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Zinc oxide (ZnO) nanoparticles (NP) are generating substantial attention across multiple areas due to the 

distinctive Structural and Molecular Features. Predicting and understanding these properties is crucial for designing 

effective applications in areas such as catalysis, sensors, and biomedical devices. Nanotechnology has emerged as a 

pivotal field, particularly in materials science, where the unique properties of NP are harnessed for various 

applications. Understanding and predicting the physical properties of NP, such as those in ZnO, is crucial for 

optimizing their performance. For the classification approach, we introduced a novel method, Bat based Random 

Forest (B-RF) to enhance the accuracy and efficiency of predicting major physical properties of ZnO NP. In this 

research, we utilize a relevant dataset encompassing various physical properties of ZnO NP. The model is fine-tuned 

to achieve optimal performance. The proposed Random Forest-based classification approach demonstrates superior 

predictive performance compared to traditional methods. Our model attains high accuracy and reliability in 

predicting diverse physical properties of ZnO NP. By the end of the study, our suggested approach outperforms other 

methods in terms of Accuracy (92.8%), Sensitivity (90.8%), and Specificity (93.9%). This can contribute to improve the 

overall performance and functioning of the existing model in a better way. 
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1. INTRODUCTION 
 

Nanotechnology, which involves the modification of 

material at the nanoscale, has emerged as an innovative 

field with extensive consequences across multiple 

industries. Scientists have an important challenge in 

understanding and predicting the physical characteristics 

of NP, which are particles with size measured in 

nanometers [1]. The physical characteristics of NP, 

including their size, shape, surface area, and composition, 

are crucial for determining the behavior and efficiency of 

these tiny particles in many applications, spanning from 

medicine to electronics. Precisely predicting these 

characteristics is crucial for fully harnessing the promise of 

nanotechnology. At the nanoscale, substances present 

unique and frequently unexpected features that differ from 

those found in bulk [2]. This phenomenon occurs a 

consequence of quantum effects and increased surface-to-

volume ratios, leading to modified physical, chemical, and 

biological interactions [3]. Therefore, it is crucial to create 

dependable techniques for forecasting the physical 

characteristics of NP, which requires multidisciplinary 

cooperation and inventive strategies. The intricacy of 

nanoscale formations presents a fundamental barrier to 

forecasting their characteristics. NP has complex forms, 

crystal structures, and surface changes, unlike larger 

materials, which contribute to their different 

characteristics [4]. To tackle this intricate issue, scientists 

have turned to computational techniques, utilizing 

complex algorithms and simulation to acquire a deeper 

understanding of the behavior of particles at the atomic 

and molecular scales. Computational tools play an 

essential part in predicting characteristics including 

stability, reactivity, and thermal conductivity [5]. These 

provide a vital connection between experiment and theory. 

The utilization of simulations of molecular dynamics and 

quantum mechanical computations has been highly 

beneficial in clarifying the mysteries surrounding the 

behavior of NP. Through the process of modeling, 

researchers may mimic the dynamic reactions of NP to 
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outside stimuli by examining the interactions among 

atoms and molecules in NP. This provides a virtual 

laboratory environment that allows for the exploration of 

many situations [6]. These simulations serve the purpose 

of predicting physical attributes, but providing guidance to 

experimentalists in the process of developing and 

producing NP with specific features. The attempt of 

forecasting physical characteristics in NP encompasses 

theoretical development but also methods from 

experiments. Advanced methodologies, such as in situ 

microscopy and spectroscopy to allow for the direct and 

immediate monitoring of NP dynamics in different 

environments [7]. The combination of this data from 

experiments with computer models creates a synergistic 

approach that enhances our understanding of NP 

characteristics. Predicting the material properties of zinc 

oxide particles involves multiple challenges and 

constraints [8]. The accurate estimation of these features is 

heavily dependent on the accessibility of substantial 

empirical data, which may be limited or difficult to acquire 

at the nanostructures. Additionally, the fundamental 

complexity of particle systems, such as size-dependent 

impacts, surface modifications, and quantum mechanical 

events, offers significant computing difficulties [9, 10]. 

The rest of this article is divided into the following 

sections: Section 2, Related Works; Section 3, 

Methodology; Section 4, Performance evaluation; and 

Section 5, Conclusion. 

 

2. RELATED WORK  
 

The study [11] presented a machine learning (ML) 

method that predicted NP antibacterial properties with 

promising findings (R2 = 0.78). A literature study of 60 

publications had yielded essential physicochemical (p-

chem.) parameters and experimental conditions for in vitro 

experiments. Due to the non-linear connection among 

variables that were input and output, RF predicted the 

antibacterial impact better than other models. 

