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ANTIBACTERIAL AND ANTIBIOFILM ACTIVITY OF CU/CU2O 

NPS AGAINST MULTIDRUG-RESISTANT BACTERIA 

Introduction. Multidrug-resistant (MDR) bacteria are very 

dangerous and represent a major problem in all areas of healthcare: they 

often cause diseases that cannot be treated with antibiotics, which leads 

to long-term ineffective treatment, complications, and high treatment 

costs. Searching for new antimicrobials is one of the key components of 

a successful fight against infections caused by MDR. This study was 

designed to elucidate the antimicrobial and antibiofilm activities of 

copper/copper oxide nanoparticles (Cu/Cu2O NPs) against MDR 

bacteria. 

Methods. Cubic Cu/Cu2O NPs were synthesized by the polyol 

method. The physicochemical characteristics of the nanoparticles were 

investigated using transmission electron microscope, X-ray diffraction 

investigation, energy dispersive spectroscopy and Fourier-transform 

infrared spectroscopy. Laboratory reference bacterial strains (S. aureus 

ATCC 25923. E. coli ATCC 25922, P. aeruginosa ATCC 27853) and 

MDR clinical strains isolated from patients with a purulent process (S. 

aureus, E. coli, P. aeruginosa) were used to examine the antibacterial 

effect of nanoparticles. 

Results. Cubic Cu/Cu2O NPs showed antimicrobial activity against 

both Gram-negative and Gram-positive bacteria, but the antibiofilm 

activity of Cu/Cu2O NPs was more promising for targeting Gram-

negative bacteria. Cu/Cu2O NPs were less effective against MDR strains 

of planktonic bacteria in comparison to laboratory reference strains. No 

significant differences were found between the action of the Cu/Cu2O 

NPs on biofilms formed with reference laboratory strains or MDR 

clinical strains.  

Discussion. The findings of this research may be useful to develop 

new drugs and approaches for treating infection caused by MDR 

microorganisms. Further research is warranted to elucidate the 
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underlying mechanisms of Cu/Cu2O NPs action, optimize their 

formulation, and evaluate their safety and efficacy in preclinical and 

clinical settings. 

Keywords: copper oxide nanoparticles, biofilms, bacteria, bacterial 

resistance, microorganisms. 
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АНТИБАКТЕРІАЛЬНА ТА АНТИБІОПЛІВКОВА 

АКТИВНІСТЬ НАНОЧАСТИНОК CU/CU2O ВІДНОСНО 

МУЛЬТИРЕЗИСТЕНТНИХ БАКТЕРІЙ 

Вступ. Мультирезистентні бактерії є дуже небезпечними та 

становлять серйозну проблему в усіх сферах охорони здоров’я: 

часто викликають захворювання, які не піддаються лікуванню 

антибіотиками, що призводить до неефективності лікування, 

ускладнень і високих затрат. Пошук нових антимікробних 

препаратів є одним із ключових компонентів успішної боротьби з 

інфекціями, що спричинені мультирезистентними бактеріями. Дана 

робота присвячена дослідженню антимікробної та антибіоплівкової 

активності наночастинок оксиду міді (Cu/Cu2O) відносно 

мультирезистентних бактерій. 

Матеріали та методи досліджень. Кубічні наночастинки 

Cu/Cu2O було синтезовано поліольним методом. Фізико-хімічні 

характеристики наночастинок досліджували за допомогою 

просвічуючої електронної мікроскопії, рентгенівської дифракції, 

енергодисперсійної спектроскопії та Фур’є-інфрачервоної 

спектроскопії. Лабораторні музейні бактеріальні штами (S. aureus 

ATCC 25923. E. coli ATCC 25922, P. aeruginosa ATCC 27853) та 

клінічні штами мультирезистентних бактерій (S. aureus, E. coli, P. 

aeruginosa), що виділені від пацієнтів із гнійно-запальними 

процесами використовувалися для вивчення антибактеріальних 

властивостей наночастинок. 

