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Improving the reliability and implementation are critical in real-world applications, and the inherent 

unpredictability of non-materials renders it complicated to integrate Nanomaterial (NMs) detectors into these 

environments. Reliable presumptions can be constructed based on the data produced by such sensors using 

Deep Learning (DL), which is a potent method. In this study, we proposed a novel method called Fine-Tuned 

Genetic Algorithm Based Dynamic Deep Neural Network (FTGA-DDNN) which is computationally costly to 

train, yet it yields the most efficient result when evaluated the internet, maintaining a reasonable level of 

reliability. This can be beneficial in dynamically changing environments where the algorithm needs to explore 

new possibilities while exploiting known solutions. Through DL optimization, the goal of improving the 

implementation and dependability of nano-material detectors is to increase their adaptability and efficacy in a 

variety of situations. We present a comparative analysis of the results obtained from our proposed technique 

against other existing methods. Our findings indicate superior performance in average error, average absolute 

error, and semi-log testing time, showcasing the efficacy of the FTGA-DDNN approach. In summary, this 

allows us to forecast and predict the filter function later on, improving the DL algorithms' accuracy and the 

filters' usefulness over extended periods. 
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1. INTRODUCTION 
 

Nanotechnology is the aggregate term for all modern 

innovations that apply or function dimensionally at 

nanoscale levels. Managing and designing technological 

findings arising from the formation of novel features at 

the nanoscale (one billionth of a meter) is known as 

nanotechnology. A material's size at the nanoscale ranges 

from 1 to 100 nm. A nanoparticle (NPs) is a three-

dimensional, tiny substance or material. One component 

of a composite structure made of several materials or 

substances at the nanoscale is called a nanocomposite [1]. 

Nanotechnology is at the intersection of technological 

innovation across a wide range of technical areas and 

environmental areas. The global market for 

nanomaterials is expected to reach a value of over $90.5 

billion by the end of 2022, and demands for both 

consumers and commercial items with nano-enhanced 

features have been rising recently [2]. The flexibility of 

nanomaterials can lead to the development of 

distributable, flexible, and portable electronics, electric 

cars, grid-scale storage, and interaction with biological 

systems and living environments. To prevent these 

deficiencies, nanoparticles with different capabilities 

should be incorporated into innovative structures on the 

nano- and microscales [3]. 

The essential fundamentals for elastic and adaptable 

technologies that can satisfy these high requirements are 

nanomaterials. It has been demonstrated that 

nanomaterials exhibit superior material properties 

compared to their large equivalents. Systems and devices 

with nanoscale characteristics can be created using both 

top-down and bottom-up methods [4]. The work is mainly 

focused on using nanotechnology to utilize computer 

device reductions and large storage capacity as it 
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presents a potential connection between nanotechnology 

and the macroscopic environment [5]. High-performance 

position sensing is an important basis for demanding 

applications such as molecular- and mechanobiological 

experimental physics, monitoring single electron spins 

and trapped ions, nanomechanical transduction and 

sensing, and cutting-edge atomic force microscopy. 

Modern metrics rely heavily on position-sensitive 

detectors (PSDs), which are sensors that identify the 

location of a light spot [6]. Nanotechnology's progress in 

biosensors, particularly electrochemical biosensors, is 

gaining prominence in the diagnostics industry due to its 

ability to conduct electricity, chemical resistance, and 

large surface area. [7]. Nanotechnology offers possibilities 

to create superior substances with enhanced 

characteristics for use in a range of possible application 

areas. The characteristics of a material undergo 

significant changes when its dimensions are reduced 

from macro-size to micro-size (nano-size) since the atoms 

within nanoparticles are perfectly organized [8]. The 

study aims to improve the reliability of nanomaterial 

detectors by optimizing FTGA-DDNN for adaptability 

and effectiveness across various scenarios. 

