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Improving the reliability and implementation are critical in real-world applications, and the inherent
unpredictability of non-materials renders it complicated to integrate Nanomaterial (NMs) detectors into these
environments. Reliable presumptions can be constructed based on the data produced by such sensors using
Deep Learning (DL), which is a potent method. In this study, we proposed a novel method called Fine-Tuned
Genetic Algorithm Based Dynamic Deep Neural Network (FTGA-DDNN) which is computationally costly to
train, yet it yields the most efficient result when evaluated the internet, maintaining a reasonable level of
reliability. This can be beneficial in dynamically changing environments where the algorithm needs to explore
new possibilities while exploiting known solutions. Through DL optimization, the goal of improving the
implementation and dependability of nano-material detectors is to increase their adaptability and efficacy in a
variety of situations. We present a comparative analysis of the results obtained from our proposed technique
against other existing methods. Our findings indicate superior performance in average error, average absolute
error, and semi-log testing time, showcasing the efficacy of the FTGA-DDNN approach. In summary, this
allows us to forecast and predict the filter function later on, improving the DL algorithms' accuracy and the
filters' usefulness over extended periods.
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1. INTRODUCTION

Nanotechnology is the aggregate term for all modern
innovations that apply or function dimensionally at
nanoscale levels. Managing and designing technological
findings arising from the formation of novel features at
the nanoscale (one billionth of a meter) is known as
nanotechnology. A material's size at the nanoscale ranges
from 1 to 100 nm. A nanoparticle (NPs) is a three-
dimensional, tiny substance or material. One component
of a composite structure made of several materials or
substances at the nanoscale is called a nanocomposite [1].
Nanotechnology is at the intersection of technological
innovation across a wide range of technical areas and
environmental areas. The global market for
nanomaterials is expected to reach a value of over $90.5
billion by the end of 2022, and demands for both
consumers and commercial items with nano-enhanced
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features have been rising recently [2]. The flexibility of
nanomaterials can lead to the development of
distributable, flexible, and portable electronics, electric
cars, grid-scale storage, and interaction with biological
systems and living environments. To prevent these
deficiencies, nanoparticles with different capabilities
should be incorporated into innovative structures on the
nano- and microscales [3].

The essential fundamentals for elastic and adaptable
technologies that can satisfy these high requirements are
nanomaterials. It has been demonstrated that
nanomaterials exhibit superior material properties
compared to their large equivalents. Systems and devices
with nanoscale characteristics can be created using both
top-down and bottom-up methods [4]. The work is mainly
focused on using nanotechnology to utilize computer
device reductions and large storage capacity as it
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presents a potential connection between nanotechnology
and the macroscopic environment [5]. High-performance
position sensing is an important basis for demanding
applications such as molecular- and mechanobiological
experimental physics, monitoring single electron spins
and trapped ions, nanomechanical transduction and
sensing, and cutting-edge atomic force microscopy.
Modern metrics rely heavily on position-sensitive
detectors (PSDs), which are sensors that identify the
location of a light spot [6]. Nanotechnology's progress in
biosensors, particularly electrochemical biosensors, is
gaining prominence in the diagnostics industry due to its
ability to conduct electricity, chemical resistance, and
large surface area. [7]. Nanotechnology offers possibilities
to create superior substances with enhanced
characteristics for use in a range of possible application
areas. The characteristics of a material undergo
significant changes when its dimensions are reduced
from macro-size to micro-size (nano-size) since the atoms
within nanoparticles are perfectly organized [8]. The
study aims to improve the reliability of nanomaterial
detectors by optimizing FTGA-DDNN for adaptability
and effectiveness across various scenarios.

2. RELATED WORK

The study [9] provided an overview of the existing
concepts for particle detection and characterization, which
serve as the foundation for some of the recently developed
methods. Effective evaluation of the outcomes of the
utilized analysis requires the application of the
measurement concept. The study [10] described the
nanoparticles-based biosensors have become more popular
because of their great applicability across almost all
technological and biological domains. As nanotechnology
has grown, it has led to the development of nanowires
(NWs), nanorods (NRs), carbon nanotubes (CNTSs),
quantum dots (QDs), dendrimers, and noble metal and
metal oxide nanoparticles. It has also resulted in
contemporary breakthroughs in biosensor technologies.

