
 

Journal of Engineering Sciences (Ukraine), Vol. 11(2), pp. E1–E8 E1 

 

JOURNAL OF ENGINEERING SCIENCES 

Volume 11, Issue 2 (2024) 

 

Dovbysh A. S., Piatachenko V. Y., Myronenko M. I., Suprunenko M. K., Simonovskiy J. V. (2024). 

Hierarchical information-extreme machine learning of hand prosthesis control system based on 

decursive data structure. Journal of Engineering Sciences (Ukraine), Vol. 11(2), pp. E1–E8. 

https://doi.org/10.21272/jes.2024.11(2).e1 
 

Hierarchical Information-Extreme Machine Learning of Hand Prosthesis Control System 

Based on Decursive Data Structure 

Dovbysh A. S.[0000-0003-1829-3318], Piatachenko V. Y.*[0000-0002-7464-3119], Myronenko M. I.[0000-0001-5005-1672],  

Suprunenko M. K.[0009-0001-8342-3003], Simonovskiy J. V.[0000-0002-1228-3103] 

Sumy State University, 116, Kharkivska St., 40007, Sumy, Ukraine 

Article info: 

Submitted: 

Received in revised form: 

Accepted for publication: 

Available online: 

 

July 29, 2024 

October 23, 2024 

October 28, 2024 

November 1, 2024 

*Corresponding email: 

vl.piatachenko@cs.sumdu.edu.ua 

Abstract. The article considers the machine learning method for a hand prosthesis control system that recognizes 

electromyographic signals with a non-invasive recording system. The method was developed within the information-

extreme intelligent data analysis technology framework to maximize the system’s information capacity during machine 

learning. The method is based on adapting the input information description to maximize the probability of correct 

classification decisions, similar to artificial neural networks. However, unlike neural-like structures, the proposed 

method was developed within a functional approach to modeling cognitive processes of natural intelligence formation 

and decision-making. This approach allowed the recognition system to adapt to arbitrary initial conditions of 

electromyogram formation and flexibility when retraining the system by expanding the alphabet of recognition classes. 

The decision rules formed by the results of information-extreme machine learning were characterized by high efficiency 

as an essential indicator of an intelligent prosthesis. The distinctiveness of the developed method from known machine 

learning methods was in applying a hierarchical data structure as a decursive binary tree, which allowed for 

transitioning from multi-class machine learning to two-class learning for each stratum of the decursive tree. The 

modified Kullback–Leibler information measure was the optimization criterion for machine learning parameters. The 

proposed hierarchical information-extreme machine learning method was implemented using electromyographic 

biosignals of cognitive commands for six finger and hand movements as an example. 

Keywords: information-extreme intelligent technology, hierarchical machine learning, decursive binary tree, 
prosthesis control system, process innovation, information criterion, EMG sensor, biosignal.

1 Introduction 

For a person with a disability, essential indicators of 

interaction with a hand prosthesis of varying degrees of 

impairment are the accuracy of movement selection, 

intuitive control, and the speed of executing cognitive 

commands [1]. All these indicators depend on the accuracy 

of the control system’s recognition of electromyographic 

(EMG) signals, which arise in the muscles when muscle 

fibers are excited by the corresponding cognitive 

commands. Therefore, the article’s topic is relevant as it is 

dedicated to improving the functional efficiency of the 

machine learning control system for a hand prosthesis to 

recognize EMG signals. One way to increase the accuracy 

of the cognitive command execution of the corresponding 

movement is to use a prosthesis with an invasive EMG 

signal reading system. At the same time, to achieve this 

goal, it is necessary to solve two main tasks: to form a 

relevant input mathematical description of the EMG signal 

recognition system and to develop a machine learning 

method with high functional efficiency. 

The main disadvantages of invasive prostheses 

compared to non-invasive ones are their very high cost on 

the global market and the necessity of preliminary surgical 

intervention [2]. In turn, non-invasive bionic prostheses 

are characterized by high noise levels in biosignals due to 

the unstable contact of the EMG sensor. Furthermore, in 

developing a machine learning method for a non-invasive 

prosthesis with high functional efficiency, it is necessary 

to overcome scientific and methodological challenges 
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caused by arbitrary initial conditions of the prosthesis 

control system’s operation, intersection of feature spaces 

of recognition classes that characterize permissible 

movements of the prosthesis, and multidimensionality of 

the feature dictionary and the recognition class alphabet. 