Результати. Кубічні наночастинки Cu/Cu2O показали 

ефективність відносно як грамнегативних так і грампозитивних 

бактерій, але антибіоплівкова активність наночастинок Cu/Cu2O 

виявилася більш перспективною по відношенню до грамнегативних 

бактерій. Наночастинки Cu/Cu2O виявилися менш ефективними 

відносно мультирезистентних штамів планктонних бактерій 

порівняно з лабораторними штамами. Не було виявлено істотних 

відмінностей між дією наночастинок Cu/Cu2O на біоплівки, що 

сформовані музейними та клінічними штамами 

мультирезистентних бактерій. 

Обговорення. Результати цього дослідження можуть бути 

корисними для розробки нових ліків і підходів до лікування 

інфекцій, спричинених мультирезистентними мікроорганізмами. 

Необхідні подальші дослідження для з’ясування основних 

механізмів дії наночастинок Cu/Cu2O, оптимізації їх складу та 

оцінки їх безпеки та ефективності в доклінічних і клінічних умовах. 

Ключові слова: наночастинки оксиду міді, біоплівки, бактерії, 

резистентність бактерій, мікроорганізми.  
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INTRODUCTION  

The ever-increasing antimicrobial resistance to 

antibiotics is a serious public health challenge [1]. The 

wide spread of multidrug-resistant (MDR) bacteria 

reduces antibiotics' effectiveness, increasing morbidity 

and mortality, leading to longer hospital stays and, 

consequently, higher treatment costs [2]. According to 

the US Center for Disease Control (CDC) and 

Prevention, each year in the USA more than 2.8 million 

people become ill with resistant infections, and at least 

35000 patients die [3]. In Europe yearly the number of 

infections and deaths caused by multidrug-resistant 

bacteria (S. aureus, E. coli, E. faecium, S. pneumoniae, 

K. pneumoniae and P. aeruginosa) was estimated 

approximately 400 000 and 25 000, respectively, in 

2007 [4]. CDC estimated financial burden of MDR as 

$55 billion per year overall that include $20 billion 

direct healthcare costs and $35 billion indirect costs 

(loss of productivity) [1, 5]. Therefore, the development 

of new approaches, materials, and methods for 

destroying bacteria can help to minimize the drawbacks 

of growing multi-drug resistance [6, 7]. 

The antibacterial properties of copper have been 

known since ancient times, but the discovery of 

antibiotics temporarily stopped the use of copper and 

other metals as antimicrobials. Given the increasing 

antibiotic resistance, there has recently been renewed 

interest in copper, especially nanostructured copper, as a 

good antibacterial alternative. Nanostructured metals are 

more effective because they can interact closely with 

microorganisms, thanks to their unique properties such 

as small size and high surface area/volume ratio [8]. In 

the current study, copper was the metal of choice as it is 

more readily available than other noble metals such as 

silver and gold and is equally potent in its antimicrobial 

properties. 

Previously, it was repeatedly reported that copper 

nanoparticles exhibit antibacterial activity against 

Gram-positive and Gram-negative bacteria [9, 10, 11, 

12]. The bactericidal properties of copper oxide 

nanoparticles also were noted against methicillin-

resistant S. aureus, K. pneumonia, and E. faecalis [13, 

14, 15]. Raffi M. et al. reported a concentration 

dependent activity of Cu NPs against reference 

laboratory strain E. coli ATCC15224 [16]. However, 

there is little published information on the activity of 

Cu/CuO NPs against MDR strains.  

Several mechanisms of action of copper 

nanoparticles on bacterial cells have been reported: 

nanoparticles reduce transmembrane electrochemical 

potential, disrupt the integrity of the cell membrane with 

subsequent leakage of the cytoplasm; nanoparticles 

release copper ions (Cu+ and Cu2+), inactivate proteins 

inside the cell and damage DNA; generate reactive 

oxygen species, thereby causing the development of 

oxidative stress, which leads to apoptosis [17, 18, 19]. 

