduce the cost function, 

which is mostly based on the prediction error. When the Optimization algorithm executes, 

it solves every possibility iteratively until it reaches its peak satisfactory, which helps the 

neural network during the training process. 

 In training a neural network, one of the optimizing algorithms in the neural network 

used to minimize some function by iteratively moving in the direction of the steepest 

descent Is Gradient decent. It is one of the most basic and popular Optimization 

algorithms.  

Table 1.1 – Optimization Algorithms 

Optimization 

Algorithms 
Pros Cons References 

Adaptive 

Gradient  

Works perfectly on data 

with sparse features 

Genealiz and converges 

to sharp minima 

2011 

AdaMax Capable of adjusting the 

learning rate based on data 

characteristics 

Likely to overfit very 

fast 

2015 

Nadam Uses decaying step size 

and hyperparameters to 

improve the performance 

Generalized worse, 

converges to sharp 

minima 

2016 

EAdam Smaller Stepsize Computationally heavy 2020 

Adaptative Delta Keeping the learning rate 

optimally high 

Accumulation of the 

squared gradients 

2012 

RMSProp Works well on data with 

sparse features 

Generalies worse, 

Converges to minima 

2012 

  



11 

 

Continue of tabl.1.1 

Optimization 

Algorithms 
Pros Cons References 

EVGO Requires fewer 

parameters for tuning 

Generalises worse and 

converges to sharp 

minima 

2020 

Adaptative 

Momentum 

Converges faster  Generalises poorly 2015 

LAMB Fewer Parameters for 

tuning, faster computation 

Generalises worse, 

converges to sharp 

minima  

2020 

 

There are kinds of gradient Optimization algorithms such as Vanilla gradient 

descent, Stochastic Gradient Descent (SGD) and Mini-batch SGD. According to research. 

The list of different types of Optimization algorithms in chronological order with the 

advantages and disadvantages depending on the data set and the machine learning 

models. 

In recent years Deep neural Networks have succeeded in a wide range of 

application domains ranging from computer vision to machine translations to automatic 

speech recognition which stems from their ability to learn complex transformations by 

data example while achieving superior generalisation performance. Though they 

generalise well, deep neural networks learn more efficiently when they are highly over-

parametrized (Zhang et al, 2016)More evidence proves the need for overparameterization 

to the geometry of the high-dimension lost landscapes (Dauphin et al., 2014; 

Choromanska et al., 2014; Goodfellow et al., 2014; Im et al., 2016; Wu et al., 2017; Liao 

& Poggio, 2017; Cooper, 2018; Novak et al., 2018).  

Multiple techniques can compress large amounts of trained models, like weight 

precision reduction and pruning. These methods are highly effective in reducing the size 

of the network parameter with little degradation in accuracy they usually operate on pre-

trained models or require the full overparameterized model to be stored and updated 

during a certain stage in training.  

Deep neural networks are standard tools for solving computer vision problems. 

Deep neural networks are mostly used for image classification, and natural language 
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processing and rarely for audio recognition. Computer vision and image recognition have 

revolutionized and propelled advancement in fields such as healthcare, agriculture, and 

banking. There are open-source datasets for image classification such as CIFAR-100, 

ImageNet and MNIST online. 

 Deep learning is important in the development of artificial intelligence because it 

helps machines learn in a similar way that humans do. It also allows machines to learn 

from their experiences so that machines can automatically adapt and learn new pieces of 

information on their own without much human intervention.  In a deep neural network, 

there are various Optimisers, most of which use stochastic descent algorithms for better 

accuracy. 

1.4 Task definition 

The aim of this research is to provide an in-depth understanding of the modern 

neural networks, its role in various organizations, and its impact on operational efficiency 

information systems. Here are some tasks in this process: 

1. Create training set and validation set. 

2. Annalise optimization algorithms of neural network’s parameters 

3. Propose an algorithm for optimizing the correspondence of the neural network 

model to the training data.  

4. Define the performance criteria of the neural network in the training and 

validation set.  

5. Implement the algorithm in software  

  



13 

 

2 OPTIMIZATION ALGORITHMS 

Optimization in neural networks plays a very important role in the training of the 

training process. It is very crucial for the efficient performance of the neural network 

model and to give optimum performance in solving a task. As aforementioned one of the 

most common methods for Optimization methods is gradient descent. It is always 

repeatedly adjusting the network parameter to improve performance.  