The article examines the information synthesis based on 

hierarchical information-extreme machine learning for the 

recognition system of electromyographic (EMG) signals 

of cognitive commands for controlling a hand prosthesis. 

2 Literature Review 

In recent years, there has been a trend towards an 

increasing number of publications on using intelligent 

information technologies to improve the functional 

efficiency of hand prostheses. For example, papers [3–5] 

detail prostheses equipped with tactile functions capable of 

perceiving the surface characteristics of an object. These 

researches mainly emphasize the use of intelligent sensors. 

At the same time, the accuracy and speed of executing 

cognitive commands depend on the reliability of their 

recognition. Research [6, 7] proposes improving the 

accuracy of executing cognitive commands through an 

auxiliary optical eye-tracking system. This enhancement 

significantly increases the cost of the prosthesis and 

complicates its usage conditions. The main problem in 

improving the functional efficiency of non-invasive 

prostheses remains the low overall probability of correctly 

recognizing electromyographic biosignals [8]. Artificial 

neural networks are widely used to establish 

correspondence between EMG signals and cognitive 

commands [9–11]. 

The main drawbacks of neural-like structures include 

sensitivity to the multidimensional nature of the 

recognition feature space and inflexibility during 

retraining due to the expansion of the recognition class 

alphabet. At the same time, forming a representative 

training matrix requires a large volume of samples, which 

is associated with generally fuzzy partitioning of the 

feature space into recognition classes. A significant 

drawback of artificial neural networks is the dependence 

of machine learning time on the power of the feature 

dictionary and the recognition class alphabet. To reduce 

the impact of the multidimensionality of the recognition 

feature space, papers [12, 13] propose using neural-like 

extractors designed to compress input data. In this case, 

there is usually a risk of information loss. 

A viable strategy for advancing the functional 

efficiency of machine learning is the construction of 

decision rules within a geometric approach. One such 

example is the support vector method [14, 15]. Challenges 

arise in implementing this method when there is a 

significant overlap between recognition classes in the 

feature space, which is typical in EMG signal recognition. 

Therefore, despite numerous research efforts aimed at 

enhancing intelligent prostheses, their functional 

efficiency remains relatively low due to the complexities 

of a scientific and methodological nature. These 

complexities are primarily attributed to arbitrary initial 

conditions in forming EMG signals, substantial 

intersections in the feature space of recognition classes, 

and the multidimensionality of the feature space and the 

recognition class alphabet. 

A promising avenue for enhancing the functional 

efficiency of intelligent prostheses is the utilization of 

ideas and methods from the information-extreme 

intelligence (IEI) data analysis technology. This approach 

maximizes the system’s information capacity during 

machine learning [16]. The primary set of theories of 

information-extreme machine learning, akin to neural-like 

structures, involves adapting the system’s input 

information description to boost the probability of correct 

classification decisions. However, unlike neural-like 

structures, the decision rules derived from optimal 

geometric parameters of radial basis separation functions 

obtained during machine learning are practically 

unaffected by the multidimensional nature of the 

recognition feature space regarding information 

understanding. 

In the paper [17], information-extreme machine 

learning of the hand prosthesis control system was 

considered for a limited number of movements. 

Simultaneously, the research revealed that the accuracy of 

machine learning with a linear data structure significantly 

decreases as the number of recognition classes increases. 

This phenomenon is attributed to the growth in the number 

of recognition classes leading to an increase in their 

intersection degree in the feature space with its unchanged 

dimension. 

The article aims to enhance the functional efficiency of 

an intelligent, non-invasive hand prosthesis by using 

information-extreme machine learning for an EMG signal 

recognition system, employing a hierarchical data 

arrangement organized as a decursive binary tree. 

3 Research Methodology 

3.1 Statement of the research task 

Let there be given an alphabet {𝑋𝑚
𝑜 |𝑚 = 1, 𝑀} of 

recognition classes, which characterize EMG signals of 

permissible movements of the prosthesis, and the 

corresponding training matrix of the ‘object-property’ type

||,1;,1||| max

)(

, NiJjy j

im == , where Jmax is the number of 

structured feature vectors (hereinafter referred to as the 

realization) of recognition classes; N is the number of 

recognition features. 