Existing research recognizes the critical role played 

by microbial biofilm in infections. The bacteria in the 

biofilm matrix possess higher resistance to antibacterial 

drugs compared to planktonic forms of bacteria [20, 21, 

22], as well as drug penetration to target cells is limited 

[23]. Diseases caused by biofilms are complicated to 

treat, often take a long course, gradually progress, and 

have a poor response to antibiotic therapy [24, 25]. 

Therefore, radical new approaches are needed to treat 

diseases caused by microbes in biofilms [26], namely 

the formation of non-toxic and potent antibiofilm agents 

targeting signaling pathways regulating quorum sensing 

(QS), extracellular polymeric substance synthesis, 

biofilm-related genes, microbial motility, adhesion, 

dispersion, and many more [27]. Although extensive 

research has been carried out on the antibiofilm 

effectiveness of copper oxide nanoparticle [28, 29, 30], 

no single study exists that investigates its activity 

against reference laboratory and clinical MDR strains. 

The current research set out to compare the 

antimicrobial activity of copper/copper oxide 

nanoparticles (Cu/Cu2O NPs) against laboratory 

reference strains and MDR clinical Gram-positive 

Gram-negative strains of planktonic bacteria and their 

biofilms. 

MATERIALS AND METHODS 

Synthesis of Cu/Cu2O NPs 

Cu/Cu2O NPs were synthesized by the following 

method. 12.5 g polyvinylpyrrolidone (PVP) K-30 

(Thermo Fisher Scientific, USA) and 4.0 g sodium 

hypophosphite (Thermo Fisher Scientific, USA) were 

dissolved in 40 ml of ethylene glycol (Thermo Fisher 

Scientific, USA) and stirred using a magnetic stirrer 

until completely dissolved at room temperature. The 

solution was heated to 90 °C at a rate of 5 °C min−1. 

Then 2.5 g of copper sulfate (Thermo Fisher Scientific, 

USA) was dissolved in 10 ml of ethylene glycol in a 

similar way and slowly added to the PVP/sodium 

hypophosphite solution with constant stirring. 

Gradually, the color of the suspension turned brown, 

indicating the formation of copper nanoparticles. In 

general, the reaction lasted 15 min. The dispersion was 

cooled down to room temperature and mixed with a 

certain amount of isopropanol and distilled water. The 
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precipitate was collected after centrifugation (8000 rpm 

for 10 min) and washed with distilled water three times 

to remove excess PVP and side products, followed by 

drying at 50 °C for 2 h in a vacuum dryer. Nanoparticles 

were treated with low-frequency ultrasound (22±1.65 

kHz) for 5 minutes (ultrasonic dispergator UZDN-A, 

SELMI, Ukraine). 

Cu/Cu2O NPs characterization 

The morphology of synthesized Cu/Cu2O NPs was 

examined by transmission electron microscope (TEM). 

Samples for TEM were prepared by deposition 

isopropyl alcohol solution of Cu/Cu2O NPs on a copper 

grid covered with a thin carbon film with the subsequent 

drying in air at room temperature. TEM analyses were 

performed using “PEM-125К” (Ukraine). In an X-ray 

diffraction (XRD) investigation of synthesized materials 

were carried out on the automated diffractometer 

DRON 4-07 connected to the computer-aided 

experiment control and data processing system. The Ni-

filtered CuKα radiation (wavelength 0.154 nm) was 

used with a conventional Bragg–Brentano ϑ-2ϑ 

geometry (2ϑ is the Bragg’s angle). The samples were 

measured in the continuous registration mode (at the 

speed of 1.0 ◦/min) within the 2ϑ-angle range from 30o 

to 120o. All data processing procedures were carried out 

with the use of the program package DIFWIN-1 

(“Etalon PTC” Ltd). Phase analysis was carried out by 

comparing the diffraction patterns from the investigated 

samples and the reference data JCPDS. Energy 

dispersive spectroscopy (EDS) elemental analysis of 

Cu/Cu2O NPs was carried out on a JEOL JSM–6390LV 

scanning microscope with an X-ray detector INCA 350 

(Jeol, Japan). Fourier-Transform Infrared (FTIR) 

Spectroscopy analysis spectra were obtained using a 

spectrophotometer (Nicolet IS20, Thermo Fisher 

Scientific, USA) in the spectral region of 4000 – 400 

cm−1 using a resolution of 4 cm−1 and 64 coadded scans. 