The paper [12] examined how the artificial neural 

network (ANN) predicted the Heat conduction titanium 

dioxide-aluminum oxide NPusing spatial Temperature 

and Concentration levels. The thermal conductivity was 

predicted through the application of “self-organizing map 

(SOM) and Back Propagation-Levenberq-Marquardt (BP-

LM)” methods. These methods were considered excellent 

predictors of thermal conductivity due to their results. 

The article [13] employed multilayer perceptron (MLP) 

and long short-term memory (LSTM) connectivity to 

forecast metal-organic structure adsorption of gases abilities 

via a hypothetical collection of 130,000 MOF structures with 

natural Gas and greenhouse Gas absorption information for 

multiple pressures. Mixed NP was used to create effective 

deep learning models, proving that different nanomaterials 

could be used for deep learning. 

The study [14] employed Deep Neural Network (DNN) 

to estimate Methylene Blue (MB)dye disappearance 

under TiO22 NPs. Additionally, the suggested DNN 

model integrated complicated input-output circumstances 

for optimal outcome prediction. The variables that were 

entered TiO22 NPs, ethylene glycol, and reaction time, 

while the response was MB dye elimination %. The Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), and Standard Deviation 

(SD) findings showed that the DNN algorithm had lower 

error than Multiple Linear Regression. 

The study [15] presented two-stage architecture for a 

ML-driven high quantities microfluidic system that 

produced NP of silver with the specified absorbance 

spectrum. After 120 circumstances, the computational 

approach converged to the desired spectrum using a 

Gaussian process-based Bayesian optimization (BO) and 

a DNN. When there was a desire for greater regression 

accuracy within the target, the recommendation was to 

consider altering the acquisition function during the 

second phase of the structure. 

 

3. METHODOLOFY 
 

3.1 Data Arrangement for ML 
 

The initialization of the ZnO Np structure, containing 

272Atomic Units, is presented in Fig. 1. The ZnO 

characterization of the NP involved a super cell of the 

hexagon crystal form with dimensions of 

30*30*30.Statistical features of the data set including 

ZnONP were examined in this study. For reasons of 

clarity, we include the graphs corresponding to the lowest 

and highest data sets, despite the fact that we utilize 

atom shapes generated at temperatures ranging from 0 K 

to 998 K (100,250,450, 800). Every data set consists of 

272 atoms at every temperature level, with each one 

characterized by its three-dimensional geometric 

dimensions. There is no linear correlation between the 

continuously variables being input, and every variable 

that is continuous follows a normal distribution. The Zn 

and O atoms are in equal quantity in the information (an 

equal distribution of 50% Zn and 50% O). When 

addressing classification concerns, these data sets are 

referred as distributed data. 
 

 
 

Fig. 1 – The initial ZnO NP model structure comprises 272 

atoms (pink is Oxygen, Blue is Zinc). (Source: Author) 

 

3.2 Bat Algorithm 
 

The Bat Algorithm (BA) has emerged as an innovative 

optimization technique inspiration from bat echolocation 
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behavior. The Bat Algorithm offers a robust optimization 

framework to enhance the accuracy of computational 

models. By leveraging the algorithm's ability to explore 

solution spaces efficiently, researchers can optimize the 

parameters of predictive models, leading to more 

accurate and reliable predictions of physical properties in 

ZnO NPs While echoes are used by most species of bats to 

locate their prey, not all bat varieties follow the exact 

same procedure. The microbat is a well-known example of 

an animal that uses echolocation. Consequently, the 

echolocation behavior is the first feature.  

The second characteristic is the range at which the 

microbat searches for prey by sending out a set 

frequency,e_min, with a variable wavelength, , and 

loudness, B0. 

The volume may be changed in a variety of ways. For 

reasons of simplicity, it is assumed that the loudness may 

be adjusted between a positive, big B0 and emin, the 

minimal constant value. Eqs. (1) – (3) simulate the 

motion of the virtual bat approach. 
 

 𝑒𝑗 = 𝑒𝑚𝑖𝑛 + (𝑒𝑚𝑎𝑥 − 𝑒𝑚𝑖𝑛). 𝛽 (1) 
 

 𝑢𝑗
𝑠 = 𝑢𝑗

𝑠−1 + (𝑤𝑗
𝑠 − 𝑤𝑏𝑒𝑠𝑡). 𝑒𝑗 (2) 

 

 𝑤𝑗
𝑠 = 𝑤𝑗

𝑠−1 + 𝑢𝑗
𝑠 (3) 

 

The suffixes min and max indicate the lowest and 

highest values, accordingly, where 𝑒 is the frequency that 

the bat uses to look for its prey. In the solution time, the 

𝑗 − 𝑡ℎ bat's position is indicated by 𝑤𝑗. The bat's velocity, 

represented by𝑢𝑗
 , is determined by 𝑠, which denotes the 

present version, 𝛽, a stochastic vector selected from an 

equal probability, 𝛽 ∈ [0,1]], and 𝑤𝑏𝑒𝑠𝑡, which shows the 

globally proximate optimal solution found thus extensively 

spread throughout the population as a whole. The formula 

𝑞𝑗
 𝑞𝑗 ∈[0,1]

 , where 𝑗 is the suffix indicating the 𝑗𝑡ℎ bat. Every 

time, 𝑞𝑗
  is contrasted with a randomly generated number.  

