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TRANSFORMER BASED ATTENTION GUIDED NETWORK 

FOR SEGMENTATION AND HYBRID NETWORK FOR 

CLASSIFICATION OF LIVER TUMOR FROM CT SCAN 

IMAGES 

When a liver disease causes changes in the image's pixel quality, an 

ultrasonic filter can identify these changes as potential indicators of 

cancer. An ultrasonic filter may detect changes in the quality of an 

image's pixels based on the state of the liver, which are indicators of the 

closeness of malignant development. It is possible that alcohol, rather 

than liver disease, is the cause of cirrhosis because such alterations are 

more prevalent in alcoholic liver diseases. Current 2D ultrasound data 

sets have an accuracy degree of 85.9%, whereas a 2D CT data set has an 

accuracy rating of 91.02%.  

This work presents TAGN, a new Transformer-based Attention 

Guided Network that aims to improve the semantical segmentation 

architecture's performance through a combination of multi-level 

assembly. In order to efficiently learn the non-local interactions among 

encoder characteristics, TAGN incorporates the self-aware attention 

(SAA) element with Transformer Self Attention (TSA) besides Global 

Spatial Attention (GSA), which are inspired by Transformer. In addition, 

the work aggregates the upsampled features with distinct semantic scales 

by using extra multi-scale skip connections across decoder blocks. By 

doing so, the capacity to produce discriminative features from multi-

scale context information is enhanced.  

For the purpose of reliable and accurate liver tumor classification 

using segmented pictures, this study suggests a system that integrates a 

Vision with a Gated Recurrent Unit (GRU). By analyzing the input 

image, the ViT finds important characteristics, and the GRU finds 

obvious relationships between them. Іn the experimental analysis of the 

projected ViT-GRU model achieved a recall rate of 95.21, accuracy as a 

97.57, precision of 95.62, specificity of 98.33, and an f-score of 95.88. 
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Based on segmentation and classification analyses performed on 

publically accessible datasets, the suggested classifier achieved a total 

accuracy of 98.79% in the experiments. When used optimally, the 

suggested strategy improves the accuracy of liver tumor diagnoses by 

medical professionals.  

Keywords: Computed Tomography Liver tumor; Transformer; 

Vision Transformer; Gated Recurrent Unit; Global Spatial Attention. 
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INTRODUCTION / ВСТУП 

In industrialized nations, chronic liver disease 

(CLD) is the foremost cause of illness and mortality. 

This condition is frequently caused by viral hepatitis 

and excessive alcohol consumption. This has been the 

subject of many investigations that have used objective 

features derived from CT and ultrasound scans as well 

as the CLD study categorization methods [1]. The most 

commonly mentioned characteristics are derived from 

first-place and co-occurrence data, transform wavelets, 

and the attenuation and back dispersion factors and 

coefficients. In order to extract features, a 

multifrequency technique employs Monogenic 

Decomposition (MD) [2]. The literature provides a 

survey of the suggested algorithm's performance using 

various feature sets. To give local evidence for the 

illness, the classifications are overlaid with the 

ultrasound and CT images using the locally generated 

Networks [3]. When deciding which ROI to focus on 

because of technique sensitivity, this interactive CAD 

tool really shines. Ultrasound and computed 

tomography can detect vascular nodules, which are 

hallmarks of cirrhosis and liver fibrosis, two outcomes 

of chronic liver disease [4]. For the majority of 

therapeutic approaches, medical imaging is a crucial 

component in the identification and diagnosis of certain 

human diseases [5]. Radiation (X-ray) has been 

integrated with a number of medical imaging 

techniques, including CT scanning, MRI, and 

ultrasound, to provide a three-dimensional picture of the 

human body [6]. When looking for morphologic 

malignancies, the CT scan is by far the most common 

transverse imaging method. Because it affects nearly 

every organ in the human body, a healthy liver is vital 

for survival [7]. Disseminated liver infections and 

serious liver illnesses are the two main categories of 

liver diseases. Fat and cirrhotic liver are not the only 

parts of the liver that can be infected by a diffuse 

hepatic infection. Hepatic disorders occur when 

infections impact a localized region of the liver's surface 

[8]. 

Various medical imaging modalities are available, 

each with its own set of compensations and difficulties, 

as previously discussed [9]. Radiation X-rays, magnetic 

resonance imaging (MRI), are some of the most used 

medical imaging modalities [10]. There are a lot of 

financial and time constraints associated with training 

radiologists, and then there's the problem of radiologists 

not having enough experience, time, and energy [11]. 

An aged population and increasingly common scanning 

techniques are putting a pressure on radiologists 

because to the growing percentage of MI. The authors 

proposed a 95% accurate framework for manual texture 

characteristics called Fisher's Linear Discriminant 

(FLD). Skilled researchers mostly look for handcrafted 

details [12]. 

All of the published works fall into one of three 

categories: 1) methods that draw the user's focus; 2) 

methods that take context into account; and 3) methods 

that rely on transformers. For instance, earlier attention-

guided efforts like Attention UNet and Channel-UNet 

sought to improve the spatial retrieved from the 

encoding, decoding, and output phases by utilizing 

various attention processes [13]. In order to readjust the 
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response of the initial feature maps, these attention 

processes primarily aim to produce a confidence mask. 

Using multi-scale connections to investigate contextual 

information is the second method, which differs from 

the first two [14]. In order to produce reliable 

segmentation, it is essential to have access to both high-

level abstract knowledge and low-level pixel 

information. Computer vision (CV) experts have 

recently taken a keen interest in Transformer. Models 

pretrained on a massive external dataset is typically 

necessary for Transformer-based techniques, and 

processing feature maps typically involves extremely 

high compute complexity [15]. The multi-head 

mechanism, which is central to Transformer, can 

execute the scaled several aeras in parallel, allowing it 

to gather long-range contextual information [16]. 

Consequently, it is undeniably a perfect supplementary 

component that may effectively fix U-Net's design 

issues. 

In light of these factors, the research proposes a new 

multi-level attention-guided U-Net with Transformer in 

this article. This network combines multi-scale skip 

connection with multi-level guided attention to improve 

the segmentation correctness of conventional U-shaped 

architecture. To be more precise, the suggested model 

first incorporates a strong self-aware attention (SAA) 

module to connect subnetworks. The SAA module is the 

brains of TAGN; it's job is to build strong global spatial 

linkages and long-range interactions between encoder 

semantic characteristics by combining the strengths of 

global spatial attention (GSA). A connection technique 

is integrated into decoder sub-networks by a succession 

of transition operations, such as convolution, inspired 

by the concept of dense shortcut connections and 

residuals. This allows it to produce more discriminative 

feature representations by dynamically aggregating the 

different semantic scales step-by-step. The suggested 

technique is able to produce appropriate semantic 

segmentation masks of pictures of liver tumors thanks to 

the contributions of these supplementary components. 

Classification experiments are conducted on publicly 

available datasets using a hybrid network dubbed ViT 

and GRU. 