 

2. RELATED WORK  
 

The study [9] provided an overview of the existing 

concepts for particle detection and characterization, which 

serve as the foundation for some of the recently developed 

methods. Effective evaluation of the outcomes of the 

utilized analysis requires the application of the 

measurement concept.  The study [10] described the 

nanoparticles-based biosensors have become more popular 

because of their great applicability across almost all 

technological and biological domains. As nanotechnology 

has grown, it has led to the development of nanowires 

(NWs), nanorods (NRs), carbon nanotubes (CNTs), 

quantum dots (QDs), dendrimers, and noble metal and 

metal oxide nanoparticles. It has also resulted in 

contemporary breakthroughs in biosensor technologies. 

The study [11] examined the application of 

nanoparticles in the building sector as evidence of their 

benefits, as well as the short- and long-term impacts of 

this sector's nanoscale on humans and the environment. 

To enable the findings to be broadly applied, the 

advantages of using nanoparticles in common materials. 

The study [12] explained the distinct capacity of optical 

nanomaterials to regulate the propagation of 

electromagnetic (EM) waves has led to a significant 

increase in the field of nanophotonic. The Study [13] 

described the modern electrochemical detectors and 

sensor technology based on nanomaterial for six primary 

classifications of pharmacological substances 

antidepressant, antiviral, anti-inflammatory, 

antimicrobial, and anticancer are identified and 

measured. The study [14] described Particle 

identification, counting, and measurement are crucial 

steps in a lot of research projects. In the report on the 

automatic identification of metal nanoparticles placed on 

highly aligned pyrolytic graphene using deep learning 

applied to images captured by scanning tunneling 

microscopy (STM). The study [15] explained the 

improvement consists of three recurrent and two 

convolutional architectures to provide a fair and 

impartial assessment of their effectiveness. In addition, 

the ways evolutionary optimization of such systems is 

affected by selecting F1 scores and accuracy as the 

performance measure. The paper [16] provided the most 

recent developments in the field of carbon-based 

nanomaterials used as electrode-equipped sensor 

technology are explained. The possibilities and prospects 

of this industry have been discussed, focusing in 

particular on how these nanomaterials have recently 

been used as biosensors with electrodes for detecting a 

variety of biomolecules. 

 

3. METHOD AND MATERIALS  
 

Data collection 
 

The transmittance values were acquired throughout a 

wide spectrum (351 nm    1100 nm), and the 

wavelength-dependent measurements were repeated 110 

times to determine the identities of each of the 11 

nanomaterial filtration. As indicated before, repeated 

data collection was performed to take into consideration 

the variations, oscillations, and drifting that frequently 

occur during actual metrics, especially in systems that 

are based on nanomaterials, which are typically sensitive 

to their environment. A total of seventy-five thousand 

training samples (M  750  100) were obtained by 

labeling one hundred of the 110 spectra of each 

nanomaterials filter as sample-label pairs or training 

data. Essentially, the test samples were ignored in the 

training phase and were only visible to the machine-

learning models during the testing phase [17]. 

 

Fine-tuned genetic algorithm-based dynamic 

deep neural network (FTGA-DDNN) 

 

The FTGA-DDNN approach, the activation 

mechanism, the ideal variety of secret layers, and the 

number of neurons in each hidden layer are all 

determined to build the Dynamic Deep Neural Networks 

(DDNN) model architecture. DDNN models usually 

consist of three primary layers: an output layer, a few 

hidden layers, and an input layer. The number of hidden 

layers determines the architecture's depth. GA-based 

methods are frequently used to train DDNN, and it can 

be difficult to analyze the dynamics of such training. 

Initially, it often requires an extensive amount of 

parameters due to their extremely nonlinear nature, and 

the DDNN model's diagram is also shown in Fig. 1. 

This population-based algorithm, developed through 

that evolutionary process, presents the concepts of 

evolution and the survival of the most suitable. It 

initiates a collection of responses, called genetic material, 

and facilitates their growth and development. This 

process can be repeated until the optimal possible 
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Fig. 1 – Architecture of DDNN Model 
 

outcome is obtained. Initially, FTGA implementation 

maintains each individual as a parameter vector . 

