Please use this identifier to cite or link to this item:
http://essuir.sumdu.edu.ua/handle/123456789/69182
Or use following links to share this resource in social networks:
Tweet
Recommend this item
Title | Implementation of Efficient Artificial Neural Network Data Fusion Classification Technique for Induction Motor Fault Detection |
Other Titles |
Впровадження ефективної методики класифікації злиття даних для визначення несправностей асинхронного двигуна із застосуванням штучної нейронної мережі |
Authors |
Altaf, S.
Mehmood, M.S. Imran, M. |
ORCID | |
Keywords |
Dempster–Shafer theory data fusion fault diagnosis artificial neural network fast Fourier transform теорія Демпстера-Шафера злиття даних діагностування несправностей штучна нейронна мережа швидке перетворення Фур'є |
Type | Article |
Date of Issue | 2018 |
URI | http://essuir.sumdu.edu.ua/handle/123456789/69182 |
Publisher | Sumy State University |
License | Copyright not evaluated |
Citation | Implementation of Efficient Artificial Neural Network Data Fusion Classification Technique for Induction Motor Fault Detection [Текст] / S. Altaf, M.S. Mehmood, M. Imran // Журнал інженерних наук. - 2018. - Т. 5, № 2. - С. Е16-Е21. - DOI: 10.21272/jes.2018.5(2).e4. |
Abstract |
Reliability measurement and estimation of an industrial system is a difficult and essential problematic
task for control engineers. In this context reliability can be described as the probability that machine network will implement
its proposed functions under the observing condition throughout a specified time period of running machine
system network. In this study single sensor method is applied for fault diagnosis depending on identification of single
parameter. At early stages it is hard to diagnose machine fault due to ambiguities in modeling environment. Due to
these uncertainties and ambiguities in modeling, decision making become difficult and lead to high financial loss. To
overcome these issues between the machine fault symptoms and estimating the severity of the fault; a new method of
artificial intelligence fault diagnosis based approach Dempster–Shafer theory has been proposed in this paper. This
theory will help in making accurate decision of the machine condition by fusing information from different sensors.
The experimental results demonstrate the efficient performance of this theory which can be easily compared between
unsurpassed discrete classifiers with the single sensor source data. У цьому дослідженні застосовується метод одиночного датчика для діагностування несправностей залежно від індентифікації одного параметра. Теорія Демпстера-Шафера дозволяє більш точно визначити стан машини шляхом об'єднання інформації з різних датчиків. |
Appears in Collections: |
Journal of Engineering Sciences / Журнал інженерних наук |
Views

1

1

1

19797

1

1

1

39591

16334553

783287

31103440

49848157

1817
Downloads

1

16334554

1

1

1

1565667

13396

31103442

36

1
Files
File | Size | Format | Downloads |
---|---|---|---|
JES_2018_02_E16-E21.pdf | 408.3 kB | Adobe PDF | 49017100 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.