Related works 

A novel technique dubbed SO-OBL, which 

combines Snake Optimization (SO) with opposition-

based learning (OBL), has been shown to be successful 

in global optimization and multilayer picture 

segmentation; it addresses the inconsistent liver 

presence and unclear borders that were introduced by 

Houssein et al., [17]. By comparing SO-OBL to eleven 

cutting-edge metaheuristic algorithms, tested using 

CEC'2022 test functions, we can see that it performs 

better. Furthermore, a state-of-the-art SO-OBL-based 

liver disease segmentation model uses Otsu's function to 

improve a multilevel thresholding approach. Impressive 

segmentation metrics such as 

 

demonstrate the model's effectiveness and promise for 

precise diagnosis in CAD schemes. 

A new method for categorization based on ensemble 

machine learning has been suggested by Badvath et al., 

[18]. Preprocessing tasks include label encoding and 

min-max data normalization. Next, the ConvNeXt 

method is used to obtain demographic information, 

including age and gender, as well as liver function test 

results (phosphatase, bilirubin), medical history, and 

any comorbidities. A more precise selection of crucial 

characteristics was made possible by the Improved 

Grasshopper optimization procedure (IGOA). Optimal 

ensemble learning with naïve Bayes and logistic is then 

used to categorize the liver cirrhosis illness. To tune the 

hyperparameters, the optimization technique known as 

Harris Hawks is used. We compare the suggested 

method to the current best practices in machine 

learning. The suggested model outperforms the state-of-

the-art methods with exceptional accuracy (99.18 

percent), sensitivity (99.12 percent), and specificity 

(98.92 percent). 

An improved hybrid deep learning model for 

automated cirrhosis liver disease categorization was 

presented by Shaheen et al. [19]. Magnetic Resonance 
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Imaging (MRI) is being evaluated for use in this 

procedure. At the outset, the noise in the input MRI 

pictures is removed The picture using Gray Level Run-

length Matrix (GRLM) are used to carry out the Feature 

Extraction (FE) phase. Lastly, a combination of two DL 

algorithms In order to categorize cirrhosis liver disease, 

a Convolutional Neural Network and a Capsule 

Network (HCNN-CN) are combined. We also employ 

an optimization method called Adaptive Emperor 

Penguin Optimization (AEPO) to fine-tune the neural 

network's parameters. Following comparisons with 

other methods, the recommended HCNN-CN-AEPO 

achieved sensitivity values of 0.986 and accuracy of 

0.993 on the real-time dataset. Results from experiments 

validated the accurateness of the proposed HCNN-CN-

AEPO in tumor diagnosis. 

A new deep learning model for identifying and 

categorizing tumors in liver disease has been described 

by Manjunath et al., [20]. Metastasis and 

cholangiocarcinoma are two terms used to describe 

tumors found in CT scans. Comparing our model to 

well-known current algorithms, we find that it adapts 

well to varied datasets and performs quite well in terms 

of accuracy, dice similarity coefficient, and specificity 

metrics. With a result of 98.59% for the dice similarity 

coefficient, the model is clearly superior. 

A novel approach to the automated segmentation 

and categorization of liver tumors is presented in this 

study by Saha Roy et al., [21]. Segmenting the liver 

using mask-RCNN (Regions with Convolutional is the 

first stage in the process of identifying liver tumors. The 

second step is tumor detection using MSER. For this 

categorization, we have employed a deep learning-based 

hybrid (CNN) model. While the tumors identified, the 

segmentation outline seeks to discriminate among 

normal tissue. The objective of this research is to 

develop a prediction that is free from bias and can be 

applied without human intervention. Conversely, our 

suggested approach achieves the best recall value while 

maintaining the highest precision for lesion diagnosis, 

and it almost matches the top segmentation and 

classification performance. On average, our suggested 

method achieves an 87.8 percent success rate in 

distinguishing between benign or cyst liver tumors, 

malignant (not including HCCs), and hepatocellular 

carcinomas (HCCs). Using a hybrid CNN-based 

methodology to classify liver masses, segmenting tumor 

lesions with MSER, and developing a mask-RCNN-

based method for liver part segmentation are the 

innovative aspects of this study. 

When faced with tiny liver pieces, fuzzy liver 

borders, the proposed technique by Balasubramanian et 

al. [22] showed remarkable improvement and resilience. 

The experimental findings back up the claim that the 

suggested APESTNet outperforms the state-of-the-art 

models when it comes to liver tumor classification. The 

suggested approach reduced load on the system without 

sacrificing precision. When using the suggested strategy 

to handle lesions or tumors at the liver border, there is a 

small chance of over- or under-segmentation mistakes. 

Consequently, we will be focusing on fully leveraging 

the z-axis info in 3D for future work in order to 

decrease inaccuracies. 

The design of a (3D) ultrasonic imaging scheme that 

operates in real-time or near-real-time is investigated by 

Nallasivan et al., [23]. This paper proposes a semantic 

pixel categorization of road sceneries and uses a Deep 

Learning (DL) model that has been adjusted to match 

hepatic CT segmentation. A hierarchical connection of 

encoder-decoder layers makes up the architecture 

known as semantic pixel-wise segmentation. During 

training, the suggested model was tested for tumor 

accuracy using a standard data set and applied to liver 

CT images. In the control group, we achieved a seventy-

three percent accuracy rate for chronic hepatitis 

cirrhosis, a sixty-nine percent accuracy rate for offset 

cirrhosis, and a ninety-seven percent accuracy rate for 

offensive cirrhosis. Making a CAD screening tool that 

can identify steatosis is the goal. With Convolutional 

Neural Networks (CNN) classification, the findings 

showed a sensitivity of 94.59%, a case detection rate of 

92.11%, and an accuracy of 98.33%. Although there 
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was no differentiation in the classifier's performance at 

this level, CNN was suggested as a preferable option 

because to the strong correlation between accuracy  

By automating the process of liver and tumor 

segmentation from CT scan images, Appadurai et al. 

[24] has developed a deep learning-based system that 

not only speeds up the diagnosis of liver cancer but also 

reduces the amount of time and labor needed for the 

procedure. A fundamental component of an Encoder-

Decoder is a EfficientNet that acts as the decoder, and 

an encoder that is a deep neural network constructed on 

UNet. Our unique preprocessing methods for liver 

segmentation include creating multichannel images, de-

noising, enhancing contrast, ensemble, and merging 

model predictions. Then, as an innovative and estimated 

efficient deep learning method, we presented the 

GRAMNet, or Gradational Modular Network. To build 

bigger and more resilient networks, GraMNet makes use 

of smaller networks called SubNets in a sum of diverse 

ways. Each level's learning only makes use of one 

newly upgraded SubNet module. As a result, less 

computing power is required for training, which aids in 

network optimization. The Liver Tumor 3D Image 

Rebuilding for Comparison of Algorithms are used to 

compare the segmentation and classification 

presentation of this work. The evaluation scenarios may 

be trained to achieve state-of-the-art performance via 

dissecting deep learning. Here, we produce GraMNets 

with a reduced computational difficulty architectures. 

