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INTRODUCTION

Currently, biological indicators, particularly 
species composition and abundance of algae, are 
considered an important element in assessing 
the ecological status of water bodies [EU WFD, 
2000; Charles et al., 2021]. Diatoms are wide-
spread unicellular organisms that play an impor-
tant role in the functioning of aquatic ecosystems, 
producing a significant proportion of primary 
production [Serôdio, Lavaud, 2020]. Many dia-
tom species are highly sensitive to changes in the 
quality of the aquatic environment, so they are 

used as indicators of organic pollution, trophicity 
and acidification [Sladecek, 1986; van Dam et al., 
1994; Kelly et al., 2008; Stevenson et al., 2010; 
Charles et al., 2019; Çelekli et al., 2021].

The peculiarity of diatoms is that they have 
an armor (shell) made of two parts (lamellae) and 
composed of silicon dioxide. Taxonomic identifi-
cation of diatoms is based on the morphology of 
the silica carapace and is a rather difficult task, 
as it requires a detailed study of the structure of 
the silica coverts [Kociolek et al., 2015]. Accu-
rate identification of species allows a detailed 
biological analysis of the parameters of surface 
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water influenced by anthropogenic pressure, for 
example, the impact of storm sewers collecting 
rainwater of urban areas [Babko et al., 2019; 
Babko et al., 2020]. On the other hand, modern 
studies have shown that siliceous crust is sub-
ject to considerable variability under the influ-
ence of environmental conditions such that some 
species identified on the basis of morphological 
characteristics may represent ecomorphotypes 
(ecological variants) of the same species [Koci-
olek et al., 2015]. Given the difficulties in identi-
fying species, for practical purposes of ecologi-
cal assessment of the status of water bodies, the 
use of taxonomically coarse biotic data may be 
allowed, in particular the identification of algae 
to genus [Rimet, Bouchez, 2012; Edwards et al., 
2020]. While such data will not allow an accurate 
determination of the saprobity or trophicity of a 
reservoir, it can be used to assess biodiversity 
based on the presence of so-called morphospe-
cies – morphologically distinct representatives 
of diatoms. In turn, the use of information on 
individuals correctly assigned to a number of ac-
cepted sets (species or genera) allows assessing 
the situation based on the analysis of the values 
of quantitative biocenotic indices, for example, 
the entropy-based Shannon index and similar. 
Such an approach makes it possible to collect 
and use quantitative data in the analysis of the 
quality of the aquatic environment or the impact 
on it of urban technical infrastructure such as 
stormwater drains. Nevertheless, using quanti-
tative data classifying individuals to a particu-
lar species is also useful in this type of analysis 
[Kozlowska et al., 2023]. Given the above, the 
present work addressed the study of Cyclotella 
objects and aimed to improve the work of hydro-
biology researchers by automating the detection 
of Cyclotella objects in a microscopic sample.

Diatoms of the genus Cyclotella have drum-
shaped short-cylindrical cells with circular lamel-
lae 6-80 µm in diameter, the disk ornamentation 
consists of radial striations or ribs in the marginal 
part and a different-looking central field: smooth, 
punctuated, with striations or mottling; there may 
be insertions between the edge of the lamina 
and the peripheral stripe [Picińska-Fałtynowicz, 
Błachuta, 2012]. Species of this genus are found 
in rivers, streams, and lakes. The taxa belonging 
to this group are considered important ecologi-
cal indicators in a wide range of environments, 
from oligotrophic to hypereutrophic [Kociolek et 
al., 2015]. They can also be one of the datasets 

analyzed using ecological indices (e.g., the Shan-
non index and similar) that quantitatively describe 
community structure [Kozlowska et al., 2023].

Thus far, the process involved a skilled biolo-
gist manually counting objects from a microscope 
image or photograph. Such a person had to spend 
a lot of time reviewing the images, during which 
task he had to recognize and count these objects 
manually, each time he prepared a new sample for 
testing the whole lengthy and laborious process 
started from the beginning. In order to speed up 
and automate this process, an automatic image 
analysis method using deep learning neural net-
works was used. 