Randomised walk is a local search technique that is 

triggered when the random integer exceeds 𝑞𝑗
 . Equation 

(4) gives an unusual solution for the bat: 
 

 𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 + 𝜀𝐵𝑠 (4) 
 

Where 𝐵𝑗
  is the mean intensity of every bat at the 

current iteration, and 𝜀 is a stochastic variable that falls 

between [-1, 1]. Only when the Earth-wide near-best 

solution is adjusted and the random generated value is 

less than 𝐵𝑗
  are the audibility 𝐵𝑗

  and pulse emissions rate 

𝑞𝑗
  changed following the update of bats' positions. 

Eqs. (5) and (6) act on the update of 𝐵𝑗
  and 𝑞𝑗

 : 
 

 𝐵𝑗
𝑠+1 =∝. 𝐵𝑗

𝑠 (5) 
 

 𝑞𝑗
𝑠+1 = 𝑞𝑗

0[1 − 𝑓−𝛾𝑠] (6) 

 

3.3 Random Forests (RF)  
 

RF is an ensemble learning that capitalizes on the 

collective power of several decision trees to enhance 

predictive accuracy and robustness. In the context of 

predicting physical properties in Zinc Oxide NP, RF 

excels in handling complex relationships and 

nonlinearities in the data, providing a comprehensive 

and accurate model. 

At each stage of the building, one fully developed leaf is 

chosen. Each tree is built using half of the dataset 

information, randomly split in two. The structural features 

that determine the tree's form are accounted for when 

estimating divided sizes and divide attributes. The 

evaluation nodes suit the estimating techniques used in each 

tree leaf. Each tree has its assumptions about the data 

randomly split between the structure and estimate 

components. The Random forest algorithm is shown in Fig. 2. 
 

 
 

Fig. 2 – Random forest model 
 

The testing examples for the 𝑖1(𝑦), 𝑖2(𝑦), . . , 𝑖𝑙(𝑦) 

classifiers were randomized from the distribution of the 

random vectors 𝑍, 𝑌. The wealth feature is presented as 
 

 𝑁ℎ(𝑌, 𝑍) = 𝑏𝑤𝑙𝐽(𝑖𝑙(𝑌) = 𝑍) −
𝑚𝑎𝑥

𝑘≠𝑍
𝑏ℎ𝑙𝐽(𝑖𝑙(𝑌) = 𝑘) (7) 

 

Where the measured value is  𝐽(. ). The source of the 

mistake is  
 

 𝑄𝐹∗ = 𝑄𝑌,𝑍(𝑚𝑔(𝑌, 𝑍) < 0) (8) 
 

The probability over the 𝑌𝑍 dimension, indicated by 

where  𝑌, 𝑍 space 𝐼𝑛𝑅𝐹, 𝑖𝑙(𝑌) = 𝑖(𝑌,  Θ𝑙) 

The margin feature for an RF is 
 

 𝑚𝑟(𝑌, 𝑍) = 𝑄𝛩(𝑖(𝑌, 𝛩) = 𝑍) −
𝑚𝑎𝑥

𝑘≠𝑍
𝑄𝛩(𝑖(𝑌, 𝛩)} (9) 

 

Moreover, the set of classifiers {𝑖(𝑌, Θ)} has a value of 
 

 𝑇 =  𝐹𝑌,𝑍𝑚𝑟(𝑌, 𝑍) 𝐾4.5 (10) 

 

3.4 Enhanced Prediction of Zinc Oxide 

Nanoparticle Physical Properties 
 

The integration of the Bat algorithm and Random 

Forest algorithm presents a novel hybrid approach for 

predicting physical properties in Zinc Oxide NP. The Bat 
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algorithm, inspired by the echolocation behavior of bats, 

offers a powerful optimization technique to fine-tune the 

parameters of the Random Forest model, enhancing its 

predictive accuracy. By leveraging the strengths of both 

algorithms, this hybrid model aims to overcome 

challenges associated with traditional predictive methods 

for NP properties. Algorithm 1 shows the B-RF 

pseudocode. 