Compared to the benchmark research techniques, the 

simple GraMNet has better training times, lower 

memory consumption, and quicker image processing. 

The Gradational modular network (GraMNet) is a 

novel and very efficient deep learning method presented 

by Suganeshwari et al., [25]. To build bigger and more 

resilient networks, GraMNet makes use of smaller 

networks called SubNets in a sum of different ways. 

Each level's learning only makes use of one newly 

upgraded SubNet module. As a result, less computing 

power is required for training, which aids in network 

optimization. The Liver Tumor Segmentation 

Benchmark (LiTS) and the 3D Assessment of 

Algorithms Database (3DIRCADb01) are used to 

compare the segmentation work. The evaluation 

scenarios may be trained to achieve state-of-the-art 

performance via dissecting deep learning. Here, we 

produce GraMNets with a reduced computational 

difficulty associated learning architectures. Compared to 

the benchmark research techniques, the simple 

GraMNet has better training times, lower memory 

consumption, and quicker image processing. 

In this study, Agita et al. [26] proposed 

mathematical modeling of liver cancer using a fully 

convolutional neural network (FCNN). As a semantic 

segmentation tool, FCNN has proven effective in the 

study of liver cancer. Differentiating between malignant 

and noncancerous lesions is of utmost importance since 

the CT-based lesion-type definition dictates the 

diagnosis and treatment plan. A great deal of expertise 

and material means are also necessary. The use of a 

deep learning approach has been investigated, however, 

in contrastive models, this research aims to develop a 

binary classifier capable of properly differentiating 

between a normal liver and a hemochromatosis-affected 

liver. When it comes to picture training, CNN obtains 

90% accuracy and AlexNet 95%. When compared with 

CNN, AlexNet performs better in this area. 

AIM 

The main aim of the work is to predict the liver 

tumor from CT scan images by using effective 

segmentation and classification models. The 

segmentation process is carried out by TAGN model, 

where the classification is carried out by ViT-GRU 

model. TAGN model has two elements that is essential 

for segmentation that includes SSA and TSA. The 

discriminative features are enhanced by multi-scale 

context information. In classification, the important 

characteristics are identified by ViT model, where the 

relationships between them is predicted by GRU model. 

Finally, the research work's efficiency is tested on 

publicly available dataset in terms of segmentation and 

classification analysis. 
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MATERIALS AND METHODS 

1.1 Data Set 

In this study, the technique is tested using the 

publicly available dataset LiTS2017 [27]. With a 

resolution of 512 × 512, CT image is 0.45∼6.00 mm. 

This data set contains 201 CT pictures, for a grand total 

of 58638 CT slice images. The last step is to randomly 

split the preprocessed data set into a verification set, 

with a relation of 7: 3. 

1.2. Data Preprocessing 

For the purpose of this paper's algorithm 

verification, the MICCAI 2017 challenge made 

available the public data set LiTS2017. The 201 

abdominal-enhanced CT scans included in this dataset 

came from 6 different medical centers throughout the 

globe. Of them, 131 had labels applied, while the 

remaining 70 were unlabeled. The total number of CT 

slice pictures is 58638, with a 512 × 512 resolution. 

However, the imaging quality and resolution of these 

201 CT images vary due to differences in the 

acquisition equipment and techniques utilized by 

various medical institutions. Typically, CT scans have a 

resolution range of 0.55∼1.00 mm within each frame 

and 0.45∼6.00 mm between frames. 

The original CT image's gray threshold range was 

reduced to −200∼200 and its gray value was normalized 

in order to improve the liver's differentiation from other 

abdominal organs. Due to the high number of slices in 

the original CT picture, using the entire image as input 

would be computationally intensive, and using only one 

slice would be missing spatial information between the 

slices. One such approach involves feeding the network 

data from a single slice together with its two 

neighboring slices. The network then uses this data to 

make a prediction about the single slice as its output. 

Additionally, in order to lessen the model's overfitting, 

this study randomly slices the data using a 3 × 480 × 

480 cutting size. To upsurge the size of the dataset, the 

picture is inadvertently rotated left and right and flipped 

vertically during processing. You can see the final 

product in Fig. 1. Lastly, the pretreatment data set is 

assigned a random ratio of 7:3 to serve as either a 

training set or a verification set. 

 

 

 

 

Figure 1 – (a) Unique image; (b) Casual horizontal; (c) Casual vertical; (d) Left revolution; (e) Right 

revolution 

697

                                         

                                          



Eastern Ukrainian Medical Journal. 2024;12(3):692-710

1.3. Segmentation 

The many parts of the proposed TAGN are 

described in this section. The research begins with a 

brief summary of TAGN. The research continues by 

outlining the fundamentals and architecture of TAGN 

and providing an clarification of each part. Additionally, 

the study showcases the unified loss function that our 

TAGN utilized.  

1.3.1. Overview of TAGN 

Where C is the sum of channels and H×W is the 

three-dimensional resolve of the picture case, let the 

input medical doppelgänger. The objective of this 

project is to create pixel-wise semantic label maps with 

dimensions H × W and to automatically segment 

medical pictures. The suggested TAGN follows in the 

footsteps of earlier efforts by utilizing the tried-and-true 

U-shaped design for encoders and decoders. TAGN's 

goal is to enhance the quality of semantic segmentation 

of liver pictures by utilizing multi-scale skip 

connections and attention components. When improves 

the encoder's semantic feature representation by 

combining the advantages of TSA and GSA processes 

to understand long-range contextual info. In addition, 

TAGN's multi-scale skip connections gather contextual 

information for fusing multi-scale predictions by 

achieving dense shortcut connections across in-between 

layers of distinct semantic scales. 

1.3.2. Self-Aware Attention Module 

A self-aware attention module is integrated among 

the encoder and decoder subnetworks in the proposed 

TAGN, which sets it apart from prior techniques. 

Transformers are two separate self-attention processes 

that are contained inside this module. When associated 

to the conventional U-Net, TAGN is able to collect 

broader and more detailed contextual representations 

because to these methods. The module's placement at 

the base of the U-shaped design allows it to connect the 

encoder and decoder, improving the model's capacity to 

gather contextual info from a distance. 

1) Transformer Self Attention: To begin, our 

TAGN incorporates a TSA constituent that uses 

Transformer's multi-head function to gather semantic 

representation. The TSA constituent shares learnt 

positional encoding across completely attention levels 

for a particular query/key-value arrangement, allowing 

information on absolute and relative location to be 

included. Each attention head in the multi-head attention 

mechanism is processed independently and then 

combined through an additional embedding. 

Exactly, the encoder topographies  is 

implanting into three inputs, with the medium of 

enquiries , the solutions 

, besides . 