Deep learning using neural networks is an ad-
vanced and extended version of classical machine 
learning which is mainly based on classification 
and regression tasks using simpler models com-
pared to neural networks, such as decision trees, 
random forests, support vector method, etc. The 
idea of deep learning, which is part of artificial 
intelligence in the broadest sense, is to teach a 
neural network based on the available data so that 
it performs its task in the most optimized time and 
with the highest possible efficiency [LeCun et al., 
2023]. In the case at hand, the task is to correctly 
detect Cyclotella.

Neural networks are characterized by a 
structure intended to resemble the operation of 
the human brain and are based on a neuron-like 
structure, depending on the type of layers and its 
application, several types are distinguished, char-
acterized by different degrees of structure and a 
different architecture depending on the task for 
which they were created [Rocco et al., 2017]. The 
components of the basic network architecture 
are the layers responsible for each task. The first 
component is the input layer into which data is 
input in the form of, for example, images, where 
the information that a single pixel from an im-
age has been represented by a single neuron of the 
network [Krizhevsky et al., 2024].

After the data is loaded into the network, it 
is processed by hidden layers (the complexity of 
the network depends on their number) each hid-
den layer can have a different number of neurons 
depending on the specifications of the network. 
In these layers the processing of data takes place 
with the help of appropriate mathematical proce-
dures, thus the most important part of the opera-
tion of the network, i.e. the learning of patterns 
and dependencies by the network, occurs in the 
hidden layers. The last type of layers present in 
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the network is the output layer, where the final 
prediction of the network is generated, depending 
on the type of prediction it is supposed to make, 
for example, in classification tasks it corresponds 
to the number of classes the model is supposed to 
predict [Anand et al., 1993].

In automatic image analysis, CNN convolu-
tional networks in particular have found applica-
tion due to their complexity and the use of convo-
lutional layers in which various types of filters are 
applied to the image to extract from it identifiable 
features, such as shapes, colors, texture, or other 
special features that can aid prediction. CNNs 
also have pooling layers; their task is to reduce 
the dimensionality of the data that has been fed 
into the model [Gu et al., 2018]. This results in a 
reduction in the number of network parameters, 
thus reducing the probability of network overfit-
ting, which is an undesirable phenomenon, the 
situation is analogous to the phenomenon of net-
work underfitting.

The first applications of neural networks in 
image analysis date back to the 1980s, when 
Kunihiko Fukushima first used a convolutional 
neural network to recognize handwriting by 
computer. His new approach is considered a 
milestone in research on image analysis and 
deep learning [Fukushima, 1980] it was the 
first attempt to teach a machine to “look” and 
a major step towards the development of artifi-
cial intelligence. In his project called “Neocog-
nitron”, Fukushima used an innovative network 
architecture which consisted of multiple convo-
lutional layers which enabled the processing of 
information in a specific hierarchy, Fukushima’s 
network was capable of learning without human 
supervision (so-called unsupervised learning), 
which helped to improve the process of image 
analysis and was considered a breakthrough dis-
covery of those years, the idea behind it was that 
the network should mimic the operation of the 
human visual cortex as much as possible. Since 
the first application of CNNs, many things have 
changed, deep learning researchers have devel-
oped the concepts proposed by Fukushima im-
proving the time of the calculations performed 
and the accuracy, networks have been created 
which deal with the tasks of image detection in-
cluded in automatic image analysis much more 
efficiently, an example of such a network is the 
YOLO (You Only Look Once) network which 
was created by Ali Farhadi, Santosh Divvala, 
Joseph Redmon, and Ross Girshick in 2016 