The study [11] examined the application of
nanoparticles in the building sector as evidence of their
benefits, as well as the short- and long-term impacts of
this sector's nanoscale on humans and the environment.
To enable the findings to be broadly applied, the
advantages of using nanoparticles in common materials.
The study [12] explained the distinct capacity of optical
nanomaterials to regulate the propagation of
electromagnetic (EM) waves has led to a significant
increase in the field of nanophotonic. The Study [13]
described the modern electrochemical detectors and
sensor technology based on nanomaterial for six primary

classifications of pharmacological substances
antidepressant, antiviral, anti-inflammatory,
antimicrobial, and anticancer are identified and
measured. The study [14] described Particle

identification, counting, and measurement are crucial
steps in a lot of research projects. In the report on the
automatic identification of metal nanoparticles placed on
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highly aligned pyrolytic graphene using deep learning
applied to images captured by scanning tunneling
microscopy (STM). The study [15] explained the
improvement consists of three recurrent and two
convolutional architectures to provide a fair and
impartial assessment of their effectiveness. In addition,
the ways evolutionary optimization of such systems is
affected by selecting F1 scores and accuracy as the
performance measure. The paper [16] provided the most
recent developments in the field of carbon-based
nanomaterials used as electrode-equipped sensor
technology are explained. The possibilities and prospects
of this industry have been discussed, focusing in
particular on how these nanomaterials have recently
been used as biosensors with electrodes for detecting a
variety of biomolecules.

3. METHOD AND MATERIALS
Data collection

The transmittance values were acquired throughout a
wide spectrum (351 nm <A< 1100nm), and the
wavelength-dependent measurements were repeated 110
times to determine the identities of each of the 11
nanomaterial filtration. As indicated before, repeated
data collection was performed to take into consideration
the variations, oscillations, and drifting that frequently
occur during actual metrics, especially in systems that
are based on nanomaterials, which are typically sensitive
to their environment. A total of seventy-five thousand
training samples (M =750 x 100) were obtained by
labeling one hundred of the 110 spectra of each
nanomaterials filter as sample-label pairs or training
data. Essentially, the test samples were ignored in the
training phase and were only visible to the machine-
learning models during the testing phase [17].

Fine-tuned genetic algorithm-based dynamic
deep neural network (FTGA-DDNN)

The FTGA-DDNN approach, the activation
mechanism, the ideal variety of secret layers, and the
number of neurons in each hidden layer are all
determined to build the Dynamic Deep Neural Networks
(DDNN) model architecture. DDNN models usually
consist of three primary layers: an output layer, a few
hidden layers, and an input layer. The number of hidden
layers determines the architecture's depth. GA-based
methods are frequently used to train DDNN, and it can
be difficult to analyze the dynamics of such training.
Initially, it often requires an extensive amount of
parameters due to their extremely nonlinear nature, and
the DDNN model's diagram is also shown in Fig. 1.

This population-based algorithm, developed through
that evolutionary process, presents the concepts of
evolution and the survival of the most suitable. It
initiates a collection of responses, called genetic material,
and facilitates their growth and development. This
process can be repeated until the optimal possible
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Fig. 1 — Architecture of DDNN Model

outcome is obtained. Initially, FTGA implementation
maintains each individual as a parameter vector 6.
However, with massive populations and enormous deeper
and broader neural networks, this technique scales
substandard in memory and network transmission costs
to maintain the nanomaterial detector. The encoding of
each parameter vector as a series of randomized samples
allows for the efficient storage of enormous variable
vectors that yield the nanomaterial detector series of
mutations that created each 6, from which each 6 can be
rebuilt, together with an initialization seed. Fig. 2 shows
a sequential construction of a synthetic algorithm.
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Fig. 2 — Structure of the FTGA

The following are the primary FTGA stages:

Stage 1

Initialization: The initially generated individuals are
created by the user or at randomized points in the region
of search. The potential solution set O makes up the
initial population. In general, the initial collection of the
population is created randomly.
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0 ={04,0;, .., Opop_size} (1)
Oj = [0j10j2 Oji ----Ojnofvalue] 2
j=1.2,..,pop_size;
3)
i=1,2,..,no_vars
Parapm < 0jiparamey &

where pop_size indicates the magnitude of the
populations; no_vars indicates the amount of factors that
need to be adjusted o0;,j =12,..,pop_size;i =

j
1,2,..,no_vars are the parameters to be tuned, para;,,,

and paral,;,, are the lowest and greatest values of the
variable, o;; respectively for all j. Eq. (1) through (4)
demonstrate that certain so;; candidate solutions are
present in the possible solution set 0.