 

 (1) 

 

where , , and  are several linear 

projections' matrices. To get the weighted sum of values 

according to attention weights, we scale the dot-product 

operation among Q and the transposed form of K, then 

multiply map A by V. The result is the contextual 

attention map matrix , which shows how 

many elements from Q are similar to each other in 

relation to the global elements from K. One possible 

formulation of the multi-head attention is:attention map  

 

 (2) 
 

where  is arrangement. Lastly, the study 

redesigns the enhanced maps to get the last production 

of TSA, i.e., . 

2) Global Spatial Attention: To improve intra-class 

compactness and optimize feature representations, the 

SAA module uses the GSA constituent to integrate 

larger contextual positional information into local 

features and enrich the learnt features with global 

context. 

To begin with, two kinds of processes are functional 

to features F en to produce two feature maps: 

, where c′ = c/8. Then,  is 
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redesigned and enthused maps  and 

, while to , 

congruently. Next, performed among M and N, 

shadowed by maps . The computation B is as 

shadows: 

 

 (3) 

 

where  characterizes the map. Once the place 

attention maps B have been calculated, the feature at 

each site may be expressed as the product of W and B.: 

 

 (4) 

 

Furthermore, we redesign the subsequent features to 

gain the concluding yield of GSA, which represented as 

. 

3) Attention Embedding Fusion: Finally, the SSA 

module employs a weighted embedding, which is 

specified as, in order to fully leverage the acquired 

contextual correlations.: 

 

 (5) 

 

where  besides  are the parameter values that 

regulate the self-attention map's and the spatial attention 

map's relative relevance. The feature representations are 

improved with semantic consistency by starting with 

weights of 0 and gradually increasing them to provide 

more attention to the relevant characteristics. 

1.3.3. Multi-Scale Skip Connection 

It is worth mentioning that several recent studies 

[28] have shown that multi-scale feature fusion is a 

powerful tool for encoding contexts. The goal of the 

multi-scale skip joining strategy is to combine info from 

different semantic scales via convolution, among other 

transition operations. Drawing on prior research, this 

study examines three distinct kinds of dense. 

1) Cascade Connection: All the maps from 

different blocks with different scales are combined into 

one feature representation by upsampling them to a 

common resolution using bilinear interpolation. A 

possible way to express this is: 

 

 (6) 

 

where ⊕ represents concatenation processes,  

and varied convolution processes in nth phase, 

correspondingly. 

2) Residual Connection: Before each decoder block 

may use residual connections, using bilinear 

interpolation to match the output feature maps' 

resolution. Next, the maps that were up-sampled are 

combined with the feature maps that were produced, 

and the maps are then utilized as inputs for the block 

that follows. Here is how this method is laid out: 

 

 (7) 

 

3) Dense Connection: The current encoder block 

takes as inputs the upsampling features from earlier 

blocks, and all blocks that follow it utilize the output 

feature maps as inputs. This is expressed as: 

 

 
(8) 

 

The suggested TAGN zeroes in on two distinct 

dense joining and the residual joining—to direct the 

decoder subnetwork's upsampling operation. Residual or 

dense step-growth connections may progressively 

combine many decoder characteristics of different 

semantic scales to provide representations, in contrast to 

previous efforts that just used the one-off cascade 

connection. Thus, the suggested TAGN may solve the 

issues of up sampling. 

1.3.4. Training and Optimization 

The training procedure involves training the 

TAGNmodel from beginning to end with the use of an 

objective function. A grouping of the Entropy and 

Sorensen-Dice loss functions is used to calculate the 

objective function. To determine the goal function, we 

apply the pixel-wise soft-max on the finished maps. 
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What follows is a possible formulation of the objective 

function.: 

 (9) 

 

 (10) 

 

 (11) 

 the ith pixel's truth value, pi is its sureness score 

in the prediction results, and t is the entire sum of pixels 

in each picture. Along with that, α stands for the loss 

weight and β for the Sorensen-Dice loss. During the 

course of our investigation, 

 

1.4. Projected ViT-GRU Model 

This portion discusses the implementation of a novel 

approach called ViT-GRU for liver tumor 

categorization. ViT (Vision Transformer) and GRU 

(Gated Recurrent Unit) are two different types of neural 

network architectures. By combining the strengths of 

both, the ViT-GRU model is proposed. It utilizes 

segmented images of liver tumors to efficiently classify 

them. This suggests that the model leverages the 

features learned from the images to make accurate 

tumor classifications. 

1.4.1. ViT for Feature Extraction 

The ViT, a state-of-the-art architecture renowned for 

its remarkable capacity to extract visual characteristics 

from pictures using self-attention processes, is the 

principal element of the model. The model is able to 

successfully extract critical patterns and characteristics 

indicative of tumors by utilizing the ViT backbone, 

which allows it to learn hierarchical representations of 

liver pictures. The study optimized the ViT encoder by 

removing the Multi-Layer Perceptron (MLP) layer and 

adding layer normalization for quicker convergence and 

more stable training. In an effort to curb overfitting and 

boost generalizability, the research included a dropout 

layer. Finally, it added a "flatten" layer to increase 

capacity, which allowed it to extract more complex and 

varied patterns from the segmented pictures. This might 

lead to an improvement in the performance of liver 

tumor detection algorithms. 

 1.4.2. GRU for Temporal Analysis 

In order to do temporal analysis on the visual 

characteristics that were extracted during feature 

extraction, the study incorporates a GRU unit. When it 

comes to detecting dependencies and sequential patterns 

in data, the GRU stands out among Recurrent Neural 

Networks (RNNs). The model's capacity to detect and 

categorize tumors with enhanced discriminative power 

is improved by using the GRU with 1024 units, which 

allows it to efficiently utilize the temporal dynamics in 

segmented pictures. 

1.4.3. Classification Head 

The last step in making a prediction using a GRU 

layer is to add a classification head. To derive the 

probability distribution over classes, the GRU's at the 

latest time stage is transmitted via layers and then a 

softmax function. 

1.4.4. Hyperparameters Settings 

Our study's models were quite parameter-heavy, 

which allowed us to explore a wide range of possible 

architectural tweaks. Hyperparameter tweaking, a 

technique crucial to attaining optimal performance, 

became our principal emphasis as the study refined 

these models. To do this, we needed to find 

hyperparameter values that were very near to the 

optimal ones. The study achieved this by investigating 

novel ways to improve our model assessment and 

prediction procedures, as well as by delving into a 

repertory of frequently used hyperparameter values. The 

hyperparameter standards used throughout our planned 

ViT-GRU model are succinctly recorded in Table 1. 

RESULTS AND DISCUSSION 

A computer platform running Ubuntu 1804, an Intel 

Core i9 CPU, 32 GB of RAM, and a Tesla T4 GPU is 

used as an experimental setting in this article [30]. 