[Redmon, et al., 2016]. The YOLO network can 
be used for real-time detection and does not re-
quire the user to have a ready-made model of 
high computing power [Hussain, 2023]. YOLO, 
as the name implies “looks at a photograph only 
once” i.e. a single image passes through the net-
work only once which causes the network to re-
duce the learning and prediction time. The first 
stage of processing by the YOLO network is 
to divide the image into a grid of squares. For 
each square, it determines the probability of the 
appearance of a rectangle (bounding box) indi-
cating the location of the searched object. The 
probability results at the end are unified and 
the dimension of the rectangle is given, along 
with the class to which it points. In prediction 
mode, the YOLO network offers a bounding 
box outlining the object being searched for and 
indicating the probability of a given result. An-
other advantage of the YOLO network is that 
it can detect multiple objects simultaneously 
without losing too much efficiency, which can 
help biologists who care about identifying mul-
tiple species simultaneously on a microscopic 
sample, leading to a significant acceleration of 
the generally time-consuming research. In such 
a situation, all clearly visible individuals in the 
field of view can be identified and counted auto-
matically, requiring the attention and interven-
tion of a trained biologist only in a few, more 
complicated cases. An important advantage of 
the discussed networks is also the possibility of 
implementing the algorithm for real-time detec-
tion of objects directly in the microscope and 
using other capabilities of the YOLO network, 
such as image segmentation which will allow 
more accurate extraction and identification of 
the components of the searched object, analysis 
of the dimensions of the searched organisms on 
the basis of data about the frame surrounding the 
object, owing to which the network will be able 
to count the area of the searched object. This can 
be helpful in further accurate quantitative anal-
ysis of the searched organisms and creation of 
sets of descriptive statistics to complement the 
research [Aly et al., 2021]. Hence, the purpose 
of this paper was to test the hypothesis of the 
probable high efficiency and speed of the ap-
plied method in the automatic analysis of micro-
scopic images containing Cyclotella algae, and 
thus to confirm the high application potential of 
the method in supporting bioindication studies 
of surface water quality.
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MATERIALS AND METHODS 

The study tested the feasibility of using neu-
ral networks to recognize microscopic images of 
centric freshwater diatoms of the genus Cyclotella 
(Figure 1). The dataset used for this task contains 
1000 microscope images taken at x40 magnifica-
tion of main lens with an Olympus CX4 micro-
scope. These images contain a total of 1203 Cy-
clotella specimens. The dataset was divided into 3 
parts: 70% of the dataset was randomly allocated 
to the training set, 20% was allocated to the vali-
dation set and 10% went to the test set. Dividing 
the dataset according to such proportions ensures 
that there is enough data on which the YOLOv8 
network can learn, perform validation and check 
its fit on the test set.

The dataset was tagged in the Roboflow tool, 
which works closely with Ultralytics. This tool 
allows the processing of data in the form of im-
ages in a user-friendly way and does not require 
specialized knowledge [Ciaglia et al., 2022]. This 
tool and the functions it offers enable to accu-
rately label objects in the image, a process that 
can be carried out one hundred percent manually, 
which, given the difficulty of recognizing micro-
bial objects in a microscopic image, was used 
in this research and required consultation with a 
scientist specializing in hydrobiology, who made 
corrections and improved the quality of the data-
set, during consultation on the accuracy of Cy-
clotella labeling. In the present work, the average 
number of objects per digital photograph is 1.2, 
the average size of the labeled Cyclotella object 
expressed in pixels –here it equals 0.79 mp. Once 
the photos were correctly labeled, the collection 
was divided into the aforementioned three classes 
using random balancing.