In training a neural network, it is required to set the parameters in a way that there 

are underlying models that help the model perform and achieve peak performance with 

the tasks.  

While training models loss functions are required to be defined to be able to 

evaluate the network performance, A loss function is referred to as the error function 

which is very important in model training that quantifies the difference between the 

predicted outputs of a model and the actual targeted output. During training, a learning 

algorithm such as a backpropagation algorithm uses the gradient descent of the loss 

function to adjust these parameters and minimize loss, therefore improving the model’s 

performance on the dataset.  Recent studies have proposed many Optimization algorithms 

and each has its advantages and disadvantages. We will briefly talk about the current 

Optimisers used in Optimization. 

2.1 Stochastic Gradient-Descent 

In training neural network models different methods are applied to complete 

various tasks. The most common approach used in training models is gradient descent. 

The primary goal of gradient descent is to identify model parameters that provide the 

maximum accuracy on the training and test datasets. SGD has been successfully applied 

to large-scale and sparse machine-learning problems often encountered, by repeating this 

process over and over again, the network will learn the weights needed to produce the 

optimal output for a given output. 

SGD has been around for a while and has been used commonly in Optimization 

and has several advantages such as; It is very easily implemented in the training of a 

model and it produces high-quality results, second it is very easy to implement while 
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using large datasets because it is efficient in computation, third In traditional gradient 

descent algorithms, SGD is less likely to get stuck because it updates the parameters using 

a few das point at a data making it more likely to find the global minimum. One of the 

main disadvantages of SGD is that it requires a lot large number of iterations to learn the 

optimal set of parameters, the performance of this method can degrade when presented 

with large complex datasets. There is a higher computation burden on the Optimization 

algorithm when training models when we don’t have more data points.  There are some 

situations where SGD can be slow in situations where the gradient is small, this is because 

of the update rule in the algorithms which only depends on the gradients at each iteration. 

The most commonly used algorithm in the SGD  

𝜃 =  𝜃 − 𝜂∇
𝜃

𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖) 

Where;  

θ(Theta): is the parameter we are trying to optimize 

η(Eta): Is the learning rate. It determines the size of the jump 

∇θJ(θ;x(i);y(i)): This is the gradient of a loss function calculated with the parameter 

θ  

∇: tells the direction of the steep ascent of the loss function 

J(θ;x(i);y(i)): Represents the cost of the model prediction where x(i) is the input 

data and y(i) is the corresponding target value. 

This formula performs a single update for the SGD parameter using the information 

from a training example. The formula stated that we update the parameter vector by 

subtracting the scale version of the gradient in the negative direction. 

And the most referred-to SGD algorithm ; 

for epoch in range(np_epochs): 

    np. random.shuffle(data)  # Shuffle data for each epoch 

 

    for example in data: 

      params_grad = evaluate_gradient(loss_function, example, params) 

      params = {key: value - learning_rate * params_grad[key] for key, value in 

params.items()} 
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2.2 AdaGrad 

AdaGrad is short for adaptative gradient, it signifies that the learning rates are 

adjusted or adapted over time based on the previous gradients.  

The learning rate is adapted component-wise to the parameters by incorporating 

knowledge of past observations. It performs larger updates(High learning rates) for those 

parameters that are related to infrequent features and smaller updates (Low learning 

rates)for frequent ones. It performs smaller updates as a result, it is well-suited when 

dealing with sparse data. 

AdaGrad deals with the aforementioned problems by independently adaption the 

learning rate for each weight component. If the gradient corresponding to a certain weight 

vector component is large, then the respective learning rate will be small. During weight 

update, instead of using a normal learning rate, AdaGrad scales it by dividing learning 

rate by the square root of the accumulated gradients. One of the benefits of using Adagrad 

is that the learning rates change with each training parameter and it does not need manual 

tuning for learning rate. As for the disadvantages; the learning rate is always decreasing 

which results in slow training and it is computationally expensive to calculate  

The AdaGrad Formulation 

𝜔𝑡 = 𝜔𝑡−1 − 𝜂
𝜕𝐿

𝜕𝜔(𝑡−1)
 

Where: 

W(t): Value of w at current iteration,  

W(t-1): Value of the value at the previous iteration 

η(Eta): This is the learning rate, A small positive value that controls the magnitude 

of the update 

∂L/∂_(ω(t-1)): This represents the partial derivative of a loss function with respect 

to the previous time step. 

