Please use this identifier to cite or link to this item:
http://essuir.sumdu.edu.ua/handle/123456789/69194
Or use following links to share this resource in social networks:
Tweet
Recommend this item
Title | Big Data Approach Application for Steel Pipelines in the Conditions of Corrosion Fatigue |
Other Titles |
Застосування підходу Big Data для сталевих трубопроводів в умовах корозійної втоми |
Authors |
Skrynkovskyy, R.M.
Yuzevych, L.V. Ogirko, O.I. Pawlowski, G. |
ORCID | |
Keywords |
gas pipeline monitoring fatigue crack corrosion databases Big Data neural network intelligent software hardware газопровід моніторинг трищіна втоми корозія бази даних великі дані нейронна мережа інтелектуальне програмне забезпечення апаратні засоби |
Type | Article |
Date of Issue | 2018 |
URI | http://essuir.sumdu.edu.ua/handle/123456789/69194 |
Publisher | Sumy State University |
License | |
Citation | Big Data Approach Application for Steel Pipelines in the Conditions of Corrosion Fatigue [Текст] / R.M. Skrynkovskyy, L.V. Yuzevych, O.I. Ogirko, G. Pawlowski // Журнал інженерних наук. - 2018. - Т. 5, № 2. - С. Е27-Е32. - DOI: 10.21272/jes.2018.5(2).e6. |
Abstract |
This paper presents results of the use of Big Data approach and neural network for the pipelines diagnosis
problem. In this case the pipeline is in the conditions of crack growth of corrosion fatigue and exposed to hydrogen.
It is proposed to use graphene protective coatings. The mathematical model for estimating the changes in the effective
surface energy of WPL during plastic deformation, electrochemical overstrain, polarization potential and current
density of the metal dissolution reaction at the top of the crack on the pipeline surface during its mechanical
loading in an aqueous electrolyte solution is given. The dissolution of the metal is considered on the juvenile surface,
taking into account the anode and cathode regions based on the approaches of surface physics and electrochemistry.
An element of a mathematical model is a quality functional, taking into account information flows and a sensitivity
coefficient. Functional quality is used to specify the feedback between the investment project methodology and risk
estimates, as well as to optimize the information flows of enterprises and improve the system of protection of metallic
underground pipelines that operate under conditions of corrosion fatigue. The purpose of this project is to improve
the relevant regulatory and technical documents as well as software. У роботі подано результати використання підходів Big Data та нейронних мереж для діагностування трубопроводів. Метою цього проекту є вдосконалення відповідних нормативів та технічних документів, а також програмного забезпечення. |
Appears in Collections: |
Journal of Engineering Sciences / Журнал інженерних наук |
Views
Australia
355043767
Belgium
1
Canada
1
China
-793702720
Côte d’Ivoire
1
Finland
10704710
France
1
Germany
831939984
Greece
1
Hong Kong SAR China
200059
India
1
Iran
1
Ireland
1498238595
Kuwait
1
Lithuania
1
Malaysia
1408
Nepal
1
Netherlands
4212843
Singapore
-1415793444
Taiwan
1
Ukraine
828438330
United Kingdom
1579104874
United States
753292876
Unknown Country
42
Vietnam
197255
Downloads
Australia
1
China
710087532
Germany
1
India
1
Iran
777020589
Ireland
55802577
Kuwait
1
Lithuania
1
Malaysia
1
Singapore
1
South Korea
1
Taiwan
1
Ukraine
211728
United Kingdom
1
United States
-1942449206
Unknown Country
-1415793445
Vietnam
1
Files
File | Size | Format | Downloads |
---|---|---|---|
JES_2018_02_E27-E32.pdf | 233.84 kB | Adobe PDF | -1815120214 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.