To train the YOLO v8 network for detec-
tion, the Python programming language support-
ing the use of libraries from Ultralytics was used, 
along with an environment that enabled the use of  
a free GPU –Google Colab. Learning of the model 
was carried out using a Tesla T4 GPU, which sig-
nificantly accelerated the learning process of the 
network compared to the use of powerful personal 
computers. The YOLO v8 network was trained on 
100 epochs. With the use of a T4 GPU, the process 
of training 100 epochs was relatively fast, with a 
calculation execution time of 0.49 hours. Learning 
began with initializing the weights randomly, then 
the image was passed through all three layers dis-
cussed earlier. During training, loss functions were 
calculated, very important during model evalua-
tion because they are based on several errors the 
network can make. The most relevant for this re-
search is an error that affects the precision in the fi-
nal shape of the predicted box, this is the so-called 
localization error, which shows a comparison of 
the coordinates of the location of the predicted 
bounding-box with the actual coordinates that 
were marked in Roboflow. The next step in learn-
ing the network was to apply Backpropagation, an 
algorithm used to update the network weights and 
minimize the loss function [Rojas et al., 1996]. For 
this purpose, the study used the Adam (Adaptive 
Moment Estimation) optimizer with a learning rate 
of 0.002 and a monumentum of 0.937 at the begin-
ning of training, then the values of these param-
eters were updated on a regular basis.

The metrics calculated from the confusion 
matrix that were used to evaluate the network 
were Accuracy, Precision and Recall. Moreover, 
the mean Average Precision (mAP), derived from 
the Average Precision metric, plays a crucial role 
in evaluating the detection task performed by the 

Figure 1. Examples of digital images detail containing Cyclotella used for training, validation and testing of 
YOLOv8 network
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YOLO v8 network. The formulas describing the 
metrics using the afore-mentioned classes are 
shown below. In the referenced formulas, n de-
notes the number of classes while AP is the value 
of the Average Precision metric for the i-th class 
[Carvalho et al. 2019]. 
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After training the YOLO v8 network, the 
abundance of each class in the confusion matrix 
presented following training on the validation set 
is as follows. The respective class sizes are TP 
= 245, FN = 1, TN = 0, FP = 9. On the basis of 
on these values, the metrics Accuracy = 0.960, 
Precision = 0.964, Recall = 0.995 were counted, 
which indicate that the network performed Cy-
clotella detection almost perfectly. After model 
evaluation, the afore-mentioned metric mAP = 
0.991 was automatically calculated. The model in 

Figure 2. Confusion matrix for the YOLO v8

Figure 3. Height and weight distribution of rectangles after YOLO v8 predictions

the detection task erred a total of ten times, once 
failing to recognize Cyclotella where it was pres-
ent (FN) and nine times detecting it where it was 
absent (FP). In addition to the measures of model 
fit, YOLO also allows for a deeper analysis of the 
results obtained in the context of the width and 
height of the frames surrounding the objects, as 
well as the values of individual metrics for each 
epoch of network learning (Figure 2, Figure 3).
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From the graphs above, it can be seen that 
the network correctly predicted the shape of the 
object, most of the bounding-boxes were square, 
as indicated by the distribution of the height and 
width of the rectangles that surround the pre-
dicted object, the distribution is close to a normal 
distribution. After analyzing the results that the 
model achieved, tuning of the parameters of the 
best model retained after training was carried out, 
in terms of the greatest possible fit, the tuning was 
carried out for 50 epochs. The graphs showing the 
variation of the model’s fit on the validation set 
during the tuning, and the parameters for which 
the model achieved the best fit on the set, are pre-
sented below (Figure 4).

The best fit the model obtained at epoch 47 
and the metrics it obtained are: Precision = 0.990, 
Recall = 0.979, and mAP = 0.991. The varia-
tions of the most relevant model parameters dur-
ing tuning such as learning rate (lr0 and lrf) and 
monumentum, together with the value indicated 
with a + sign which turned out to be the best in the 
case of Cyclotella detection, are presented below.