AdaGrad Algorithm: 
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  # Update parameters with AdaGrad 

  for i, (param, grad) in enumerate(zip(params, gradients)): 

    historical_grad_sum[i] += grad**2 

    adjusted_learning_rate = learning_rate / (eps + 

np.sqrt(historical_grad_sum[i])) 

    param -= adjusted_learning_rate * grad 

 

  return params 

 

2.3 Adaptative Momentum 

Adaptative momentum also known as ADAM is an algorithm developed by 

DR.Hinton at the University of Toronto. It was developed initially to be used for training 

deep neural network models in machine translations and speech recognition applications. 

The main components are Minibatch gradient descent and the learning rate schedules. 

Minibatch gradient descents is a method of calculating the learning individual rate of a 

model rather than the entire batch. This allows the algorithm to adapt quickly during 

training.  

Recently, ADAM has been introduced as an implementation of the gradient-free 

stochastic optimization method by Kingma and BA. In this algorithm, both the step size 

and learning rate are scholastically controlled by the temperature parameter. So it can be 

considered the RMS-prop with momentum it combines learning rates with momentum. 

ADAM Formulation 

∆𝜔𝑡 =  −𝜂 
𝑥𝑡

√𝑦𝑡 + 𝜖
∗ 𝑔𝑡 

 

Where 

gt is the gradient at time t 

xt is the exponent average of the gradient with w 

η is the learning rate  

ADAM Algorithm 
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#Implementing Adam 

def adam(params, grads, lr, b1=0.9, b2=0.999, eps=1e-8): 

  m, v = [0] * len(params), [0] * len(params) 

  for t, p, g in zip(count(), params, grads): 

    m = b1 * m + (1 - b1) * g 

    v = b2 * v + (1 - b2) * g * g 

    m_hat = m / (1 - b1**t) 

    v_hat = v / (1 - b2**t) 

    p -= lr * m_hat / (np.sqrt(v_hat) + eps) 

  return params 

 

from itertools import count 

 

 

2.4 RMSprop 

RMSprop stands for Root Mean Square Propagation is a technique for reducing the 

noise in the neural network by smoothing out the errors as they are propagated through 

the network, it is an algorithm designed to address some of the issues encountered with 

the stochastic gradient descent. Some researchers believe that adding a single layer of 

neurons to a deep neural network can reduce the network accuracy by up to 10%. 

However, recent research shows that using RMSprop can help reduce this effect and 

improve the accuracy of deep neural networks. 

Two key techniques to decrease error in deep learning models are to propagate 

error throughout the network and smooth out values before transferring them to the next 

layer through weight decay, and to regularise network bias using a loss function that 

penalises high values of the network weight. Deep network training can become laborious 

and complex as a result of this procedure, which is frequently carried out by adding a 

little learning rate to weight updates at each layer. RMSprop, on the other hand, is a more 

effective and efficient method since it doesn't require a regulariser and is simpler and 

easier to apply in deep learning models. 

RMSProp was proposed by Geoffrey Hinton, it was used as an extension of 

gradient descent and AdaGrad uses the decaying average of partial gradients in the 

adaption of the steps for each parameter. 



18 

 

The benefits of using RMSprop are that it has a higher convergence by adaption 

the learning rate, It can converge to the optimal solution faster than SGD especially when 

dealing with noisy gradients. Although it has these benefits there are some limitations of 

it such as hyperparameter tuning which causes the decay rate and initial learning rate that 

need to be tuned for specific tasks. 

 

 

𝑉𝑑𝑤 = 𝛽𝑉𝑑𝑤 + (1 −  𝛽)𝑑𝑤2 

𝑊 = 𝑊 − 𝛼
𝑑𝑤

√𝑉𝑑𝑤
 

Where: 

 

V_dw: The exponentially decaying moving average of the squared gradient parameter w 

 

β: This is used as to control the decay rate of the moving average. The higher β 

places more weight on past squared gradients and the lower β on more recent updates. 