However, with massive populations and enormous deeper 

and broader neural networks, this technique scales 

substandard in memory and network transmission costs 

to maintain the nanomaterial detector. The encoding of 

each parameter vector as a series of randomized samples 

allows for the efficient storage of enormous variable 

vectors that yield the nanomaterial detector series of 

mutations that created each , from which each  can be 

rebuilt, together with an initialization seed. Fig. 2 shows 

a sequential construction of a synthetic algorithm. 
 

 
 

Fig. 2 – Structure of the FTGA 
 

The following are the primary FTGA stages: 

Stage 1 

Initialization: The initially generated individuals are 

created by the user or at randomized points in the region 

of search. The potential solution set O makes up the 

initial population. In general, the initial collection of the 

population is created randomly. 

 𝑂 = {𝑂1, 𝑂2, … , 𝑂𝑝𝑜𝑝_𝑠𝑖𝑧𝑒} (1) 
 

 𝑂𝑗 = [𝑂𝑗1𝑂𝑗2  … 𝑂𝑗𝑖  … . 𝑂𝑗𝑛𝑜_𝑣𝑎𝑙𝑢𝑒] (2) 
 

 𝑗 = 1,2, … , 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒;  

  (3) 
 𝑖 = 1,2, … , 𝑛𝑜_𝑣𝑎𝑟𝑠  
 

 𝑝𝑎𝑟𝑎𝑚𝑖𝑛
𝑖  ≤  𝑂𝑗𝑖𝑝𝑎𝑟𝑎𝑚𝑎𝑥

𝑗
 (4) 

 

where 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 indicates the magnitude of the 

populations; 𝑛𝑜_𝑣𝑎𝑟𝑠 indicates the amount of factors that 

need to be adjusted 𝑜𝑖𝑗 , 𝑗 = 1,2, … , 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒; 𝑖 =

1,2, … , 𝑛𝑜_𝑣𝑎𝑟𝑠  are the parameters to be tuned, 𝑝𝑎𝑟𝑎𝑚𝑎𝑥
𝑗

 

and 𝑝𝑎𝑟𝑎 𝑚𝑖𝑛
𝑖  are the lowest and greatest values of the 

variable, 𝑜𝑖𝑗 respectively for all 𝑗. Eq. (1) through (4) 

demonstrate that certain s𝑜𝑖𝑗 candidate solutions are 

present in the possible solution set 𝑂. 
 

Stage 2 

Evaluation: The fitness values of the potential options 

are assessed following the initialization of the general 

population. A predetermined fitness function can 

evaluate every chromosome in the population. In this 

procedure, the more efficient chromosomes produce 

higher values. Eq. (5) illustrates that the fitness 

coefficient used to evaluate a genome in the population 

can be expressed. Depending on the requirement, the 

fitness function might take several forms. 
 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑒(𝑂𝑗) (5) 
 

Stage 3 

Selection: After analysis, the chromosomes that are 

considered the best are inclined to be selected for the next 

generation. To determine the fitness probability, we need 

to calculate the fitness of each one. Through the process 

of spinning the roulette wheel, two chromosomes will be 

chosen from the population to undergo genetic 

treatments for reproduction. High-potential parents are 

thought to have superior infants. One way to make a 

decision is to give it an edge 𝑟𝑗 to the chromosome 𝑂𝑗 

which is represented in Eqs. (6) and (7). 
 

 𝑟𝑗 =  
𝑒(𝑂𝑗)

∑ 𝑒(𝑂1)
𝑝𝑜𝑝_𝑠𝑖𝑧𝑒
𝑙=1

, 𝑗 = 1,2, … , 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 (6) 

 

 𝑟̂𝑗 =  ∑ 𝑟𝑙
𝑗
𝑙=1   𝑗 = 1,2, … . , 𝑝𝑜𝑝_𝑠𝑖𝑧𝑒 (7) 

 

To begin the decision-making procedure, a nonzero 

floating-point number is generated at randomly 𝑐 ∈ [0,1], 
and the selection procedure demonstrates that 

chromosomes with a greater 𝑒(𝑂𝑗) have a greater 

likelihood of being chosen. The most effective genes should 

therefore reproduce more, the average remains identical, 

and the most harmful ones eventually grow obsolete. Only 

two chromosomes have to be chosen throughout the 

selection step to conduct the genetic procedures. 
 

