Please use this identifier to cite or link to this item: http://essuir.sumdu.edu.ua/handle/123456789/44576
Or use following links to share this resource in social networks: Recommend this item
Title Number of Repetitious States in One Dimensional Hubbard Model: a Density Matrix Renormalization Group Perspective
Authors Solaimani, M.
ORCID
Keywords Density matrix renormalization group
Repetitious states
Reduction of the Hilbert space dimension
Type Article
Date of Issue 2015
URI http://essuir.sumdu.edu.ua/handle/123456789/44576
Publisher Sumy State University
License
Citation M. Solaimani, J. Nano- Electron. Phys. 7 No 4, 04101 (2015)
Abstract In this work we investigate some aspects of density matrix renormalization group (DMRG) method. We intuitively show why DMRG works better for open boundary conditions and why the number of sweeps in a periodic system is greater than an open one. We also describe reduction of the Hilbert space dimension using symmetries. Finally, we show that eliminating the repetitious states may help as much as symmetries to reduce the Hilbert space and thus increase the DMRG speed.
Appears in Collections: Журнал нано- та електронної фізики (Journal of nano- and electronic physics)

Views

Australia Australia
1
Bulgaria Bulgaria
1
Canada Canada
1
France France
1
Germany Germany
3056882
Iran Iran
1
Ireland Ireland
22745
Italy Italy
3819
Lithuania Lithuania
1
Seychelles Seychelles
1
Singapore Singapore
1
Ukraine Ukraine
368401
United Kingdom United Kingdom
184374
United States United States
6693825
Unknown Country Unknown Country
12
Vietnam Vietnam
695

Downloads

China China
3056880
Germany Germany
3056883
Ireland Ireland
1
Lithuania Lithuania
1
Singapore Singapore
1
Spain Spain
1
Ukraine Ukraine
736652
United Kingdom United Kingdom
1
United States United States
3056881
Unknown Country Unknown Country
8
Vietnam Vietnam
1

Files

File Size Format Downloads
Solaimani_Repetitious_states.pdf 240.31 kB Adobe PDF 9907310

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.