 

dw: This is the current gradient of the loss function with respect to parameter w. 

 

(1-β): This term scales the contribution of the current squared gradient to the 

moving average. 

 

RMSProp Algorithm 

 
# RMSProp algorithm 

def RMSProp(objective_function, derivative_function, values_range, n_iterations, 

step_size, Beta): 

    # list of all solution points 

    all_solutions_list = list() 

    # initial point generation within the range 

    current_solution_point = values_range[:, 0] + rand(len(values_range)) * 

(values_range[:, 1] - values_range[:, 0]) 

    # squared gradients average 

    squared_gradient_avg = [0.0 for _ in range(values_range.shape[0])] 
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3 PROPOSED METHODOLOGY 

The primary purpose of this work is to develop an optimization technique to 

improve the accuracy of neural networks. In addition, the optimization techniques reduce 

the time and the complexity of the neural network. In this section, we will be talking 

about briefly the proposed methodology.  

Training of neural networks is usually cumbersome and takes a lot of time 

sometimes it takes or even weeks. Because of this, there is a need for improved and 

efficient training speed to carry out such applications especially when considering the 

parallelisations of CNN.  

Why CNN?, We moved to CNN because of the weight sharing in CNN while 

performing convolution operations on input raw images. Which tremendously cut down 

parameters in the whole network making network computation less incentive. The other 

thing is dimensionally reduction because of the introduction of poling layers in the 

network The proposed optimization method is a modified version of Adam optimiser in 

which we remove the additional hyperparameter.  

 

 
Figure 3.1 – Proposed sequence diagram for proposed Optimization technique. 
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3.1 Pseudo code for Adam optimiser method 

Algorithm: Adaptive Moment Estimation (Adam) 

Require: α: Stepsize 

Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates 

Require: f(θ): Stochastic objective function with parameters θ 

Require: θ0: Initial parameter vector 

1. m0 ← 0 (Initialize 1st moment vector) 

2. v0 ← 0 (Initialize 2nd moment vector) 

3. t ← 0 (Initialize timestep) 

while θt not converged do 

1.t ← t + 1 

1. gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t) 

2. mt ← β1 · mt−1 + (1 − β1) · gt (Update biased first moment estimate) 

3. vt ← β2 · vt−1 + (1 − β2) · g²t (Update biased second raw moment estimate) 

4. 𝑚^𝑡m^t ← mt / (1 − β1^t) (Compute bias-corrected first-moment estimate) 

5. 𝑣^𝑡v^t ← vt / (1 − β2^t) (Compute bias-corrected second raw moment estimate) 

6. θt ← θt−1 − α · 𝑚^𝑡m^t / ( √𝑣^𝑡v^t + ε) (Update parameters) 

end while 

return θt (Resulting parameters) 

 

3.2 Experimental Environment And Results 

This gives more insight into the environment we conducted and the implementation 

of the realization techniques during the training of the model. 

We will be working on detecting handwritten digits using the CNN model that is 

provided using MNIST(Modified National Institute of Standards and Technology 

Database) data to make a simple model made up of handwritten digits between 0 and 9 

[1,2]. Where each image has a pixel of 28 x 28, the dataset is split into two portions for 

training and testing sets. The training set contains 60,00 images of handwritten digits used 

to train models and the Testing set contains 10,00 images of handwritten digits to train 
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models on unseen data that is being  to have a very low run time with the Adam algorithm. 

We are using the MNIST data set as it is more simple and easy to use. 

 

Table 3.1 – Experimental Environment 

Component Description 

System Model Intel core i5 vPro 8th Gen 

Operating System Windows 11 

GPU Intel ® UHD Graphic 620 

RAM 16GB 

ROM 500 GB SSD 

IDE Visual Studio Code 

Environment Jupyter 

Programming Language Python 3.8 

Libraries Numpy, Matplotlib, Sklearn, Plotly, TensorFlow, 

VisualKeras 

 

In the training of the model in the Jupyter environment, we applied the Adam 

Optimiser algorithm in Cell [13] and [21] for more efficiency in the training of the model. 