Concentration of Cu/Cu2O NPs in the aqua solution was 

determined by the method of inductively-coupled 

plasma atomic spectrometry (ICP-AES) using an iCAP 

6300 Duo spectrometer (Thermo Scientific Corporation, 

USA). 

Bacterial Strains and Culture Conditions 

To examine the antibacterial effect, we used 

laboratory reference bacterial strains (S. aureus ATCC 

25923. E. coli ATCC 25922, P. aeruginosa ATCC 

27853) and MDR clinical strains isolated from patients 

with a purulent process (S. aureus, E. coli, P. 

aeruginosa). Identification of the clinical strains was 

performed by examining their morphological, staining, 

biochemical, and antigenic features. Microorganisms 

were tested on sensitivity to macrolides, β-lactam, 

aminoglycosides, fluoroquinolones, tetracyclines, 

amphenicols, lincosamides, and cephalosporins. The 

strains resistant to at least one antibacterial drug in three 

or more antibacterial categories were selected as multi-

resistant and stored at the Microbiology Lab (Sumy 

State University, Ukraine) for further research. The 

study protocol was approved by the Institutional Ethics 

Committee (Sumy State University, Protocol № 1/9 

from 14 September 2023) after the informed consent 

collection from the patients. 

Media (Mueller-Hinton broth and agar) for the 

cultivation of microorganisms were purchased at Hi 

Media (Maharashtra, India). Sigma Aldrich (St. Louis, 

MO, USA) provided gentian violet. glutaraldehyde. 

Antibacterial activity of the Cu/Cu2O NPs 

Antibacterial activity of Cu/Cu2O NPs was 

examined with the determination of minimum inhibitory 

concentration (MIC) by tube serial dilution method 

according to the international recommendations 

provided by the Clinical and Laboratory Standards 

Institute (CLSI) [31]. Overnight pure cultures of 

microorganisms were diluted with cultivation media to a 

concentration of 5×105 CFU/ml. Then, 0.2 ml of serially 

diluted Cu/Cu2O NPs were added to 1.8 ml of the 

bacterial suspension at a final concentration of 1000 

μg/ml to 31.25 μg/ml. Tubes containing growth medium 

and tested microorganisms were considered as positive 

controls. The tubes containing growth medium, and 

Cu/Cu2O NPs were used as negative control. The tubes 

with Muller Hinton broth served as a blank control. 

Then, tubes were incubated aerobically at 37 °C for 24 

h. The tube with the lowest concentration of Cu/Cu2O 

NPs that completely inhibits visual growth of bacteria 

(no turbidity) was considered as MIC. After that 100 µL 

of aliquots from each tube were inoculated onto Muller 

Hinton agar and incubated at 37 °C for 24 hours. The 

lowest concentration of Cu/Cu2O NPs that kills 100% of 

the initial bacterial/fungal population was recorded as 

minimum bactericidal concentration (MBC). All 

measures were triplicate. MBC of Cu/Cu2O NPs was 

used as starting point for in vitro time-kill test. 

In vitro static time-kill studies were conducted in 

glass tubes containing 2-ml volumes of Mueller Hinton 

broth with logarithmically growing cultures. The 

starting inoculum of microorganisms was 5×105 

CFU/mL. In the test, we used the concentrations of 

Cu/Cu2O NPs equivalent to 1 MBC. In 30 min, 1, 3, 6, 

12 and 24 h of incubation 100-μL aliquots from tubes 

were spotted onto plates with solid media. After that, 

plates were incubated at 37 °C for 24 h. Viable 

organisms were counted in log10. 

