Please use this identifier to cite or link to this item: http://essuir.sumdu.edu.ua/handle/123456789/69182
Or use following links to share this resource in social networks: Recommend this item
Title Implementation of Efficient Artificial Neural Network Data Fusion Classification Technique for Induction Motor Fault Detection
Other Titles Впровадження ефективної методики класифікації злиття даних для визначення несправностей асинхронного двигуна із застосуванням штучної нейронної мережі
Authors Altaf, S.
Mehmood, M.S.
Imran, M.
ORCID
Keywords Dempster–Shafer theory
data fusion
fault diagnosis
artificial neural network
fast Fourier transform
теорія Демпстера-Шафера
злиття даних
діагностування несправностей
штучна нейронна мережа
швидке перетворення Фур'є
Type Article
Date of Issue 2018
URI http://essuir.sumdu.edu.ua/handle/123456789/69182
Publisher Sumy State University
License
Citation Implementation of Efficient Artificial Neural Network Data Fusion Classification Technique for Induction Motor Fault Detection [Текст] / S. Altaf, M.S. Mehmood, M. Imran // Журнал інженерних наук. - 2018. - Т. 5, № 2. - С. Е16-Е21. - DOI: 10.21272/jes.2018.5(2).e4.
Abstract Reliability measurement and estimation of an industrial system is a difficult and essential problematic task for control engineers. In this context reliability can be described as the probability that machine network will implement its proposed functions under the observing condition throughout a specified time period of running machine system network. In this study single sensor method is applied for fault diagnosis depending on identification of single parameter. At early stages it is hard to diagnose machine fault due to ambiguities in modeling environment. Due to these uncertainties and ambiguities in modeling, decision making become difficult and lead to high financial loss. To overcome these issues between the machine fault symptoms and estimating the severity of the fault; a new method of artificial intelligence fault diagnosis based approach Dempster–Shafer theory has been proposed in this paper. This theory will help in making accurate decision of the machine condition by fusing information from different sensors. The experimental results demonstrate the efficient performance of this theory which can be easily compared between unsurpassed discrete classifiers with the single sensor source data.
У цьому дослідженні застосовується метод одиночного датчика для діагностування несправностей залежно від індентифікації одного параметра. Теорія Демпстера-Шафера дозволяє більш точно визначити стан машини шляхом об'єднання інформації з різних датчиків.
Appears in Collections: Journal of Engineering Sciences / Журнал інженерних наук

Views

Canada Canada
1
Egypt Egypt
1
Greece Greece
1
Ireland Ireland
19797
Lithuania Lithuania
1
Nigeria Nigeria
1
Sweden Sweden
1
Taiwan Taiwan
39591
Ukraine Ukraine
16334553
United Kingdom United Kingdom
783287
United States United States
31103440
Unknown Country Unknown Country
1565665
Vietnam Vietnam
1817

Downloads

Belgium Belgium
1
China China
16334554
Japan Japan
1
Lithuania Lithuania
1
Poland Poland
1
Ukraine Ukraine
1565667
United Kingdom United Kingdom
13396
United States United States
31103442
Unknown Country Unknown Country
36
Vietnam Vietnam
1

Files

File Size Format Downloads
JES_2018_02_E16-E21.pdf 408.3 kB Adobe PDF 49017100

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.