This, it can be seen that parameter tuning in 
this case slightly improved the object detection 
capability, perhaps with the use of more comput-
ing power and parameter tuning for more epochs, 
a noticeable improvement can be achieved. The 
process of parameter tuning for 50 epochs re-
quired more time than just learning the network, 
the time was ~141 minutes despite using a cloud 
solution and using Tesla T4. This is almost five 

times more than the time spent training the net-
work for twice the number of epochs. This shows 
that the process is more time-consuming than just 
learning the network. On the best model that was 
obtained during parameter tuning, validation was 
performed on the basic settings offered by Ultra-
lytics. This validation also did not result in a sig-
nificant improvement due to the high metrics ob-
tained during training and the high quality of the 
data in the set. The metrics between the original 
version of the model, the version after hyperpa-
rameter tuning and the one after validation differ 
by only a thousandth of a fraction in most cases. 
This shows the fact that the network has already 
performed admirably after training, and it can 
be difficult to achieve significantly better results 
without risking network overfitting, or without 
using data leakage. Finally, to perform detection 
prediction on the test set, the model that was cre-
ated during tuning was retained due to the fact 
that it obtained the highest the metrics calculated 
from the confusion matrix. 

The best model obtained during testing, after 
switching to prediction mode, made bounding-
box predictions on 100 images presenting Cyclo-
tella determining the exact probability of the ap-
pearance of a bounding-box edge in a given pixel.

The division of the dataset into training, val-
idation and testing used during the study is not 
the only possible division used in deep learning 
an example of another division can be found in 
the work done by researchers, such as Plaksyvyi 

Figure 4. Model fitting during tuning
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and his colleagues, who used a 6/2/2 division into 
training, validation and testing, respectively, for 
the study of deep learning networks, with the 
difference that the dataset was five times larger 
[Plaksyvyi et al. 2023]; thus, they could afford to 
use such a division without sacrificing the quality 
of the results and gaining less computation time 
when learning the network, in the context of re-
search on a set of 1,000 elements the use of such a 
division would be pointless because the optimiza-
tion of time that would be gained by training the 
network on 600 images instead of 700 would not 
be directly proportional to the efficiency of the 
network relative to the final results it obtained. 
The same division as that used in the Cyclotella 
object study was used by Dziadosz and colleagues 
[Dziadosz et al., 2024] in their study on activated 
sludge analyzed for detection of Arcella vulgaris 
objects by YOLOv4 and YOLOv8 networks. The 
dataset they operated with was similar in size to 
the one discussed in this article, amounting to 990 
images. The use of such division resulted in ex-
cellent results by both networks, which shows the 
effectiveness of using deep learning networks in 
microbiology in detection tasks for circular ob-
jects visible in digital images.

From the viewpoint of learning the network, 
the randomness of the distribution of images in 
the way mentioned before is very important. This 
is a direct result of the way the images were ac-
quired, the process took about a month by taking 
photographs of specific samples, digital images 
taken on a given day on a given sample are slight-
ly different from images taken on another sample, 
so by teaching the network on images taken on, 
for example, the first sample and testing it on im-
ages taken on the last sample, there is a risk of 
over-learning the network and poor performance 
of the model on the test set. The images from each 
sample were characterized by different numbers 
of individuals, little change in the quality or ap-
pearance of the individuals and different levels 
of transparency of the sample under microscopic 
magnification, because they did not always come 
from the same sampling point on the river. There-
fore, appropriate randomization of the collection 
during learning is very important.

The learning process of the YOLO v8 net-
work, due to its architecture and complexity, is 
quite distinctive. The YOLO v8 network consist-
ed of 3 main parts: the backbone, neck and head. 
Each of these parts performed a different task. 

Figure 5. Parameters during the tuning of the YOLO v8 network

Figure 6. Two correctly detected Cyclotella objects
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The backbone part was responsible for extract-
ing the features of an object from a given image, 
which allowed the Cyclotella to be accurately 
determined. When the microscopic photograph 
was processed by the Backbone part, the network 
performed extractions of all Cyclotella’s features 
from basic ones, such as its size at a given magni-
fication to its specific structure, which resembles 
a coin and the radial stripes in the edge part lead-
ing from the center outwards and smooth or dot-
ted (spotted) central field which are a distinctive 
feature of Cyclotella. This allows it to be distin-
guished from other “round” objects that are also 
present in the sample. The backbone layer con-
sisted of multiple convolutional networks. After 
the image was processed through the first layer, 
the photograph went to the neck section where the 
data characterizing the Cyclotella object that had 
been extracted by the backbone section was ag-
gregated using the PANet (Path Aggregation Net-
work) which affected the accuracy of the predic-
tion regardless of the scale of the object. The final 
stage was the passage of the photograph through 
the head part, where the final prediction of bound-
ing-boxes on a given pixel was made in accor-
dance with the previously discussed idea of CNN 
convolutional networks [Dziadosz, et al., 2024].