Antibiofilm activity of Cu/Cu2O NPs 

To assess the ability of nanoparticles to reduce 

biofilm mass, the suspensions of the overnight cultures 

of microorganisms were placed in polystyrene 96-well 

plates containing 200 µL Mueller-Hinton broth with 
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bacteria at 5×105 CFU/mL concentration and incubated 

for 72 h at 37 °C. Then, the nutrient broth was removed 

and 200 μL of fresh nutrient broth with 1 MBC, 3 MBC, 

and 5 MBC of Cu/Cu2O NPs was added to each well 

and incubated for 24 h at 37 °C. Positive control wells 

were untreated with Cu/Cu2O NPs. The Cu/Cu2O NPs 

control with 1 MBC, 3 MBC, and 5 MBC without 

microorganisms, and the Mueller-Hinton broth control 

without Cu/Cu2O NPs and microorganisms were also 

incubated. Then, the culture media with Cu/Cu2O NPs 

were discarded, followed by triple rinsing with a 0,9% 

saline solution. To evaluate the volume of biofilm mass, 

0.1% (w/v) gentian violet staining was used. After that, 

the plates were rinsed and air-dried, and 200 µL of 96% 

v/v ethanol was put into each well for the dissolving of 

connected dye. We measured the optical density (OD) 

of each well at a wavelength of 595 nm using a 

Multiskan FC spectrophotometer (Thermo Fisher 

Scientific, Waltham, MA, USA). The assay was 

repeated 6 times and mean values were calculated. 

The cell morphology and arrangement of pathogens 

in biofilms were assessed using SEM. Small glass slides 

(0.5×1.0 cm) were immersed in 5 mL Mueller-Hinton 

broth with bacteria at 5×105 CFU/mL concentration and 

incubated for 72 h at 37 °C. Then, samples were split 

into four groups. Three groups were added with 

Cu/Cu2O NPs diluted in Muller-Hinton broth at the 

concentration 1, 3, or 5 MBC. To the control group was 

added Muller-Hinton broth. After that, all samples were 

incubated for 24 h. Then, the media were discarded. 

Samples were washed three times with phosphate-

buffered saline (pH 7.2 – 7.4, LLC “Genesis”, Ukraine), 

fixed with glutaraldehyde 2% for 120 min, dehydrated 

in ethanol-water mixture with increasing ethanol 

concentrations (30%, 50%, 70%, 80%, 90%, and 96%), 

and air-dried overnight. Dehydrated specimens were 

coated with a thin film of silver in a sputter coater. 

Morphological analysis was performed by the 

examination of the SEM (SEO-SEM Inspect S50-B; 

accelerating voltage − 20 kV) images. 

Statistical analysis 

Statistical significance was determined using an 

analysis of variance with Graph Pad Prism 9 software, 

where p-value < 0.05 was considered statistically 

significant. 

RESULTS 

Cu/Cu2O NPs were mostly cubic and distributed in 

the range of 35-200 nm with a strong tendency to 

agglomerate (Fig. 1a). Fig. 1c depicts the XRD pattern 

with peaks indicating the formation of Cu and Cu2O 

nanoparticles. The reflections on the XRD pattern can 

be indexed to that of Cu and Cu2O according to the 

literature pattern (JCPDS, card № 004–0836 and 005–

0667). The diffraction peaks Cu at 43.32о, 50.46о, 

74.14о, 89.94о correspond to the (111), (200), (220), 

(311) planes, and peaks Cu2O at 29.6о, 36.44о, 42.32о, 

61.38о, 73.54о, 77.38о correspond to the (110), (111), 

(200), (220), (311), (222) planes respectively. This 

probably indicates a weak stability of copper 

nanoparticles before oxidation. EDS spectrum 

measurement reveals that the samples contain elements 

of copper and oxygen and exhibit an oxide state (fig. 