Stage 4 

After the phase of selection, the genetic operations are 
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to produce certain additional genomes from the 

offspring's parents. The transformation and crossover 

operations are among them. Crossover: The crossovers 

are a consequence of combining two or more parental 

solutions to create distinctive perhaps improved options. 

The crossover procedure is primarily used to exchange 

chromosomes and information acquired during the 

selection process between the two parents. The pair of 

parent’s o1 and o2 will produce one offspring. First, the 

following processes are to be utilized to produce four 

chromosomes are shown in the following Eqs. (8) to (12). 
 

 𝑃𝑇𝑑
2 = [𝑃𝑇1

2𝑃𝑇2
2 … 𝑃𝑇𝑛𝑜𝑣𝑎𝑟𝑠

2 ] = 𝑂𝑚𝑎𝑥(1 − 𝜔) + max(𝑂1, 𝑂2) 𝜔  (8) 
 

 𝑃𝑇𝑑
3 = [𝑃𝑇1

3𝑃𝑇2
3 … 𝑃𝑇𝑛𝑜𝑣𝑎𝑟𝑠

3 ]  = 𝑂𝑚𝑖𝑛(1 − 𝜔) + min(𝑂1, 𝑂2) 𝜔  (9) 
 

 𝑃𝑇𝑑
4 = [𝑃𝑇1

4𝑂𝑆2
4 … 𝑃𝑇𝑛𝑜𝑣𝑎𝑟𝑠

4 ]  =  
(𝑂𝑚𝑎𝑥+𝑂𝑚𝑖𝑛)(1−𝜔)+(𝑂1,𝑂2)𝜔

2
  (10) 

 

 𝑂𝑚𝑎𝑥 =  [𝑝𝑎𝑟𝑎𝑚𝑎𝑥
1 𝑝𝑎𝑟𝑎𝑚𝑎𝑥

2 … 𝑝𝑎𝑟𝑎𝑚𝑎𝑥
𝑛𝑜_𝑣𝑎𝑟𝑠] (11) 

 

 𝑂𝑚𝑖𝑛 =  [𝑝𝑎𝑟𝑎𝑚𝑖𝑛
1 𝑝𝑎𝑟𝑎𝑚𝑖𝑛

2 … 𝑝𝑎𝑟𝑎𝑚𝑖𝑛
𝑛𝑜_𝑣𝑎𝑟𝑠] (12) 

 

Mutation: Once two or more parental chromosomes 

have crossed across, a mutation randomly modifies the 

solution. Numerous techniques for modifications take 

place, and a different value is randomly inserted in the 

place of the generations throughout the mutation process. 

The purpose of the mutation procedure is to alter the 

chromosomal genes. As a consequence, chromosomal 

traits inherited from their parents can be modified. The 

mutation operation produces three additional progeny 

are shown in the Eq. (13). 
 

 𝑛𝑜𝑠𝑗 = [𝑃𝑇1𝑃𝑇2 … 𝑃𝑇𝑛𝑜𝑣𝑎𝑟𝑠
] + [𝑎1∆𝑛𝑜𝑠1 2∆𝑛𝑜𝑠2 … 𝑎𝑛𝑜𝑣𝑎𝑟𝑠

∆𝑛𝑜𝑠𝑛𝑜𝑣𝑎𝑟𝑠
] (13) 

 

A mutation procedure can be performed using a 

variety of techniques, such as boundary mutation, 

uniform mutation, and non-uniform mutation. A 

randomly chosen gene's value can be changed by a 

boundary mutation to its upper or lower bound. 

 

4. RESULT AND DISCUSSION 
 

The comparison with several prominent approaches 

like K-Nearest Neighbors (KNN) [18], and Bayesian [18] 

was examined in this section. To ascertain whether the 

FTGA-DDNN suggested method is more successful than 

another method previously utilized. 