During network learning, the learning rate pa-
rameter in the optimizer was responsible for the 
length of the optimizer’s jump to minimize the 
loss function, while the monumentum parameter 
was responsible for the “timing” of the introduc-
tion of updated weights in the optimizer. As an 
alternative to the Adam optimizer, the Stochastic 
Gradient Descent (SGD) optimizer, which is of-
ten used in simpler tasks because it has fewer pa-
rameters for tuning and the static value of the pa-
rameters in it remains constant. However, Adam 
performs better than SGD in detection tasks. A 
feature of YOLO v8 network learning is that after 
each epoch it performs validations on the valida-
tion set to improve network performance and in-
crease the quality of learning.

Evaluation of the quality of fit of the learned 
network was done using several key metrics. The 
standard metrics that are used to evaluate the 
model were calculated based on the confusion 
matrix, which distinguishes four states: true posi-
tive (TP) is the class of objects that were correctly 
identified; false negative (FN) is a class of objects 
that were in fact the object being searched for but 
the YOLOv8 network did not make a correct pre-
diction and did not tag the object; false positive 

(FP) comprises the cases in which, despite the 
absence of the object in the image, the network 
made a detection at the background location. The 
last class was true negative (TN); the size of this 
class in the considered case was 0, because the 
network was tasked with detection of only one 
object. The FN and FP classes were considered to 
be model errors.

The YOLO v8 network performed exception-
ally well in detecting the Cyclotella object most 
probably due to its coin-like shape, but also the 
fact that the tuning and calibration of the network 
mentioned earlier was carried out. The near-cir-
cular geometry of this diatom contributed to a dis-
tribution of the height and width of the predicted 
bounding boxes that closely resembled a normal 
distribution. Objects with uniform and compact 
shape – in this case study even circular and sym-
metrical, are generally easier for neural networks 
to detect and learn because YOLOv8 tends to 
struggle more with irregular and asymmetrical 
shapes when generating accurate bounding box-
es. To make credible this thesis, can be recalled 
authors’ previous works, in which the compact, 
shell amoebae present in activated sludge were 
located and recognized with much greater preci-
sion, accuracy and recall than the more diverse 
in shape settled ciliates [Dziadosz et al., 2024; 
Staniszewski et al., 2024]. This happened with 
similarly sized training, test and validation image 
sets for both analyzed organism representatives. 
The way YOLOv8 segments the image into a grid 
likely makes it easier to predict the center of the 
bounding box for symmetrical objects, thereby 
improving the network’s evaluation metrics.

CONCLUSIONS

The YOLO v8 network handled the task of 
detecting the Cyclotella object almost flawlessly, 
while the obtained metrics on the validation set 
were as follows: Accuracy = 0.960, Precision = 
0.964, Recall = 0.995. Hence, it can be assumed 
that in the future, the use of neural networks and 
deep machine learning can significantly acceler-
ate bioindication research and provide a useful 
tool for microscopic image analysis, while Cy-
clotella detection is one of many cases for which 
deep learning can be used. In the future, neural 
networks from the YOLO family can be used to 
detect other objects in a microscopic sample, as 
well as to segment the data parts of a biological 
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object. Performing research on this topic leads to 
the development of deep learning tools, and the 
improvement of the work of scientists in the field 
of assessment of surface water quality. The results 
presented here confirm the effectiveness of the 
method used in the automatic analysis of micro-
scopic images containing algae and thus the high 
application potential of the method in supporting 
bioindication studies of surface water quality.
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