In the process of machine learning for the control 

system of a non-invasive prosthesis for EMG signal 

recognition within an information-extreme framework, it 

is necessary to do the following: 

1) construct a decursive binary tree-based hierarchical 

data structure for the provided set of recognition classes: 

{𝑋𝑚𝑠,𝑠,ℎ
𝑜 |𝑚𝑠 = 1,2; 𝑠 = 1, 𝑆ℎ, ℎ = 1, ℎ𝑚𝑎𝑥 , 

where 𝑋𝑚𝑠,𝑠,ℎ
𝑜  represents the ms recognition class of the 

s-th layer of the h-th level of the decursive tree; 𝑆ℎ is the 

number of layers in the h-th level. 
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2) the optimization of machine learning parameters in 

the Hamming feature space should be carried out 

according to the concept of IEI technology. Therefore, 

let’s assume, for example, that the machine learning 

parameters for the recognition class 𝑋𝑚𝑠,𝑠,ℎ
𝑜  are represented 

as a structured vector:  

                    𝑔𝑠,ℎ =< 𝑥𝑚𝑠,𝑠,ℎ: 𝑑𝑚𝑠,𝑠,ℎ; , δ𝑠,ℎ >,                 (1) 

where 𝑥𝑚𝑠,𝑠,ℎ is the mean realization of the recognition 

class 𝑋𝑚𝑠,𝑠,ℎ
𝑜 ; 𝑑𝑚𝑠,𝑠,ℎ is the radius of the hyperspherical 

container encompassing the recognition class 𝑋𝑚𝑠,𝑠,ℎ
𝑜 , 

restored throughout machine learning in the Hamming 

space radial basis; 𝛿𝑠,ℎ is a parameter with a value that 

equals half the symmetric field of control tolerance 

boundaries for recognition features. 

Definition 1. A control field of tolerance is defined as 

a field in which the 𝑖-th feature of the base recognition 

class is found with a probability of 0 < 𝑝𝑖 < 1.  

The number of optimization parameters in expression 

(1) defines the second level of depth in information-

extreme machine learning as a vector 𝑥𝑚𝑠,𝑠,ℎ that depends 

on the parameter 𝛿𝑠,ℎ of the control tolerance field. 

The machine learning parameters are subject to the 

following constraints: 

a) 𝑑ℎ,𝑠,𝑚𝑠
∈ [0; 𝑑(𝑥𝑚𝑠,𝑠,ℎ ⊕ 𝑥𝑐,𝑠,ℎ)], 𝑑(𝑥𝑚𝑠,𝑠,ℎ ⊕ 𝑥𝑐,𝑠,ℎ) 

is the midcenter distance of the mean feature vector 𝑥𝑚𝑠,𝑠,ℎ 

and a similar vector 𝑥𝑐,𝑠,ℎ of the nearest neighboring class 

𝑋𝑐,,𝑠,ℎ
𝑜 ; 

b) 𝛿𝑠,ℎ ∈ [0; 𝛿𝐻/2], where δ𝐻 is the normalized 

tolerance range for recognition features, setting the range 

of control tolerance values. 

Definition 2. A normalized field of tolerance is defined 

as a field in which the 𝑖-th feature of the base recognition 

class is found with a probability of 𝑝𝑖 = 1 or 𝑝𝑖 = 0. 
3) optimize the parameters of vector (1) by searching 

for the global maximum of the information criterion 

averaged over the alphabet of recognition classes of the  

s-th stratum of the h-th level in the working range of its 

function definition: 

               𝐸𝑠,ℎ, =
1

2
∑ 𝑚𝑎𝑥

𝐺𝐸∩𝐺𝑑

2
𝑚𝑠=1 𝐸𝑚𝑠,𝑠,ℎ(𝑑),                 (2) 

where 𝐸𝑚𝑠,𝑠,ℎ(𝑑) is the value of the information 

criterion calculated for the current radius 𝑑 of the 

recognition class container 𝑋𝑚𝑠,𝑠,ℎ
𝑜 ; GE is the working 

domain of the information criterion; Gd is the permissible 

set of values for the radii of the recognition class 

containers. 

4) construct highly reliable decision rules based on the 

optimal (hereinafter referred to in the informational sense) 

geometric parameters of the recognition class containers 

obtained during the machine learning. 

5) validate the efficiency and performance metrics of 

the machine learning and decide on the membership of the 

recognized EMG signal to one of the recognition classes 

of the recognition classes set {𝑋𝑚
𝑜 } at the examination 

stage. 

Thus, the synthesizing information task for a learning-

capable hand prosthesis control system involves adjusting 

the machine learning parameters for optimal performance 

(1) by approximating the global peak value of the 

evaluation metric (2) to its highest boundary value. 