Stage 2

Evaluation: The fitness values of the potential options
are assessed following the initialization of the general
population. A predetermined fitness function can
evaluate every chromosome in the population. In this
procedure, the more efficient chromosomes produce
higher values. Eq.(5) illustrates that the fitness
coefficient used to evaluate a genome in the population
can be expressed. Depending on the requirement, the
fitness function might take several forms.

fitness = e(0;) 5)

Stage 3

Selection: After analysis, the chromosomes that are
considered the best are inclined to be selected for the next
generation. To determine the fitness probability, we need
to calculate the fitness of each one. Through the process
of spinning the roulette wheel, two chromosomes will be
chosen from the population to wundergo genetic
treatments for reproduction. High-potential parents are
thought to have superior infants. One way to make a
decision is to give it an edge 7; to the chromosome 0;
which is represented in Eqgs. (6) and (7).

e(0))

SR e

j=12,..,pop_size (6)

fy = Z{=1rl j=1.2,...,pop_size (7)

To begin the decision-making procedure, a nonzero
floating-point number is generated at randomly ¢ € [0,1],
and the selection procedure demonstrates that
chromosomes with a greater e(0;) have a greater
likelihood of being chosen. The most effective genes should
therefore reproduce more, the average remains identical,
and the most harmful ones eventually grow obsolete. Only
two chromosomes have to be chosen throughout the
selection step to conduct the genetic procedures.

Stage 4
After the phase of selection, the genetic operations are
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to produce certain additional genomes from the
offspring's parents. The transformation and crossover
operations are among them. Crossover: The crossovers
are a consequence of combining two or more parental
solutions to create distinctive perhaps improved options.
The crossover procedure is primarily used to exchange
chromosomes and information acquired during the
selection process between the two parents. The pair of
parent’s o1 and o2 will produce one offspring. First, the
following processes are to be utilized to produce four
chromosomes are shown in the following Egs. (8) to (12).

PT? = [PTZPT} ... PT? = Opax(1 — w) + max(04,0,) w (8)

novars] -

PT§ = [PT3PT} ... PT}

"”vars]

= Opmin(1 — w) + min(04, 0,) w (9)

] — (Omax+0min) (1-w)+(01,02)w (10)

PT} = [PT#0S} ... PT} .

NOyars

Omax = [para‘}naxpara‘?nax para:ln%zars] (11

Omin = [para‘}ninpararznin Para'rr;loi;:mrs] (12)
Mutation: Once two or more parental chromosomes
have crossed across, a mutation randomly modifies the
solution. Numerous techniques for modifications take
place, and a different value is randomly inserted in the
place of the generations throughout the mutation process.
The purpose of the mutation procedure is to alter the
chromosomal genes. As a consequence, chromosomal
traits inherited from their parents can be modified. The
mutation operation produces three additional progeny
are shown in the Eq. (13).
nos; = [PT,PT, ... PT,

n"wurs] + [a,Anos, 2Anos, ...

An0Sp,,,,.] (13)

a
NOovars

A mutation procedure can be performed using a
variety of techniques, such as boundary mutation,
uniform mutation, and non-uniform mutation. A
randomly chosen gene's value can be changed by a
boundary mutation to its upper or lower bound.

4. RESULT AND DISCUSSION

The comparison with several prominent approaches
like K-Nearest Neighbors (KNN) [18], and Bayesian [18]
was examined in this section. To ascertain whether the
FTGA-DDNN suggested method is more successful than
another method previously utilized.

4.1 Estimation of Average Error

The wavelength samples that were gathered have a
resolution of 1 nm. Errors are often estimated to evaluate
the reliability of estimates, designs, or measurements in a
variety of domains, most notably statistics, machine
learning, and scientific measurements. The outcomes
demonstrate that various techniques differ in wavelength
estimation accuracy. Fig.3 depicts the FTGA-DDNN
wavelength using an identical training data set that
includes the samples. Initially establish the estimation error
percent and consider how effective our wavelength
estimators are shown in Eq. (14).
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Fig. 3 — Structure of wavelength towards average error
4.2 Comparison of Average Absolute Error

The degree to which observations or estimates parallel
actual or anticipated values can be summarized using the
average error. The average absolute error values for each
deep learning model under various training data
circumstances are shown in the following Table 1 and Fig. 4.
Nanomaterial is utilized as the error's unit of measurement.
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S50 With all tra

Average Absolute Error (nm)
8
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Bayesian [18] KNN [18] FTGA-DDNN  FTGA-DDNN
(“h) (2h)

Deep Learning Models

Fig. 4 — Comparison of Average Absolute Error

Table 1 — Evaluation of Average Absolute Error

Deep Average Absolute Error (NM)

