Please use this identifier to cite or link to this item: http://essuir.sumdu.edu.ua/handle/123456789/69194
Or use following links to share this resource in social networks: Recommend this item
Title Big Data Approach Application for Steel Pipelines in the Conditions of Corrosion Fatigue
Other Titles Застосування підходу Big Data для сталевих трубопроводів в умовах корозійної втоми
Authors Skrynkovskyy, R.M.
Yuzevych, L.V.
Ogirko, O.I.
Pawlowski, G.
ORCID
Keywords gas pipeline
monitoring
fatigue crack
corrosion
databases
Big Data
neural network
intelligent software
hardware
газопровід
моніторинг
трищіна втоми
корозія
бази даних
великі дані
нейронна мережа
інтелектуальне програмне забезпечення
апаратні засоби
Type Article
Date of Issue 2018
URI http://essuir.sumdu.edu.ua/handle/123456789/69194
Publisher Sumy State University
License
Citation Big Data Approach Application for Steel Pipelines in the Conditions of Corrosion Fatigue [Текст] / R.M. Skrynkovskyy, L.V. Yuzevych, O.I. Ogirko, G. Pawlowski // Журнал інженерних наук. - 2018. - Т. 5, № 2. - С. Е27-Е32. - DOI: 10.21272/jes.2018.5(2).e6.
Abstract This paper presents results of the use of Big Data approach and neural network for the pipelines diagnosis problem. In this case the pipeline is in the conditions of crack growth of corrosion fatigue and exposed to hydrogen. It is proposed to use graphene protective coatings. The mathematical model for estimating the changes in the effective surface energy of WPL during plastic deformation, electrochemical overstrain, polarization potential and current density of the metal dissolution reaction at the top of the crack on the pipeline surface during its mechanical loading in an aqueous electrolyte solution is given. The dissolution of the metal is considered on the juvenile surface, taking into account the anode and cathode regions based on the approaches of surface physics and electrochemistry. An element of a mathematical model is a quality functional, taking into account information flows and a sensitivity coefficient. Functional quality is used to specify the feedback between the investment project methodology and risk estimates, as well as to optimize the information flows of enterprises and improve the system of protection of metallic underground pipelines that operate under conditions of corrosion fatigue. The purpose of this project is to improve the relevant regulatory and technical documents as well as software.
У роботі подано результати використання підходів Big Data та нейронних мереж для діагностування трубопроводів. Метою цього проекту є вдосконалення відповідних нормативів та технічних документів, а також програмного забезпечення.
Appears in Collections: Journal of Engineering Sciences / Журнал інженерних наук

Views

Australia Australia
355043767
Belgium Belgium
1
Canada Canada
1
China China
-793702720
Côte d’Ivoire Côte d’Ivoire
1
Finland Finland
10704710
France France
1
Germany Germany
831939984
Greece Greece
1
Hong Kong SAR China Hong Kong SAR China
200059
India India
1
Iran Iran
1
Ireland Ireland
1498238595
Kuwait Kuwait
1
Lithuania Lithuania
1
Malaysia Malaysia
1408
Nepal Nepal
1
Netherlands Netherlands
4212843
Singapore Singapore
-1415793444
Taiwan Taiwan
1
Ukraine Ukraine
828438330
United Kingdom United Kingdom
1579104874
United States United States
753292876
Unknown Country Unknown Country
42
Vietnam Vietnam
197255

Downloads

Australia Australia
1
China China
710087532
Germany Germany
1
India India
1
Iran Iran
777020589
Ireland Ireland
55802577
Kuwait Kuwait
1
Lithuania Lithuania
1
Malaysia Malaysia
1
Singapore Singapore
1
South Korea South Korea
1
Taiwan Taiwan
1
Ukraine Ukraine
211728
United Kingdom United Kingdom
1
United States United States
-1942449206
Unknown Country Unknown Country
-1415793445
Vietnam Vietnam
1

Files

File Size Format Downloads
JES_2018_02_E27-E32.pdf 233.84 kB Adobe PDF -1815120214

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.