Python 3.8 is utilized as the programming language, 

with Python 1.9 serving as the deep learning framework.  
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Table 1 – Hyperparameters of our projected ViT-

GRU perfect with its standards 

Hyperparameters Values 

Patch magnitude 8 

Sum of patches 256 

Forecast dimension 64 

Sum of self- heads 4 

Epochs 200 

Batch magnitude 322 

Optimizer AdamW 

Loss Purpose Categorical cross-entropy 

Image magnitude (128x128x3) 

Learning degree 0.001 

Weight decay 0.001 

 

Figure 2 displays the input photos that were 

segmented as a sample.  

2.1. Segmentation results 

Table 2 presents the consequences of the 

Segmentation Investigation for various slices. Proposed 

TAGN obtained a sensitivity of 76.68, a specificity of 

76.68, besides an accuracy of 76.68 in the analysis of 

the first slices; U-Net achieved a sensitivity of 91.89, a 

specificity of 98.04, besides an accuracy of 96.54 in the 

same order. Subsequently, in the second slice, the 

proposed TAGN achieved a sensitivity of 87.11, 

specificity of 87.11, and accuracy of 87.11. U-Net, on 

the other hand, accomplished a sensitivity of 84.33, 

specificity of 98.04, and accuracy of 96.54, respectively. 

Next, accuracy is 95.70 and 99.42, respectively. 

Subsequently, for the third slice, the proposed TAGN 

obtained a sensitivity of 88.13, a specificity of 88.13, 

and an accuracy of 88.13. U-Net achieved a sensitivity 

of 86.70, a specificity of 98.04, and an accuracy of 

96.54, respectively. Next, accuracy was 95.57 and 

98.37, respectively. Then, in the fourth slice, the 

proposed TAGN obtained a sensitivity, specificity, and 

accuracy of 80.32, and U-Net achieved a sensitivity of 

98.04, and 96.54, respectively. Then, 96.94, accuracy as 

96.54, specificity as 98.04, and so on. Next, and 

accuracy as 96.22 in line with that. After that, in the 

fifth slice, the proposed TAGN achieved 91.82 

sensitivity, 91.82 specificity, and 91.82 accuracy. 

 

Figure 2 – Segmentation consequences 
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Table 2 – Segmentation Investigation of projected perfect on diverse slices 

Slices 
Proposed TAGN U-Net 

Sen Spec Acc Sen Spe Acc 

1 76.68 76.68 76.68 91.89 98.04 96.54 

2 87.11 87.11 87.11 84.33 99.42 95.70 

3 88.13 88.13 88.13 86.70 98.37 95.57 

4 80.32 80.32 80.32 93.69 96.94 96.22 

5 91.82 91.82 91.82 93.55 96.94 96.12 

6 80.45 80.45 80.45 87.07 99.20 96.31 

7 77.31 77.31 77.31 95.70 96.85 96.58 

8 88.75 88.75 88.75 97.47 96.85 96.17 

9 87.64 87.64 87.64 84.13 96.96 94.35 

10 92.65 92.65 92.65 97.51 96.81 97.00 

11 85.85 85.85 85.85 98.21 95.21 96.01 

12 87.99 87.99 87.99 98.55 95.55 96.35 

13 74.44 74.44 74.44 95.38 96.85 96.46 

14 90.28 90.28 90.28 98.21 96.65 97.07 

15 94.57 94.57 94.57 97.74 97.34 97.45 

16 87.67 87.67 87.67 97.85 96.99 97.23 

17 67.33 67.33 67.33 97.81 95.99 96.50 

18 84.79 84.79 84.79 96.57 97.00 96.88 

Average 84.65 84.65 84.65 94.02 97.05 96.36 

 

In contrast, U-Net achieved 93.55 sensitivity, 98.04 

specificity, and 96.54 accuracy in the same order. Next, 

96.94, and accuracy as 96.12, in that order. Then, after 

six slices, the projected TAGN achieved accuracy of 

80.45, and U-Net achieved sensitivity, specificity, and 

accuracy of 87.07, 98.04, and 96.54, respectively. Next, 

and accuracy as 96.54 and specificity as 98.04, 

respectively. Next, and accuracy as 96.54 and 

specificity as 98.04, respectively. The accuracy was 

then 96.31 and 99.20, respectively. Subsequently, in the 

seventh slice, the proposed TAGN achieved a sensitivity 

of 77.31, specificity of 77.31, and accuracy of 77.31. U-

Net achieved a sensitivity of 95.70, specificity of 98.04, 

and accuracy of 96.54 in corresponding measure. Next, 

and accuracy as 96.54 and specificity as 98.04, 

respectively. Next, 96.85, with accuracy coming in at 

96.58 in line. After that, in the eighth slice, the proposed 

TAGN accomplished a sensitivity of 88.75, a specificity 

of 88.75, and an accuracy of 88.75. In contrast, U-Net 

achieved a sensitivity of 97.47, a specificity of 98.04, 

and an accuracy of 96.54 in the same order. The 

accuracy was then 96.17 and 96.85, respectively. Then, 

in the ninth slice, the proposed TAGN obtained a 

sensitivity of 87.64, a specificity of 87.64, besides an 

accuracy of 87.64. Subsequently, U-Net achieved a 

sensitivity of 84.13, a specificity of 98.04, and an 

accuracy of 96.54. The accuracy was then 94.35 and 

96.96, respectively. Subsequently, after 10 slices, the 

proposed TAGN achieved 92.65 sensitivity, 92.65 

specificity, and 92.65 accuracy. U-Net achieved 97.51 

sensitivity, 98.04 specificity, and 96.54 accuracy, 

respectively. Next, and accuracy as 96.54 and 
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specificity as 98.04, respectively. The accuracy was 

then 97.00 and 96.81, respectively. Then, after 11 slices, 

the proposed TAGN attained accuracy of 85.85, and U-

Net accuracy of 98.21, 98.04, and 96.54, respectively. 

Next, and accuracy as 96.54 and specificity as 98.04, 

respectively. Next, accuracy is 95.21 and 96.01, 

respectively. Subsequently, after 12 slices, the projected 

TAGN achieved a sensitivity of 87.99, specificity of 

87.99, and accuracy of 87.99. U-Net then achieved a 

corresponding sensitivity of 98.55~95.55~96.35. 

Subsequently, after 14 slices, the projected TAGN 

accomplished a sensitivity of 90.28, specificity of 90.28, 

besides accuracy of 90.28. U-Net achieved a sensitivity 

of 98.21, specificity of 98.04, and accuracy of 96.54, 

respectively. The accuracy was then 97.07 and 96.65, 

respectively. Subsequently, for the fifteenth slice, the 

Proposed TAGN obtained a sensitivity of 94.57, a 

specificity of 94.57, besides accuracy of 94.57. U-Net 

then achieved a sensitivity of 97.74 slices, while the 

Proposed TAGN obtained a sensitivity of 97.34 and an 

accuracy of 97.45 in correspondingly. Subsequently, in 

the sixteenth slice, the proposed TAGN achieved a 

sensitivity of 87.67, which was subsequently achieved 

by U-Net as 87.67<97.85~96.99~97.23, respectively.  