 

 
Figure 3.2 – Model Accuracy 

 

 We made sure to apply it  also in the extra layer of the model which we added for 

a more accurate result. With Tensorflow the Adam Optimization algorithm is already 

included in the library which makes it easier to implement especially for beginners. A 

lower learning rate for the convolution layers is often used in practice when applying. We 

show the effectiveness of Adam in deep CNNs During the training process, the proposed 
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achieved an accuracy of 98.98% whereas during the testing process, it achieved an 

accuracy of 97.95% Our CNN architecture has two alternating stages that are followed 

by a full connected layer of 1000 rectified linear hidden units (ReLU’s). 

  



23 

 

CONCLUSION 

In the course of the experiment. Training loss is used to measure how a neural 

network model fits the training data. The error of the model is assessed with the training 

set. It is evaluated by taking the sum of errors in the training sets. 

 Validation loss is a metric used to measure the performance of the neural network 

on the validation set. 

If the validation loss is greater than the training loss, it shows that the model is not 

fitted, which means the model is unable to train and give accurate data. The validation 

loss is greater than the training loss and changes frequently, it is known as overfitting. 

The program below gives more insight into the step-by-step process for training the 

model and the implementation of the optimization algorithm. 
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APPENDIX 

 

Importing all necessary Library for our Model 
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Model: "sequential_5" 

_________________________________________________________________ 

 Layer (type)                Output Shape              Param #    

================================================================= 

 conv2d_13 (Conv2D)          (None, 24, 24, 6)         156        

                                                                  

 max_pooling2d_10 (MaxPoolin  (None, 12, 12, 6)        0          

 g2D)                                                             

                                                                  

 conv2d_14 (Conv2D)          (None, 8, 8, 16)          2416       

                                                                  

 max_pooling2d_11 (MaxPoolin  (None, 4, 4, 16)         0          

 g2D)                                                             

                                                                  

 flatten_5 (Flatten)         (None, 256)               0          

                                                                  

 dense_12 (Dense)            (None, 120)               30840      

                                                                  

 dense_13 (Dense)            (None, 84)                10164      

                                                                  

 dense_14 (Dense)            (None, 10)                850        

                                                                  

================================================================= 

Total params: 44,426 

Trainable params: 44,426 

Non-trainable params: 0 

_________________________________________________________________ 

 

 
Epoch 1/10 

938/938 [==============================] - 24s 23ms/step - loss: 0.2441 - accuracy: 0.9269 - val_loss: 0.1336 - val_accuracy: 0.9564 

Epoch 2/10 

938/938 [==============================] - 21s 22ms/step - loss: 0.0740 - accuracy: 0.9773 - val_loss: 0.0667 - val_accuracy: 0.9783 

Epoch 3/10 

938/938 [==============================] - 23s 24ms/step - loss: 0.0539 - accuracy: 0.9838 - val_loss: 0.0415 - val_accuracy: 0.9864 

Epoch 4/10 

938/938 [==============================] - 22s 24ms/step - loss: 0.0430 - accuracy: 0.9867 - val_loss: 0.0335 - val_accuracy: 0.9897 

Epoch 5/10 

938/938 [==============================] - 20s 22ms/step - loss: 0.0344 - accuracy: 0.9891 - val_loss: 0.0334 - val_accuracy: 0.9903 

Epoch 6/10 

938/938 [==============================] - 26s 28ms/step - loss: 0.0290 - accuracy: 0.9907 - val_loss: 0.0387 - val_accuracy: 0.9887 

Epoch 7/10 

938/938 [==============================] - 23s 24ms/step - loss: 0.0261 - accuracy: 0.9913 - val_loss: 0.0353 - val_accuracy: 0.9883 

Epoch 8/10 

938/938 [==============================] - 21s 23ms/step - loss: 0.0226 - accuracy: 0.9926 - val_loss: 0.0343 - val_accuracy: 0.9890 

Epoch 9/10 

938/938 [==============================] - 21s 22ms/step - loss: 0.0186 - accuracy: 0.9939 - val_loss: 0.0337 - val_accuracy: 0.9903 