3.2 The functional categorical model of machine 

learning 

The functional categorical model (FCM) of 

information-extremal learning of the recognition system is 

represented as a directed graph, with the edges being 

operators mapping sets involved in the machine learning 

process. At the same time, the mathematical formulation 

for FCM input is depicted as a structure: 

= 4321

|2|

,

|2|

,

|| ,,,};{},{,,,,,, ffffXYHYZTWI hshs

M , 

where W is the set of factors influencing the EM 

biosignal recognition system; T is the set of time moments 

for information acquisition; Ω is the feature space of 

recognition; Z is the alphabet of recognition classes; 𝑌|𝑀| 

is input (Euclidean) training matrix; 𝐻 is a hierarchical 

arrangement in the shape of a recursive binary tree; {𝑌𝑠,ℎ
|2|

} 

is a set of input training matrices of recognition classes of 

the s-th layer of the h-th level of the decursive tree; {𝑋𝑠,ℎ
|2|

} 

is the binary training matrix of the s-th layer of the h-th 

level of the decursive tree; 𝑓1 is the operator for forming 

the input training matrix 𝑌|𝑀|; 𝑓2 is the operator for 

constructing the decursive binary tree; 𝑓3 is the operator 

for forming the set of input training matrices {𝑌𝑠,ℎ
|2|

}; 𝑓4 is 

the operator for forming the set of binary training 

matrices {𝑋𝑠,ℎ
|2|

}. 

The functional categorical model of information-

extremal machine learning for the hand prosthesis control 

system, based on the hierarchical data structure in the form 

of a recursive binary tree, is shown in Figure 1. 

 

Figure 1 – The functional categorical model of hierarchical 

information-extremal machine learning for the EMG signal 

recognition system 

In Figure 1, the following notations are used: 𝐸 is the 

set of values of the information criterion applied to 

optimize machine learning parameters; 𝑟 is the operator for 

constructing the generally fuzzy partition of the 

recognition classes {ℜ̃𝑠,ℎ
|2|

} in the s-th stratum of the h-th 

level of the decursive tree; 𝜉 is the operator for mapping 

the partition {ℜ̃𝑠,ℎ
|2|

} to the distribution of binary vector 
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realizations of the training matrices {𝑋𝑠,ℎ
|2|

}; ψ is the 

classification operator that tests the main statistical 

assumption about the classification of realizations into 

their respective recognition classes and forms the set of 

statistical hypotheses 𝐼|𝐺|, where 𝐺 is the number of 

statistical hypotheses; γ is the operator for forming the set 

of accuracy characteristics ℑ|𝑄|, where 𝑄 = 𝐺2; ϕ is the 

operator for calculating the information criterion 𝐸. 

The optimization loop for control tolerances on 

recognition features includes the term set D of control 

tolerance values for recognition features. Meanwhile, the 

operator 𝛿1 changes the parameter 𝛿𝑠,ℎ of the control 

tolerance field for recognition features for each stratum 

and the operator 𝛿2 forms the control tolerance field for 

recognition features of the training matrices {𝑌𝑠,ℎ
|2|

}. The 

operator 𝑢 regulates the machine learning process. 

The considered functional categorical model has two 

optimization loops, which respectively determine the 

second level of depth in the information-extreme machine 

learning. Suppose there is a need to increase the depth 

level. In that case, the functional categorical model will 

have additional optimization loops for the respective 

machine learning parameters, provided that the term set 𝐸, 

according to the principle of complete composition, is 

inherent to all iterative optimization procedures. 

3.3 Description of the algorithm 

Based on the functional categorical model (Figure 1), 

the scheme for a hierarchical framework for machine 

learning of the EMG signal recognition system using a 

recursive binary data structure is presented as a two-cyclic 

iterative process for fine-tuning the parameter 𝛿𝑠,ℎ of the 

control tolerance field for recognition features by 

searching for the ultimate peak of the performance metric 

(2) within the working range of its function: 