Learning With  all | With half of | With 1/5

Models training the training | of training
data data data

Bayesian [18] 40 55 63

KNN [18] 45 50 58

FTGA-DDNN 37 45 49

(1h)

FTGA-DDNN 35 40 45

(2h)

Modeling the drift of nanomaterials and choosing a
suitable one that performs more robustly over time are
two strategies to apply these methods in the longer term
without having to modify them. To perform this, we
monitored the transmittance change for nanomaterial
filters for at least 400 days. Subsequently, an exponential
curve was fitted to the average transmittance values for
each filter at every frequency concerning the number of
weeks after the optics was manufactured.
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5. CONCLUSION

In conclusion, established that the spectral range of
any narrow-band reflected light in the nanomaterial
spectrum can be specifically calculated using several
types of DL approaches using a transmitted substance
derived from a limited number of inexpensive nanotube
impacts that require minimal supervision throughout
manufacturing. DL model is more dependable because of
its improved resilience to noise and environmental
variations. The model can better manage fluctuations in
input data through the development of responsive
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IligBumenHsa HamifHOCTI Ta BIPOBAMMKEHHSA MAITh BHUpPINIAJbHE 3HAYEHHSA B PEAJbHHUX IIporpaMmax, i
BJIACTHBA HeIlepen0adyBaHICTh HeMAaTepiasiB YCKIAMHIOE 1HTerpailiio meTeKTopiB HamoMarepiamis (HM) y i
cepemoBuia. HamifiHl MpUITyeHHs MoKy Th OyTH Io0yI0BaHI HA OCHOBI JAHUX, CTBOPEHUX TAKUMH TaTIYNKAMU,
3a momomorom rimbokoro HasuauHsa (DL), mo € moryskHuM MeTomoM. ¥ ITbOMY JIOCIIIKEHH] MU 3aIIPOIIOHYBAJIH
HOBHM MeToJ miJ Ha3Bol «/[mHamivuHa rmb0OKa HEWpPOHHA Mepeska Ha OCHOBI TOHKO HAJIAIITOBAHOTO
rererryroro aiaropurmy» (FTGA-DDNN), maBuaHHS SKOTO € JOPOTHM 3 OOUMCJIIOBAJIBHOI TOUKH 30Dy, ajie BIH
lae HavlepeKTUBHIIMNY Pe3yJIbTaT IIPY OIHIN B [HTepHeTi, 30epiraoun po3yMHUI piBeHb HasiiHoCTI. . e moxxe
OyTH KOPHUCHUM y CEPEeIOBHINAX, IO IWHAMIYHO 3MIHIOIOTHCS, JI€ AJITOPUTMY IIOTPIOHO OCIIIIKYBATH HOBL
MOJKJIMBOCTI, OJHOYACHO BHKOPHCTOBYIOUHM BimoMl pimreHHs. 3aBaskum omrTuMisarii DL meron mokpaiieHHs
peaJiizaniii Ta HAOIMHOCTI OETEKTOPIB HAHOMATEPIaJiB € MMiABUINEHHA IX aJalTUBHOCTI Ta eeKTHBHOCTI B
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PIBHOMAHITHUX CHTyalisx. Mwu IpelcTaBiisieMO MOPIBHAJBHUM aHAI3 pe3yJbTaTiB, OTPUMAHHX 13
3aIIPOTIOHOBAHOI HAMM METOJMKH, 3 IHIIMMH ICHYIOUMMH MeTogaMu. Hairl BHCHOBKM BKa3ylOTh Ha BHCOKY
IIPOIYKTUBHICTD Yy CepeaHIi IoXuOII, cepeaHili a0COIOTHIN MOXHOIIl Ta Yacy HAIMBJIOraprgMIYHOIO TeCTYBAHHS,
nemoHcTpyoun edexrtuBHicTh miaxony FTGA-DDNN. IlimcymoByroum, Ie [03BOJIsIE HAM IIPOTHO3YBATH Ta
IIPOTHO3YBATH (PYHKITI0 (LIbTpa IMmi3HIiIle, MABUIIYIOYM TOYHICTH ayropuTmiB DL Ta kopucHicTH (iabTpiB
IIPOTSATOM TPHUBAJIMX IIEPIOIIB.

Knrouosi cnora: I'muboxe nmapuamns (DL), Hamomarepiasm (NM), Hamorexnosorii, Jlumamiuaa rimbGoxa
HeHpOHHA Mepeska Ha OCHOBI TOYHOro HasamTyBauusa regeruaroro aaropurmy (FTGA-DDNN).
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