1b). The absorption bands of PVP are recorded on the 

FTIR spectrum of the synthesized Cu/Cu2O NPs which 

were added to stabilize the suspension in a mass ratio 

Cu: PVP = 2:1 (fig. 1d). 

We isolated several strains of the pathogens from 

patients and tested them on sensitivity to antibiotics. For 

further investigation, we selected one multi-resistant 

strain of each species. Antibiotic resistance profiles of 

the selected strains are presented in table 1. 

Antibiotic profile of laboratory reference strains 

showed that S. aureus ATCC 25923, E. coli ATCC 

25992, and P. aeruginosa ATCC 27853 were sensitive 

to all the antibiotics listed in the table 1. 

MIC and MBC of Cu/Cu2O NPs against laboratory 

reference strains were similar mostly for all tested 

microorganisms (125 μg/mL), except E. coli with an 

MBC of 250 μg/ml. MIC and MBC of Cu/Cu2O NPs 

against all examined MDR microorganisms were 

determined at a concentration of 250 μg/ml (fig. 2) 

Time-killing assay demonstrated similar speed for 

laboratory and MDR strains killing. S. aureus were 

destroyed in 3 hours after the start of incubation, while 

E. coli and P. aeruginosa lost viability in 6 and 12 

hours, respectively (fig. 3). 

Examination of the antibiofilm activity did not show 

any significant difference in the activity of Cu/Cu2O 

NPs at concentrations 1 MBC, 3 MBC, and 5 MBC 

against biofilms formed with laboratory reference 

strains and MDR S. aureus compared to the positive 

control (fig. 4).  

The treatment of the biofilms formed by laboratory 

reference strains and clinical MDR strains E. coli with 

Cu/Cu2O NPs caused a significant decrease in optical 

density compared to positive control almost at all used 

concentrations (fig. 5). 

Use of Cu/Cu2O NPs for treatment of the biofilms 

formed with both types of P. aeruginosa also 

demonstrated sufficient reduction of the optical density 

at all applied concentrations of nanoparticles in 

comparison to non-treated wells with biofilms (fig. 6). 
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Table 1 – Profile of MDR strains sensitivity to antibiotics 

Antibiotics 

Strains / registration number in the laboratory 

S. aureus / 73 E. coli / 54 P. aeruginosa / 254 

Macrolides  
Azithromycin R1 R R 

Clarithromycin R R R 

β-lactams 

Amoxicillin R R R 

Ampicillin R R R 

Oxacillin R R R 

Aminoglycosides  

Amikacin R R R 

Gentamicin R R R 

Kanamycin R R R 

Fluoroquinolones 

Gatifloxacin S2 R R 

Levofloxacin S S S 

Ofloxacin S S R 

Ciprofloxacin S R S 

Lomefloxacin S S S 

Tetracyclines Doxycycline R R R 

Amphenicols Levomycetin R R R 

Lincosamides Lincomycin R R R 

Cephalosporins 

Cefazolin R R R 

Cephalexin R R R 

Cefepime S S S 

Cefixime R R S 

Cefotaxime R R R 

Cefpodoxime R R R 

Ceftazidime R R R 

Ceftriaxone R S S 

Note: 1R − resistant, 2S – sensitive 

Figure 7 demonstrates the effectiveness of the 

Cu/Cu2O NPs against S. aureus biofilm. There were no 

any reductions in the bacteria cell numbers after the 

treatment of the biofilm with Cu/Cu2O NPs. However, 

SEM images showed the cell deformation and decrease 

in the cell size (marked with a red arrow). In addition, 

analysis of Fig. 7b, 7c, and 7d indicates the absence of 

an exopolymer matrix, which is the main structural 

component of the biofilm and provides quorum sensing. 

The data obtained suggest the lack of a full-fledged 

mature biofilm of S. aureus under the influence of 

Cu/Cu2O NPs and, accordingly, the quorum sensing 

system, which regulates the virulence of these bacteria. 