Algorithm 1:B-RF 

Initialize population of bats 

Initialize Random Forest with parameters 

Repeat until convergence: 

For each bat: 

Generate a new solution using Bat algorithm 

Evaluate the solution using Random Forest 

Update bat's position based on fitness 

Update Random Forest with new solutions 

End loop 

 

4. RESULT AND DISCUSSION 
 

Receiver Operating Characteristic (ROC) curve is a 

Performance visualization for binary classification 

models, illustrating the balance among sensitivity and 

specificity at various decision points. For a 

comprehensive evaluation of algorithm performances, 

evaluating accuracy, specificity, and sensitivity. Fig. 3 

depicts the proposed method outcome of ROC. Fig. 4 

illustrates the outcome of Sensitivity-Specificity. Fig. 5 

displays the Outcome of precision-recall. 
 

 
 

Fig. 3 – Outcome of ROC 
 

 
 

Fig. 4 – Outcome of Sensitivity-Specificity 
 

 
 

Fig. 5 – Outcome of precision-recall 
 

In this section, the performance evaluation of the 

proposed approach involves assessing it in terms of 

Accuracy, Sensitivity and Specificity, and conducting a 

comparative analysis with other existing methods, including 

“Flexible Discriminant Analysis (FDA) [21]and, Naive Bayes 

(NB), [21], K-Nearest Neighbor (KNN)[21]”. 
 

Table 1 – Comparative evaluation 
 

Methods Accuracy (%) Sensitivity (%) Specificity (%) 

FDA 88.9 82.6 77.4 

NB 80.5 51.7 89.5 

KNN 67.8 65.9 59.6 

B-RF 

[Proposed] 
92.8 90.8 93.9 

 

Table 1 depict the comparative evaluation of accuracy. 

The entire accuracy of the classification or extraction 

procedure is measured by accuracy. When compared to 

currently existing methods such as FDA, NB and KNN, 

which have Accuracy values of 88.9%, 80.5% and 67.8%, 

respectively, The suggested B-RF achieves a higher 

accuracy of 92.8% for performs in estimating or forecasting 

the desired physical properties of the NP. 

Specificity is a fundamental parameter utilized in the 

fields of statistics to evaluate predictive positive outcomes. A 

higher Specificity value implies that the model is making 

lower occurrences of false positives, indicating an accurate 

identification of positive cases.  

Sensitivity is a fundamental metric used for evaluating 

the performance of predictive models, including those 

involved in predicting physical properties in Zinc Oxide NP. 

 

5. CONCLUSION 
 

In this study, we introduced a novel approach, Bat based 

Random Forest (B-RF), accurately estimated to physical 

properties in Zinc Oxide Nanoparticles. Experimental 

results showed Accuracy (92.8%), Sensitivity (90.8%), and 

Specificity (93.9%). The results of the proposed method were 

compared to the other utilized algorithms, and the outcomes 

of the evaluations showed that the suggested strategy was 

more effective for ability to predict key characteristics of zinc 

oxide nanoparticles. The quality of the data used for 

training and testing the model is crucial. Inaccuracies, noise, 

2.0 2.5 3.0 3.5 4.0

0.982

0.984

0.986

0.988

0.990

0.992

0.994

R
O

C

Randomly Selected Predictors



 

AN INNOVATIVE CLASSIFICATION APPROACH FOR PREDICTING… J. NANO- ELECTRON. PHYS. 16, 05011 (2024) 

 

 

05011-5 

or biases in the data may impact the model's predictive 

capabilities. In future research Continuously refine and 

optimize feature selection or engineering processes to 

identify the most relevant and influential features for 

predicting physical properties. 
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Наночастинки (NP) оксиду цинку (ZnO) привертають значну увагу в багатьох областях завдяки відмінним 

структурним і молекулярним особливостям. Прогнозування та розуміння цих властивостей має вирішальне 

значення для розробки ефективних застосувань у таких сферах, як каталіз, датчики та біомедичні пристрої. 

Нанотехнології стали ключовою сферою, особливо в матеріалознавстві, де унікальні властивості наночастинок 

використовуються для різних застосувань. Розуміння та прогнозування фізичних властивостей наночастинок, 

таких як ZnO, має вирішальне значення для оптимізації їх продуктивності. Для класифікаційного підходу ми 

представили новий метод, який підвищує точність і ефективність прогнозування основних фізичних 

властивостей ZnO NP. У цьому дослідженні ми використовуємо відповідний набір даних, що охоплює різні 

фізичні властивості наночастинок ZnO. Модель налаштована для досягнення оптимальної продуктивності. 

Запропонований підхід до класифікації демонструє кращу ефективність прогнозування порівняно з 

традиційними методами. Наша модель досягає високої точності та надійності в прогнозуванні різноманітних 

фізичних властивостей наночастинок ZnO. Запропонований підхід перевершує інші методи з точки зору 

точності (92,8 %), чутливості (90,8 %) і специфічності (93,9 %). Це може сприяти покращенню загальної 

продуктивності та функціонування існуючої моделі кращим чином. 
 

Ключові слова: Оксид цинку, Нанотехнології, Фізичні властивості. 
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