    𝛿𝑠,ℎ
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥

𝐺𝛿

[
1

2
∑ 𝑚𝑎𝑥

𝐺𝐸∩{𝑑}

2
𝑚𝑠=1 𝐸𝑚𝑠,𝑠,ℎ(𝑑)],         (3) 

where 𝐸𝑚𝑠,𝑠,ℎ(𝑑) is the value of the optimization 

information criterion computed at the current radius of the 

recognition class container 𝑋𝑚𝑠,𝑠,ℎ
𝑜 ;  𝐺𝛿  is the domain of 

permissible values for the parameter of the control 

tolerance field for recognition features; 𝐺𝐸 is the working 

domain for the information criterion function (2); {𝑑} is 

the ordered set of values for the radii of the recognition 

class containers. Consider the algorithm scheme for 

information-extreme machine learning of the EMG signal 

recognition system according to procedure (3) with 

parallel optimization of control tolerances for recognition 

features, where the parameter 𝛿𝑠,ℎ of the control tolerance 

field changes simultaneously for all features. At the same 

time, the input data are a three-dimensional array of the 

input training matrix {𝑦𝑚𝑠,𝑠,ℎ;𝑗,𝑖} for the given alphabet 

{𝑋𝑚𝑠,𝑠,ℎ
𝑜 } of recognition classes and the normalized field 𝛿𝐻 

of control tolerances for recognition features. 

The main stages of hierarchical information-extreme 

machine learning are the formation of an ordered 

variational series of recognition classes, construction of a 

hierarchical arrangement in the shape of a recursive binary 

tree, optimization of the machine learning parameters of a 

given depth level using the two-cycle procedure (3) for 

each stratum of the decursive tree, construction of decision 

rules for each stratum of the decursive tree relying on best-

fit geometric parameters of the recognition class 

containers acquired during machine learning, functional 

testing to verify the error-free performance of the decision 

rules using the training sample, and verification of the 

functional efficiency of machine learning in the 

examination mode. 

The algorithm for forming a variation series of 

recognition classes has the following stages: 

1) for any recognition class 𝑋𝑚
𝑜  in the Euclidean feature 

space, find the nearest neighboring recognition class 𝑋𝑐
𝑜; 

2) remove recognition class 𝑋𝑚
𝑜  from the alphabet, and 

for recognition class 𝑋𝑐
𝑜 from the residual alphabet, find 

the nearest neighbor; 

3) remove recognition class 𝑋𝑐
𝑜 from the alphabet, and 

continue the process to determine all nearest neighbors 

from the specified alphabet of recognition classes. 

Thus, the variation series is formed in increasing order 

relative to the chosen recognition class by interclass 

distance for the given alphabet. 

The construction of the decursive binary tree is carried 

out according to the following scheme: 

1) the alphabet {𝑋𝑚
𝑜 |𝑚 = 1, 𝑀} of ordered recognition 

classes is divided into two groups, which respectively 

determine the two branches of the decursive binary tree; 

2) as attributes of the vertices of the upper (first 

according to the dendrographic classification) tier of the 

decursive binary tree, the training matrices of the boundary 

recognition classes of each group are chosen; 

3) the attributes of the stratum of the upper tier are 

transferred to the vertices of the corresponding strata of the 

lower tier; 

4) the strata of the lower tiers of each branch of the tree 

contain, in addition to the training matrix transported from 

the upper tier, the training matrix of the nearest 

neighboring recognition class within its group; 

5) the construction of the tree continues until the final 

strata are formed, which contain the training matrices of 

all recognition classes. 

Thus, the decursive binary tree constructed according to 

the above scheme divides the given alphabet of recognition 

classes into strata, each containing two nearest 

neighboring classes. This allows for applying a linear 

algorithm of information-extreme two-class machine 

learning to each final stratum. Suppose the constructed 

decision rules do not ensure error-free recognition of the 

realizations from the training matrix. In that case, it is 

necessary to advance the complexity of machine learning 

by fine-tuning supplementary parameters of the 

recognition system’s functioning according to the deferred 



 

Journal of Engineering Sciences (Ukraine), Vol. 11(2), pp. E1–E8 E5 

 

decision principle. The machine learning algorithm 

according to procedure (3) is implemented as follows: 

1) the recognition class counter is reset: 𝑚𝑠: = 0; 

2) the recognition class counter is initialized: 𝑚𝑠: =
𝑚𝑠 + 1; 

3) the counter for the steps to change the tolerance field 

parameter is reset: δ𝑠,ℎ: = 0; 

4) δ𝑠,ℎ: = δ𝑠,ℎ + 1; 

5) the counter for the steps to change the container radii 

of the recognition classes is reset: 𝑑𝑚𝑠,𝑠,ℎ: = 0; 

6) 𝑑𝑚𝑠,𝑠,ℎ: = 𝑑𝑚𝑠,𝑠,ℎ + 1; 