Table 3 – Mean cap width for 18 slices from four approaches 

 Mean Cap Thickness (mm) 

Slice 
Projected 

TAGN 
U-Net 

Self-

Attention 
DenseUNet TransformNet FCM K-Means 

1 0.884 0.969 9.67% 0.811 8.30% 0.722 18.38% 

2 1.048 0.979 6.58% 0.959 8.51% 0.727 30.62% 

3 0.988 0.979 0.83% 0.925 6.39% 0.807 18.26% 

4 0.770 0.713 7.39% 0.725 5.87% 0.619 19.55% 

5 0.903 0.829 8.19% 0.795 12.00% 0.637 29.43% 

6 0.660 0.751 13.76% 0.639 3.12% 0.601 9.01% 

7 0.697 0.645 7.44% 0.624 10.44% 0.554 20.51% 

8 0.611 0.731 19.61% 0.514 15.88% 0.576 5.73% 

9 0.621 0.657 5.80% 0.555 10.58% 0.572 7.94% 

10 0.634 0.706 11.43% 0.496 21.74% 0.540 14.78% 

11 0.581 0.607 4.43% 0.789 35.82% 0.617 6.19% 

12 0.650 0.685 5.38% 0.721 10.95% 0.647 0.48% 

13 0.499 0.550 10.25% 0.565 13.14% 0.624 24.96% 

14 0.796 0.759 4.56% 0.710 10.73% 0.448 43.65% 

15 0.674 0.737 9.28% 0.650 3.60% 0.681 1.05% 

16 0.736 0.642 12.76% 0.711 3.39% 0.590 19.85% 

17 0.747 0.704 5.81% 0.718 3.94% 0.696 6.81% 

18 0.808 0.681 15.70% 0.740 8.44% 0.743 8.07% 

Average 0.739 0.740 8.83% 0.703 10.71% 0.633 15.85% 
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Then, for the 17th slice, the proposed TAGN obtained 

the following results: sensitivity of 67.33, specificity of 

67.33, accuracy of 67.33 97.81, specificity of 98.04, and 

accuracy of 96.54, respectively. Next, accuracy is 

96.50% and 95.99, respectively. Subsequently, after 18 

slices, the proposed TAGN achieved 84.79 sensitivity, 

84.79 specificity, and 84.79 accuracy. U-Net, on the 

other hand, achieved 96.57 sensitivity, 98.04 specificity, 

and 96.54 accuracy, respectively. The accuracy was 

then 96.88 and 97.00, respectively. Then, using average 

slices, the proposed TAGN obtained a sensitivity, 

accuracy of 84.65. Subsequently, U-Net achieved a 

sensitivity of 94.02, a specificity of 98.04, besides an 

accuracy of 96.54. Next, accuracy is 96.36 and 97.05, 

respectively.  

In above Table 3: Mean cap width for 18 slices from 

four approaches. The proposed TAGN achieved a 

thickness of 0.884, U-Net achieved a thickness of 0.969, 

Self-Attention achieved a thickness of 9.67%, 

DenseUNet achieved a thickness of 0.811, 

TransformNet achieved a thickness of 8.30%, 0.722, 

and K-Means achieved a thickness of 18.38% in the first 

slice investigation. In the second slice, the Proposed 

TAGN had a thickness of 1.048, U-Net had a thickness 

of 0.979, Self-Attention had a thickness of 6.58%, 

DenseUNet had a thickness of 0.959, TransformNet had 

an 8.51% 0.727, and K-Means demonstrated a thickness 

of 30.62%. In the third slice, the thickness of the 

Proposed TAGN was 0.988, U-Net was 0.979, Self-

Attention was 0.83%, DenseUNet was 0.925 6.39% 

0.807, and K-Means was 18.26%, respectively. The 

thickness values of the Proposed TAGN, U-Net, 

TransformNet, and FCM were 0.770, 0.713, 7.39%, and 

0.725, respectively, on the fourth slice, while K-Means 

was at 19.55% and FCM was at 0.619. On the fifth 

slice, the thickness of the proposed TAGN was 0.903, 

the thickness of the self-attention was 0.829 8.19%, the 

thickness of the FCM was 0.637 29.43%, and the 

thickness of the 0.795 10.19% was recorded. In the sixth 

slice, TransformNet attained 3.12%, FCM attained 

0.601 and K-Means attained 9.01%, while the proposed 

TAGN attained 0.660 and U-Net attained 0.751, 

13.76%, and 0.639, respectively. On the seventh slice, 

the thickness of the Proposed TAGN was found to be 

0.697, while U-Net was found to be 0.645, Self-

Attention was found to be 7.44%, DenseUNet was 

found to be 0.624, FCM was found to be 10.44%, as 

was K-Means at 20.51%. On the eighth slice, the 

thickness of the proposed TAGN was found to be 0.611, 

while U-Net was found to be 0.731, Self-Attention was 

found to be 19.61%, TransformNet 0.514 was found to 

be 15.88%, FCM was found to be 0.576, and K-Means 

was found to be 5.73%, respectively. In the ninth slice, 

the thickness of the proposed TAGN was found to be 

0.621, while U-Net was found to be 0.657, Self-

Attention was found to be 5.80%, Self-Attention was 

found to be 0.555, DenseUNet was found to be 10.58%, 

FCM was found to be 0.572, and K-Means was found to 

be 7.94%, respectively. On the tenth slice, 

TransformNet achieved a thickness of 21.74%, FCM 

achieved a thickness of 0.540, K-Means achieved a 

thickness of 14.78%, and the proposed TAGN attained a 

thickness of 0.634, U-Net a thickness of 0.706, 11.43%, 

and 0.496. The Proposed TAGN reached a thickness of 

0.581 on the 11th slice, U-Net reached 0.607, Self-

Attention reached 4.43%, DenseUNet reached 0.789, 

TransformNet 35.82% 0.617, and K-Means reached 

6.19%, respectively. On the 12th slice, the thickness of 

the Proposed TAGN was found to be 0.650, U-Net was 

found to be 0.685, Self-Attention was found to be 

5.38%, DenseUNet was found to be 0.721, 

TransformNet was found to be 10.95%, FCM was found 

to be 0.647, and K-Means was found to be 0.48%, 

respectively. On the thirteenth slice, the thickness of the 

Proposed TAGN was 0.499, U-Net was 0.550, Self-

Attention was 10.25%, and DenseUNet was 0.565 

13.14% 0.624 24.96% in accordance. Then, on the 

fourteenth slice, the thickness of the proposed TAGN 

was 0.796, U-Net was 0.759, self-attention was 4.56% 

0.710, FCM was 10.73% 0.448, and K-Means was 

43.65%, respectively. The proposed TAGN obtained a 

thickness of 0.674 on the fifteenth slice, while U-Net 
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obtained a thickness of 0.737. Self-Attention obtained a 

thickness of 9.28% 0.650, FCM obtained a thickness of 

3.60 0.681, and K-Means obtained a thickness of 1.05%. 