Epoch 10/10 

938/938 [==============================] - 25s 27ms/step - loss: 0.0166 - accuracy: 0.9944 - val_loss: 0.0584 - val_accuracy: 0.9838 

 

 
313/313 [==============================] - 3s 9ms/step - loss: 0.0584 - accuracy: 0.9838 

Test accuracy: 0.9837999939918518 
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Model: "sequential_6" 

_________________________________________________________________ 

 Layer (type)                Output Shape              Param #    

================================================================= 

 conv2d_15 (Conv2D)          (None, 26, 26, 32)        320        

                                                                  

 max_pooling2d_12 (MaxPoolin  (None, 13, 13, 32)       0          

 g2D)                                                             

                                                                  

 dropout_7 (Dropout)         (None, 13, 13, 32)        0          

                                                                  

 conv2d_16 (Conv2D)          (None, 11, 11, 64)        18496      
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 max_pooling2d_13 (MaxPoolin  (None, 5, 5, 64)         0          

 g2D)                                                             

                                                                  

 dropout_8 (Dropout)         (None, 5, 5, 64)          0          

                                                                  

 conv2d_17 (Conv2D)          (None, 3, 3, 64)          36928      

                                                                  

 flatten_6 (Flatten)         (None, 576)               0          

                                                                  

 dropout_9 (Dropout)         (None, 576)               0          

                                                                  

 dense_15 (Dense)            (None, 64)                36928      

                                                                  

 dense_16 (Dense)            (None, 10)                650        

                                                                  

================================================================= 

Total params: 93,322 

Trainable params: 93,322 

Non-trainable params: 0 

 

 
Epoch 1/10 

938/938 [==============================] - 49s 48ms/step - loss: 0.3098 - accuracy: 0.9000 - val_loss: 0.0558 - val_accuracy: 0.9829 

Epoch 2/10 

938/938 [==============================] - 46s 49ms/step - loss: 0.0993 - accuracy: 0.9698 - val_loss: 0.0364 - val_accuracy: 0.9880 

Epoch 3/10 

938/938 [==============================] - 47s 50ms/step - loss: 0.0747 - accuracy: 0.9766 - val_loss: 0.0296 - val_accuracy: 0.9894 

Epoch 4/10 

938/938 [==============================] - 46s 49ms/step - loss: 0.0662 - accuracy: 0.9795 - val_loss: 0.0255 - val_accuracy: 0.9917 

Epoch 5/10 

938/938 [==============================] - 46s 49ms/step - loss: 0.0580 - accuracy: 0.9819 - val_loss: 0.0254 - val_accuracy: 0.9913 

Epoch 6/10 

938/938 [==============================] - 50s 53ms/step - loss: 0.0524 - accuracy: 0.9834 - val_loss: 0.0239 - val_accuracy: 0.9911 

Epoch 7/10 

938/938 [==============================] - 46s 49ms/step - loss: 0.0473 - accuracy: 0.9851 - val_loss: 0.0256 - val_accuracy: 0.9919 

Epoch 8/10 

938/938 [==============================] - 45s 48ms/step - loss: 0.0460 - accuracy: 0.9857 - val_loss: 0.0243 - val_accuracy: 0.9913 

Epoch 9/10 

938/938 [==============================] - 48s 51ms/step - loss: 0.0438 - accuracy: 0.9859 - val_loss: 0.0203 - val_accuracy: 0.9934 

Epoch 10/10 

938/938 [==============================] - 46s 49ms/step - loss: 0.0401 - accuracy: 0.9871 - val_loss: 0.0228 - val_accuracy: 0.9929 
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Classification Report: 

               precision    recall  f1-score   support 

 

           0       0.99      1.00      1.00       980 

           1       0.99      1.00      1.00      1135 

           2       1.00      0.99      1.00      1032 

           3       0.99      1.00      0.99      1010 

           4       1.00      0.98      0.99       982 

           5       0.99      0.99      0.99       892 

           6       1.00      0.99      0.99       958 

           7       0.99      0.99      0.99      1028 

           8       1.00      0.99      0.99       974 

           9       0.98      0.99      0.99      1009 

 

    accuracy                           0.99     10000 

   macro avg       0.99      0.99      0.99     10000 

weighted avg       0.99      0.99      0.99     10000 
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