7) for the array {𝑦𝑚𝑠,𝑠,ℎ;𝑗,𝑖}, the averaged feature vector 

of recognition 𝑦
𝑚𝑠

 is determined; 

8) for each i-th feature of the vector 𝑦
𝑚𝑠

, the lower 

𝐴𝐻𝐾,𝑖 and upper 𝐴𝐵𝐾,𝑖 tolerance limits are calculated using 

the following formulas: 

        𝐴Н𝐾,𝑖 = 𝑦
𝑚𝑠,𝑖

− δ; 𝐴В𝐾,𝑖 = 𝑦
𝑚𝑠,𝑖

+ δ,              (4) 

where 𝑦
𝑚𝑠,𝑖

 is the value of the i-th parameter of the 

mean vector 𝑦
𝑚𝑠

 of the recognition class 𝑋𝑚𝑠,𝑠,ℎ
𝑜 ; 

9) a three-dimensional array of the binary training 

matrix {𝑥𝑚𝑠,𝑠,ℎ;𝑗,𝑖} is formed, the elements of which are 

calculated by the rule: 

𝑥𝑚𝑠,𝑗,𝑖 = {
1, 𝑖𝑓𝐴𝐻𝐾,𝑖 < 𝑦𝑚𝑠,𝑗,𝑖 < 𝐴𝐵𝐾,𝑖;

0, 𝑖𝑓𝑒𝑙𝑠𝑒;
 

10) for the array {𝑥𝑚𝑠,𝑠,ℎ;𝑗,𝑖}, the averaged vector 𝑥𝑚𝑠
 is 

determined; 

11) the information criterion (2) for optimizing the 

machine learning parameters is calculated for the training 

matrices of the recognition classes of the s-th stratum of 

the h-th level of the decursive tree with the identification 

of the working domain of its function definition; 

12) if 𝑑𝑠,ℎ < 𝑑(𝑥𝑚𝑠
⊕ 𝑥𝑚𝑐

), then step 6 is performed, 

otherwise, step 11; 

13) if  𝑚𝑠 ≤ 2, then step 2 is performed, otherwise, 

step 12; 

14) in the working domain 𝐺𝐸 of the criterion function 

(2), its maximum value, and, accordingly, the optimal 

values of the parameter 𝛿𝑠,ℎ
∗  and the container radii of the 

recognition classes of the s-th stratum of the h-th level of 

the decursive tree are calculated; 

15) according to the formula (4), the optimal lower 

𝐴𝐻𝐾,𝑖
∗  and upper 𝐴𝐵𝐾,𝑖

∗  tolerance limits for the recognition 

features are calculated; 

16) Stop. 

As the criterion for optimization of the machine 

learning parameters, the modified Kullback-Leibler 

information measure will be considered in the form: 
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where 𝐾1,𝑚𝑠,𝑠,ℎ(𝑑) is the number of realizations of the 

recognition class 𝑋𝑚𝑠,𝑠,ℎ
𝑜  correctly classified at the current 

container radius; 𝐾2,𝑚𝑠,𝑠,ℎ(𝑑) is the number of realizations 

of the nearest neighbor class erroneously classified as the 

recognition class 𝑋𝑚𝑠,𝑠,ℎ
𝑜 ; nmin is the minimum volume of 

the representative training sample. 

The normalized form of the information criterion is 

represented as the ratio of criterion (5) to its maximum 

value, which it takes at the values of 𝐾1,𝑚𝑠,𝑠,ℎ(𝑑) = 𝑛𝑚𝑖𝑛 

and 𝐾2,𝑚𝑠,𝑠,ℎ(𝑑) = 0. 

Based on the optimal geometric dimensions of the 

recognition class enclosures obtained during machine 

learning, decision rules are constructed to recognize EMG 

signals in functional testing and examination modes. If the 

results of the tests confirm the high reliability and 

efficiency of the decision rules, they are stored in the 

control system’s memory and used in operational mode. 

For the hyperspherical classifier, the production 

decision rules may be described as: 
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where 𝑥𝑒 is the examination realization being 

recognized; 𝜇𝑚𝑠,𝑠,ℎ is the membership function of 

realization 𝑥𝑒 to recognition class 𝑋𝑚𝑠,𝑠,ℎ
𝑜 . 