On the sixteenth slice, the thickness of the Proposed 

TAGN was 0.736, U-Net was 0.642~12.76%, and 

TransformNet was 0.711~3.39%~0.590~19.85%, in that 

order. On the seventeenth slice, the thickness of the 

Proposed TAGN was 0.747, U-Net was 0.704, 5.81%, 

0.718, 3.94%, 0.696, and K-Means was 6.81%, 

respectively. On the eighteenth slice, the thickness of the 

proposed TAGN was 0.808, U-Net was 0.681, Self-

Attention was 15.70%, DenseUNet was 0.740, 

TransformNet was 8.44%, and FCM was 0.743 8.07%, in 

that order. On average, the Proposed TAGN had an 

average thickness of 0.739, U-Net had an average 

thickness of 0.740, Self-Attention had an average 

thickness of 8.83%, DenseUNet had an average thickness 

of 0.703, TransformNet had an average thickness of 

10.71%, FCM had an average thickness of 0.633, and K-

Means had an average thickness of 15.85%. 

Table 4 – Smallest cap thickness for 18 slices from four approaches 

 Min Cap Thickness (mm) 

Slice Projected TAGN U-Net Self-Attention DenseUNet TransformNet FCM K-Means 

1 0.814 0.781 4.00% 0.608 25.33% 0.535 34.30% 

2 0.752 0.809 7.54% 0.737 1.96% 0.532 29.19% 

3 0.256 0.362 41.55% 0.266 3.96% 0.458 79.07% 

4 0.512 0.552 7.71% 0.538 4.97% 0.481 6.03% 

5 0.475 0.464 2.27% 0.625 31.59% 0.458 3.53% 

6 0.322 0.446 38.34% 0.400 24.10% 0.378 17.39% 

7 0.389 0.410 5.50% 0.330 15.12% 0.292 24.91% 

8 0.311 0.524 68.44% 0.354 13.73% 0.332 6.84% 

9 0.372 0.420 12.92% 0.361 3.09% 0.347 6.85% 

10 0.389 0.527 35.48% 0.369 5.15% 0.280 27.97% 

11 0.443 0.430 2.87% 0.438 1.03% 0.434 2.03% 

12 0.519 0.536 3.35% 0.567 9.37% 0.449 13.34% 

13 0.761 0.899 18.10% 0.737 3.24% 0.532 30.06% 

14 0.553 0.574 3.83% 0.596 7.76% 0.377 31.86% 

15 0.500 0.633 26.41% 0.312 37.62% 0.541 8.04% 

16 0.652 0.534 18.11% 0.517 20.69% 0.417 36.05% 

17 0.628 0.563 10.34% 0.509 18.97% 0.485 22.78% 

18 0.586 0.542 7.43% 0.543 7.32% 0.472 19.38% 

Average 0.513 0.556 17.46% 0.489 13.06% 0.433 22.20% 

 

The smallest cap thickness for 18 slices from four 

approaches is shown in Table 4 above. According to the 

analysis of the first slice, the proposed TAGN had a 

thickness of 0.814, U-Net had a thickness of 0.781, 

Self-Attention had a thickness of 4.00%, DenseUNet 

had a thickness of 0.608, TransformNet had a thickness 

of 25.33%, FCM had a thickness of 0.535, and K-Means 

had a thickness of 34.30%. Next, the the second slice, 

the thickness of the proposed TAGN was 0.752, U-Net 

was 0.809, and self-attention was 7.54%, 0.737, 1.96%, 

0.532, and 29.19%, respectively. Then, in the third slice, 

the thickness of the proposed TAGN was 0.256, that of 
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U-Net was 0.362, that of Self-Attention was 41.55% 

0.266 3.96%, that of FCM was 0.458, and that of K-

Means was 79.07%, all in congruence. On the fourth 

slice, the thickness of the Proposed TAGN was 0.512, 

U-Net was 0.552, Self-Attention was 7.71%, 

TransformNet was 0.538 4.97% 0.481, and K-Means 

was 6.03% in accordance. In the fifth slice, the 

thickness of the proposed TAGN was found to be 0.475, 

while U-Net and Self-Attention were found to be 0.464, 

2.27%, and 0.625, respectively, and TransformNet and 

FCM were found to be 31.59%, 0.458, and 3.53%, 

respectively. On the sixth slice, the thickness of the 

Proposed TAGN was found to be 0.322, U-Net was 

found to be 0.446, and Self-Attention was found to be 

38.34% 0.400.24.10% 0.378 and FCM reached 17.39% 

thickness in agreement. Then the 7th slice, the Proposed 

TAGN attained the thickness of 0.389 and U-Net 

attained the thickness of 00.410 5.50% 0.330 15.12% 

and FCM attained the thickness of 0.292 and K-Means 

attained the thickness of 24.91% congruently. 

Afterwards, on the eighth slice, the proposed TAGN had 

a thickness of 0.311, U-Net had a thickness of 0~0.524, 

U-Net had a thickness of 68.44%, Self-Attention had a 

thickness of 0.354~13.73%, FCM had a thickness of 

0.332, and K-Means had a thickness of 6.84%, all in 

accordance. After that, on the ninth slice, the thickness 

of the proposed TAGN was found to be 0.372, U-Net 

was found to be 0 0.420, Self-Attention was found to be 

12.92%, and TransformNet was found to be 0.361 

3.09% 0.347 and TransformNet was found to be 6.85% 

congruently. On the tenth slice, the thickness of the 

Proposed TAGN was found to be 0.389, while U-Net 

was found to be 00.527. Self-Attention was found to be 

35.48% 0.369, TransformNet was found to be 5.15% 

0.280, and K-Means was found to be 27.97% 

congruently thick. On the eleventh slice, the thickness 

of the Proposed TAGN was found to be 0.443, while U-

Net was found to be 0~0.430. Self-Attention was found 

to be 2.87%~0.438, and TransformNet was found to be 

1.03%~0.434~2.03% in accordance. On the 12th slice, 

the thickness of the Proposed TAGN was found to be 

0.519, while U-Net's thickness was found to be 00.536 

3.35% 0.567 9.37%, TransformNet's thickness was 

found to be 0.449, and FCM's thickness was found to be 

13.34%, all in congruence. On the thirteenth slice, the 

thickness of the proposed TAGN was 0.761, the 

thickness of Self-Attention was 0.899~18.10%~0.737, 

the thickness of FCM was 3.24%~0.532, and the 

thickness of K-Means was 30.06%, all in congruence. 

