Please use this identifier to cite or link to this item:
http://essuir.sumdu.edu.ua/handle/123456789/55740
Or use following links to share this resource in social networks:
Tweet
Recommend this item
Title | Feature learning for information-extreme classifier |
Authors |
Moskalenko, Viacheslav Vasylovych
![]() Moskalenko, А. Korobov, A. |
ORCID |
http://orcid.org/0000-0001-6275-9803 |
Keywords |
coarse coding Fast Retina Keypoint feature extraction machine learning classifier information criterion машинное обучение классификатор информационный критерий машинне навчання класифікатор информаційний критерій |
Type | Conference Papers |
Date of Issue | 2017 |
URI | http://essuir.sumdu.edu.ua/handle/123456789/55740 |
Publisher | Sumy State University |
License | Copyright not evaluated |
Citation | Korobov, A. Feature learning for information-extreme classifier [Текст] / A. Korobov, A. Moskalenko, V. Moskalenko // Advanced Information Systems and Technologies : proceedings of the V international scientific conference, Sumy, May 17-19 2017/ Edited by S.І. Protsenko, V.V. Shendryk. - Sumy : Sumy State University, 2017. - P. 92-94. |
Abstract |
The feature learning algorithm for
information-extreme classifier by clustering of Fast
Retina Keypoint binary descriptor, calculated for
local features, and usage of spatial pyramid kernel for
increasing noise immunity and informativeness of
feature representation are considered. Proposed a
method of parameters optimization for feature
extractor and decision rules based on multi-level
coarse features coding using information criterion and
population-based search algorithm. |
Appears in Collections: |
Наукові видання (ЕлІТ) |
Views

1

1

599122097

3

1198244200

1

226771

1

1

1

18088163

1

2

1198244196

165265535

84713162

-2059876127

4905
Downloads

720620

1198244199

1

1

1

1198244197

1

1198244193

8

1
Files
File | Size | Format | Downloads |
---|---|---|---|
Korobov_Fast.pdf | 837.73 kB | Adobe PDF | -699514074 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.