For the hyperspherical classifier, the membership 

function 𝜇𝑚𝑠,𝑠,ℎ is defined as follows: 

                         𝜇𝑚𝑠,𝑠,ℎ = 1 −
𝑑(𝑥𝑒⊕𝑥𝑚𝑠,𝑠,ℎ

∗ )

𝑑𝑚𝑠,𝑠,ℎ
∗ ,                    (7) 

where 𝑑(𝑥𝑒 ⊕ 𝑥𝑚𝑠,𝑠,ℎ) is the Hamming distance 

between realization 𝑥𝑒 and the optimal averaged 

realization 𝑥𝑚𝑠,𝑠,ℎ
∗  of recognition class 𝑋𝑚𝑠,𝑠,ℎ

𝑜 ; 𝑑𝑚𝑠,𝑠,ℎ
∗  is 

the most effective radius for the recognition class 𝑋𝑚𝑠,𝑠,ℎ
𝑜 . 

4 Results 

The application of the process described above was 

carried out using machine learning for recognizing 

cognitive command EMG signals for performing seven 

hand movements. An alphabet of recognition classes was 

formed to characterize the following stages: 

1) fist flexion (recognition class 𝑋1
𝑜); 

2) radiocarpal joint’s flexion (recognition class 𝑋2
𝑜); 

3)  radiocarpal joint’s extension (recognition class 𝑋3
𝑜); 

4) pinch of the index and thumb (recognition class 𝑋4
𝑜); 

5) middle and thumb pinch (recognition class 𝑋5
𝑜); 

6) pinch of the ring and thumb (recognition class 𝑋6
𝑜); 

7) little finger and thumb pinch (recognition class 𝑋7
𝑜). 

For the given alphabet of recognition classes, a 

variation series is formed by increasing the intercentroid 

distance from the recognition class 𝑋1
𝑜: 

               < 𝑋1
𝑜, 𝑋4

𝑜, 𝑋6
𝑜, 𝑋5

𝑜, 𝑋7
𝑜, 𝑋3

𝑜, 𝑋2
𝑜 >.                     (8)  

For the variation series (8), a decursive binary tree is 

constructed using the above algorithm (Figure 2). 
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Figure 2 – Decursive binary tree 

For each layer of the decursive tree, a two-class 

informational-extremal machine learning with 

optimization of control tolerances on recognition features 

is implemented according to procedure (3). 

Figure 3 shows graphs of the normalized information 

criterion (5) dependence on the parameter of the field of 

control tolerances 𝛿𝑠,ℎ on features of recognition classes 

for layers of the decursive tree. At the same time, the 

numbering of the tree levels is carried out according to the 

dendrographic classification from top to bottom. The 

graphs indicate the working (admissible) domain of 

determination of the information criterion function, in 

which the reliabilities for the 1st and 2nd two-alternative 

decisions exceed the respective 1st and 2nd-type errors. 

  
a b 

  
c d 

  
e f 

Figure 3 – The effect of the control tolerance field parameter on criterion (5) for the recognition feature:  

a – 1st-layer stratum; b – 1st stratum of the 2nd layer; c – 2nd stratum of the 2nd layer;  

d – 1st stratum of the 3rd layer; e – 2nd stratum of the 3rd layer; f – 4th layer stratum 

On graphs 3c and 3f, the maximum values of the 

criterion are located on segments of the graph of the 

“plateau” type. In this case, to determine the optimal 

parameter, the minimal-distance coefficient is used: 

𝑀𝐷𝐾 =
𝑑𝑚

𝑑(𝑥𝑚⊕𝑥𝑐)
,                      (9) 

where 𝑑(𝑥𝑚 ⊕ 𝑥𝑐) is the code distance between the 

geometric centers of the nearest neighboring recognition 

classes 𝑋𝑚
𝑜  and 𝑋𝑐

𝑜, respectively. 

Given the minimum value of the coefficient (9), the 

optimal parameters of the control tolerance field for 

recognition features are equal to 𝛿1,1
∗ = 14 (hereinafter 
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considered value in mV), 𝛿1,2
∗ = 13, 𝛿2,2

∗ = 39, 𝛿1,3
∗ = 10, 

𝛿2,3
∗ = 24 and 𝛿1,4

∗ = 43. 

To form the decision rules (6), it is vital to ascertain the 

best-fit geometry of the recognition class containers. 