Then the 14th slice, the Proposed TAGN attained the 

thickness of 0.553 and U-Net attained the thickness of 

00.574 3.83% 0.596 7.76% 0.377 and TransformNet 

attained the thickness of 31.86% congruently. Next, on 

the fifteenth slice, the thickness of the proposed TAGN 

was 0.500, the thickness of Self-Attention was 0.633, 

26.41%, 0.312, the thickness of FCM was 37.62%, 

0.541, and the thickness of K-Means was 8.04%, all in 

congruence. Then, on the sixteenth slice, the thickness 

of the proposed TAGN was 0.652, that of U-Net was 

00.534, that of self-attention was 18.11%, and that of 

FCM was 0.517 20.69% 0.417 36.05% in accordance. 

The Proposed TAGN then achieved a thickness of 0.628 

on the 17th slice, while U-Net achieved a thickness of 

00.563. Self-Attention then achieved a thickness of 

10.34%, FCM achieved a thickness of 0.509 18.97%, 

and TransformNet achieved a thickness of 0.485 and 

22.78% respectively. Then, on the eighteenth slice, the 

thickness of the proposed TAGN was found to be 0.586, 

that of U-Net to be 0.542, that of Self-Attention to be 

7.43%, that of TransformNet to be 0.543, that of FCM 

to be 7.32% 0.472, and that of K-Means to be 19.38%, 

all in accordance. Following that, the Proposed TAGN's 

Average slice, U-Net's 0 thickness, TransformNet's 

0.556 thickness, and Self-Attention's 17.46% thickness 

were all measured.0.489 and K-Means reached the 

thickness of 22.20%, TransformNet reached the 

thickness of 13.06%, FCM reached the thickness of 

0.433, correspondingly. 

2.2. Investigation of Classification results 

Table 5 describes the validation investigation of 

different classifiers. The CNN model achieved accuracy 

of approximately 92.43, recall rate of 90.95, precision of 
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95.91, specificity of 92.28, and f-score of 91.43 in the 

analysis of the entire dataset. Subsequently, the RNN 

model achieved 93.27 accuracy, 91.37 recall rate, 93.42 

precision, 93.27 specificity, and 92.87 f-score, 

respectively. The ViT perfect then accomplished the 

accuracy of 95.42, recall rate of 93.25, precision of 

94.02, specificity of 94.18, and f-score of 94.57, in that 

order. Subsequently, the GRU model achieved 96.07 

accuracy, 95.98 recall rate, 93.98% specificity, and 

94.58 f-score, respectively. The predicted ViT-GRU 

model then achieved 98.79 accuracy, 95.64 recall rate, 

96.12 precision, 98.47 recall rate, and 95.36 f-score, 

respectively. Following the analysis of the Training 

(70%) dataset, the CNN model achieved the recall rate 

of 86.85, precision of 85.76–92.27, and f-score of 91.3. 

Table 5 – Validation Investigation of dissimilar classifiers 

Class tags Accuracy Precision Recall Specificity F-score 

Complete dataset 

CNN 92.43 90.95 95.91 92.28 91.43 

RNN 93.27 91.37 93.42 93.27 92.87 

ViT 95.42 93.25 94.02 94.18 94.57 

GRU 96.07 95.98 93.19 96.14 94.58 

Projected ViT-GRU 98.79 95.64 96.12 98.47 95.36 

Training (70%) 

CNN 93.37 86.811 85.76 92.27 91.3 

ViT 96.07 92.460 93.7 95.82 ;’93.01 

RNN 94.98 91.182 92.31 94.2 92.24 

GRU 96.88 94.383 93.8 96.01 93.02 

Projected ViT-GRU 97.57 95.21 95.62 98.33 95.88 

Testing (30%) 

CNN 93.25 93.15 91.04 89.15 91.09 

RNN 94.42 95.47 92.56 92.47 93.96 

ViT 96.17 96.13 94.26 95.17 95.84 

GRU 97.53 97.15 96.24 98.3 96.69 

Projected ViT-GRU 98.94 98.97 97.24 99.44 97.6 

 

The RNN model subsequently achieved 94.98 

accuracy, 91.14 recall rate, 92.31 precision, 94.2 recall 

rate, and 92.24 f-score, respectively. Subsequent that, 

the GRU model achieved 96.88 accuracy, 94.38 recall 

rate, 93.8 precision, 96.01 specificity, and 93.02 f-score, 

in that order. After that, the ViT model achieved 96.07 

accuracy, 92.46 recall rate, 93.7 95.82 precision, and 

93.01 specificity, in that order. Subsequently, the 

projected ViT-GRU model achieved a recall rate of 

95.21, accuracy as a 97.57, precision of 95.62, 

specificity of 98.33, and an f-score of 95.88. Following 

the examination of the Testing (30%) dataset, the CNN 

model accomplished the subsequent consequences: 

accuracy of 93.25, recall rate of 93.15, precision of 

91.04, specificity of 89.15, and f-score of 91.09, in that 

order. Following that, the RNN model accomplished 
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94.42 accuracy, 95.47 recall rate, 92.56 precision, 92.47 

specificity, and 93.96 f-score, respectively. 

Subsequently, the ViT model achieved 96.17 accuracy, 

96.03 recall rate, 94.26 precision, 95.17 accuracy, and 

95.84 f-score, respectively. The predicted ViT-GRU 

model then achieved 98.94 accuracy, 98.97 recall rate, 

97.24 specificity, and, finally, a corresponding f-score 

of 97.6. The GRU model then accomplished the 

subsequent consequences: accuracy of 97.53, recall rate 

of 97.15, precision of 96.24, specificity of 98.3, and f-

score of 96.69, in that command. 

CONCLUSIONS / ВИСНОВКИ  

This paper introduces TGAN, a novel Transformer-

based attention-directed U-Net aimed at enhancing liver 

tumor segmentation quality. By amalgamating U-Net 

with multi-scale skip connections and multi-level 

guided attention, TGAN significantly improves 

segmentation accuracy. The incorporation of a multi-

level directed attention block facilitates the exploitation 

of global contextual information, encompassing global 

spatial linkages and long-range interactions among 

encoder semantic features simultaneously. Furthermore, 

the utilization of multi-scale skip connections enables 

the generation of discriminative feature representations 

through dynamic scaling. Subsequently, the ViT-GRU 

model achieves an impressive classification accuracy of 

98.79% across the dataset, underscoring the efficacy of 

our proposed approach. Radiologists seeking a second 

opinion can leverage this methodology. Extending the 

application of the liver tumor classification method to 

various imaging modalities holds promise for enhancing 

the study's robustness. In the experimental analysis of 

the projected ViT-GRU model achieved a recall rate of 

95.21, accuracy as a 97.57, precision of 95.62, 

specificity of 98.33, and an f-score of 95.88. 

PROSPECTS FOR FUTURE RESEARCH / ПЕРСПЕКТИВИ ПОДАЛЬШИХ ДОСЛІДЖЕНЬ 

Future endeavors aim to refine the overall segmentation and classification performance of the proposed system. 

Additionally, efforts will be directed towards minimizing the Volumetric Overlap Error (VOE) rate even further, 

representing a key objective for subsequent investigations. 
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