This contributes to the lower survival of S. aureus when 

exposed to nanoparticles. 

Treatment of biofilms formed by E.coli with 
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Cu/Cu2O NPs caused a dose-dependent decrease in 

biofilm mass that is shown in figure 8. Bacterial cells 

treated with 1 MBC of Cu/Cu2O NPs were deformed, 

and the arrangement of cells in space relative to each 

other changed. Biofilms formed by E. coli and treated 

with 5 MBC Cu/Cu2O NPs were mostly demolished and 

consisted of single spherical-shape cells with damaged 

cell walls and leakage of cytoplasmic contents. Red 

arrows point the serious damage.  

The influence of Cu/Cu2O NPs on the structure of 

mature biofilms formed by P. aeruginosa is reflected in 

fig. 9. We found a similar effect of Cu/Cu2O NPs on 

biofilms formed by P. aeruginosa and E. coli. There 

was a decrease in the P. aeruginosa biofilm mass and 

bacteria cell destruction after treatment with Cu/Cu2O 

NPs at concentrations 3 and 5 MBC. The cells exposed 

to these nanoparticles displayed a ruptured and 

shrunken appearance, resulting in a loss of cellular 

components. 

Taken together, these results suggest that there is a 

relation between bacteria features and the effectiveness 

of Cu/Cu2O NPs antibiofilm activity. 

 

Figure 1– Physicochemical characteristics of Cu/Cu2O NPs: a) TEM, b) EDS, c) XRD, d) FTIR 

 

Figure 2 – MIC and MBC values of Cu/Cu2O NPs against laboratory reference bacterial strains (L) and multidrug-

resistant clinical (R) bacteria 
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Figure 3 – Time-dependent antibacterial activity of the Cu/Cu2O NPs against laboratory reference bacterial strains 

(A) and MDR clinical strains (B) 

 

Figure 4 – Antibiofilm activity of Cu/Cu2O NPs against 

S. aureus: L – laboratory reference strains; R – MDR 

clinical strains; C – positive control 

 

Figure 5 – Antibiofilm activity of Cu/Cu2O NPs 

against E. coli: L – laboratory reference strains of 

bacteria; R – multidrug-resistant clinical bacteria; C – 

positive control; * – statistical difference compared to 

the positive control 

 

Figure 6 – Antibiofilm activity of Cu/Cu2O NPs against P. aeruginosa: L – laboratory reference strains of bacteria; 

R –multidrug-resistant clinical bacteria; C – positive control; * – statistical difference compared to the positive control 
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Figure 7 – The influence of Cu/Cu2O NPs on the structure of mature biofilms formed by S. aureus (SEM): a – 

control, b – 1 MBC, c – 3 MBC, d – 5 MBC. The red arrows demonstrate cell changes, green arrows – Cu/Cu2O NPs 

 

 

Figure 8 – The influence of Cu/Cu2O NPs on the structure of mature biofilms formed by E. coli (SEM): a – control, b 

– 1 MBC, c – 3 MBC, d – 5 MBC. The red arrows demonstrate cell changes, green arrows – Cu/Cu2O NPs 
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Figure 9 – The influence of Cu/Cu2O NPs on the structure of mature biofilms formed by P. aeruginosa (SEM): a – 

control, b – 1 MBC, c – 3 MBC, d – 5 MBC. The red arrows demonstrate cell changes, green arrows – Cu/Cu2O NPs 

 

DISCUSSION 

As mentioned in the literature review, searching for 

new antimicrobials is one of the key components of a 

successful fight with infections. It is now well established 

from a variety of studies that nanometals are promising 

alternatives to existing antibiotics. However, several 

questions regarding the treatment of infectious pathology 

using metal nanoparticles remain relevant.  