Figure 4 shows graphs depicting the correlation 

between the normalized informational criterion (5) and the 

radii of the containers for the recognition classes of the 

first stratum of the first tier. 

 
a 

 
b 

Figure 4 – Graphs displaying the effect of the radii of the 

containers on the criterion (5): a – recognition class 𝑋5
𝑜;  

b – recognition class 𝑋7
𝑜 

In the process of information-extreme machine 

learning, the following optimal radii of containers of 

recognition classes were obtained: 𝑑5
∗ = 152 (hereinafter 

in code units) for the recognition class 𝑋5
𝑜; 𝑑7

∗ = 175 for 

the recognition class 𝑋7
𝑜; 𝑑6

∗ = 18 for the recognition class 

𝑋6
𝑜; 𝑑3

∗ = 204 for the recognition class 𝑋3
𝑜; 𝑑4

∗ = 50 for the 

recognition class 𝑋4
𝑜; 𝑑2

∗ = 175 for recognition class 𝑋2
𝑜 

and 𝑑1
∗ = 159 for recognition class 𝑋1

𝑜. 

During functional testing according to the received 

decisive rules, the total probability of correct decision-

making was equal to 𝑃𝑡 = 0.76. Thus, according to the 

modern classification of the accuracy of machine learning, 

it can be considered an acceptable result. 

5 Discussion 

An analysis of Figure 3 demonstrates that all 

recognition classes exhibit operational regions, indicating 

their distinguishability within the feature space of 

recognition. Simultaneously, the evaluation metric’s 

comparatively low value suggests some overlap among 

classification categories within feature space. Notably, the 

recognition classes of the fourth stratum (Figure 3f) 

achieve complete separability. This is evidenced by the 

normalized information criterion reaching its maximum 

boundary value at the optimal parameter of control bounds. 

When determining the optimal container radii, it is 

crucial to consider that recognition class parameters, 

excluding extreme values in the variation series, undergo 

optimization twice with different neighbors. Therefore, 

according to the minimum-distance principle of pattern 

recognition theory, the minimum optimal code value for 

the radius of the hyperspherical container should be 

selected for decision rules. Additionally, when extreme 

radius values fall within plateau-like areas, the minimal 

radius value is also optimally chosen according to the same 

principle. 

To enhance the accuracy of machine learning, 

increasing its depth through the optimization of additional 

parameters of the EMG signal recognition system is 

imperative. These optimization parameters may include 

the formation parameters of the system’s input 

mathematical description. For example, in the study [18], 

a method of information-extreme machine learning with 

optimization of the level of EMG signal quantization was 

discussed. Such an approach enables the formation of a 

“sparse” training matrix, thereby augmenting the average 

interclass distance for a priori fuzzy classification of 

recognition classes. The ultimate objective of further 

refining the outlined procedure of hierarchical 

information-extreme machine learning for EMG signal 

recognition systems is to construct error-free decision rules 

independent of the implementations of the training matrix. 

The practical aspect of implementing the research 

results lies in personalizing the input data for the EMG 

signal recognition system, considering both the 

anthropological and psychosomatic characteristics of 

individuals with disabilities. A promising approach to 

achieving this involves creating a mobile application that 

enables individuals with disabilities to configure input data 

by capturing biosignals from an EMG sensor located on 

their unaffected arm. To verify the consistency of this 

input with actual EMG signals from sensors on the affected 

arm, a proportionality coefficient will be calculated based 

on the discrete values of biosignals analyzed by the 

recognition system from both sources. 

6 Conclusions 

A functional categorical model for extreme information 

machine learning is proposed to recognize EMG signals, 

utilizing a hierarchical data structure known as a decursive 

binary tree. This model’s construction scheme allows for 

partitioning a large-capacity recognition class alphabet 

into pairs of nearest neighbors. This facilitates a transition 

from multi-class to two-class machine learning for each 

layer of the decursive binary tree, thereby improving 

machine learning accuracy. 

Based on this functional model, an algorithm for 

hierarchical extreme information machine learning of 

EMG signal recognition systems has been developed and 

implemented. The algorithm targets seven hand-bone 

movements with a depth level of two. Computer modeling 

results demonstrate that fuzzy separability has been 

achieved for all recognition classes within the feature 
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space at the specified depth level. However, it is noted that 

the constructed decision rules may not be error-free due to 

the averaged values of the information criterion across the 

tree’s layers not reaching their maximum boundary value. 

To enhance the accuracy of machine learning, further 

research is needed to increase the depth of the model by 

optimizing additional parameters of the recognition 

system’s operation. 
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