 

4.1 Estimation of Average Error 
 

The wavelength samples that were gathered have a 

resolution of 1 nm. Errors are often estimated to evaluate 

the reliability of estimates, designs, or measurements in a 

variety of domains, most notably statistics, machine 

learning, and scientific measurements. The outcomes 

demonstrate that various techniques differ in wavelength 

estimation accuracy. Fig. 3 depicts the FTGA-DDNN 

wavelength using an identical training data set that 

includes the samples. Initially establish the estimation error 

percent and consider how effective our wavelength 

estimators are shown in Eq. (14). 

 𝑒𝑟𝑟𝑜𝑟% =  
|𝜆𝐺𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ(𝑛𝑚)−𝜆𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝑛𝑚)|

𝜆𝐺𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ(𝑛𝑚)
×  100 (14) 

 

 
 

Fig. 3 – Structure of wavelength towards average error 
 

4.2 Comparison of Average Absolute Error 
 

The degree to which observations or estimates parallel 

actual or anticipated values can be summarized using the 

average error. The average absolute error values for each 

deep learning model under various training data 

circumstances are shown in the following Table 1 and Fig. 4. 

Nanomaterial is utilized as the error's unit of measurement. 
 

 
 

Fig. 4 – Comparison of Average Absolute Error 
 

Table 1 – Evaluation of Average Absolute Error 
 

Deep 

Learning 

Models 

Average Absolute Error (NM) 

With all 

training 

data  

With half of 

the training 

data  

With 1/5 

of training 

data  

Bayesian [18] 40 55 63 

KNN [18] 45 50 58 

FTGA-DDNN 

(1h) 

37 45 49 

FTGA-DDNN 

(2h) 

35 40 45 

 

Modeling the drift of nanomaterials and choosing a 

suitable one that performs more robustly over time are 

two strategies to apply these methods in the longer term 

without having to modify them. To perform this, we 

monitored the transmittance change for nanomaterial 

filters for at least 400 days. Subsequently, an exponential 

curve was fitted to the average transmittance values for 

each filter at every frequency concerning the number of 

weeks after the optics was manufactured. 
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5. CONCLUSION 
 

In conclusion, established that the spectral range of 

any narrow-band reflected light in the nanomaterial 

spectrum can be specifically calculated using several 

types of DL approaches using a transmitted substance 

derived from a limited number of inexpensive nanotube 

impacts that require minimal supervision throughout 

manufacturing. DL model is more dependable because of 

its improved resilience to noise and environmental 

variations. The model can better manage fluctuations in 

input data through the development of responsive 

visualizations, which increases its recognition efficiency. 

It initiates an accumulation of responses to Fine-Tuned 

Genetic Algorithm Based Dynamic Deep Neural Network 

(FTGA-DDNN) and promotes their expansion and 

improvement. One important component that has 

contributed to increasing overall system dependability is 

the model's capacity to distinguish between real signals 

from nanomaterial and interference. Furthermore, 

monitoring constant changes in the filter functions; 

findings validate the feasibility of simulating the steady 

drifting of nanoparticles. 
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Покращення впровадження та надійності детекторів на основі наноматеріалів за 

допомогою методу глибокого навчання 
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Підвищення надійності та впровадження мають вирішальне значення в реальних програмах, і 

властива непередбачуваність нематеріалів ускладнює інтеграцію детекторів наноматеріалів (НМ) у ці 
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різноманітних ситуаціях. Ми представляємо порівняльний аналіз результатів, отриманих із 

запропонованої нами методики, з іншими існуючими методами. Наші висновки вказують на високу 

продуктивність у середній похибці, середній абсолютній похибці та часу напівлогарифмічного тестування, 

демонструючи ефективність підходу FTGA-DDNN. Підсумовуючи, це дозволяє нам прогнозувати та 

прогнозувати функцію фільтра пізніше, підвищуючи точність алгоритмів DL та корисність фільтрів 

протягом тривалих періодів. 
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нейронна мережа на основі точного налаштування генетичного алгоритму (FTGA-DDNN). 