Many recent studies have shown that the shape and 

size of nanoparticles, temperature of synthesis, bacterial 

cell wall structure, as well as other characteristics of 

nanoparticles and microorganisms influence 

antimicrobial activity [32]. In this study, the antibacterial 

and antibiofilm activity of Cu/Cu2O NPs was evaluated 

against laboratory reference and clinical MDR strains of 

some ESKAPE isolates. It was reported previously that 

MIC of Cu NPs varies from 500 μg/ml to 103.5±4.71 

μg/mL for E. coli and S. aureus [33, 34]. Ren G. et al. 

showed a wide range of MBC values for CuO NPs from 

100 to 5000 μg/ml for various resistant and laboratory 

isolates [9]. However, most of these studies did not assess 

the effectiveness of Cu/Cu2O NPs against MDR strain. 

We synthesized cubic Cu/Cu2O NPs with size 35-200 

nm, stabilized with PVP. Nanoparticles demonstrated 

two-fold higher antibacterial activity against almost all 

laboratory reference strains compared to MDR clinical 

strains of S. aureus, E. coli, and P. aeruginosae. 

Previous studies suggest the higher efficacy of Cu/CuO 

NPs against Gram-negative bacteria than Gram-positive 

[35] due to the presence of a thicker peptidoglycan layer 

reduced cellular penetration [17]. However, the findings 

of the current study do not support these assumptions. 

We did not find a difference in the Cu/Cu2O NPs 

antibacterial activity against Gram-positive or Gram-

negative bacteria. Although there was a difference in the 

speed of bacteria-killing between Gram-positive and 

Gram-negative microbes, we did not reveal the 

difference between MDR and antibiotic susceptible 

laboratory reference strains. 

Most previously published studies in the field of 

Cu/CuO NPs antibiofilm activity have been focused 

only on the ability of copper nanoparticles to inhibit 

biofilm formation [36, 37, 38]. In this study we found 

that examined Cu/Cu2O NPs effectively destroyed the 

mature biofilms formed with Gram-negative bacteria at 

low concentrations (1-5 MBC). However, this result has 

not previously been described. Such contrast is likely to 

be related to the morphological and physiological 

difference of Gram-negative and Gram-positive bacteria 

and various biofilm structure.  
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Contrary to expectations,  no significant differences 

were found between the action of the Cu/Cu2O NPs on 

biofilms formed with reference laboratory strains or 

MDR clinical strains. A possible explanation might be 

that antibacterial and antibiofilm activity of Cu/Cu2O NPs 

is performed with the involvement various sets of 

antimicrobial mechanisms.  Although the antibiofilm 

activity of nanoparticles was higher at relatively lower 

concentrations than that of antibiotics, we can assume 

that susceptibility to antibiotics and to nanoparticles are 

not correlated, just as their antimicrobial mechanisms are 

not comparable. Espirito Santo et al. suggest contact 

killing via direct contact of copper with cell membrane 

[39, 40]. Another possible mechanism is copper ions 

released from copper nanoparticles [41, 42, 43]. 

Consistent with the literature, this research found that 

Cu/Cu2O NPs attach to the bacteria cell and could be 

attributed to the destruction of the bacteria biofilm via the 

contact mechanism. However, these results should be 

interpreted with caution.  

This research’s findings might help to develop new 

approaches for treating infection caused by MDR 

microorganisms. Further study should be undertaken to 

investigate the biocompatibility and safety of Cu/Cu2O 

NPs-based formulations. 

CONCLUSIONS 

The results of this investigation show that 

synthesized Cu/Cu2O NPs were effective against both 

Gram-negative and Gram-positive bacteria. The 

antibiofilm activity of Cu/Cu2O NPs was more 

promising for targeting Gram-negative bacteria. 

Cu/Cu2O NPs were less effective against MDR strains 

of planktonic bacteria without difference in biofilms. 

Thus, our findings support the notion that Cu/Cu2O 

NPs could be used to enhance the action of existing 

antibiotics against Gram-negative and Gram-positive 

bacteria. Further research is warranted to elucidate the 

underlying mechanisms of Cu/Cu2O NPs action, 

optimize their formulation, and evaluate their safety 

and efficacy in preclinical and clinical settings. 
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