Please use this identifier to cite or link to this item:
http://essuir.sumdu.edu.ua/handle/123456789/71607
Or use following links to share this resource in social networks:
Tweet
Recommend this item
Title | Design of a Selective Smart Gas Sensor Based on ANN-FL Hybrid Modeling |
Authors |
Kouda, S.
Dendouga, A. Barra, S. Bendib, T. |
ORCID | |
Keywords |
fuzzy logic artificial neural networks gas sensor selectivity analytical model selective model |
Type | Article |
Date of Issue | 2018 |
URI | http://essuir.sumdu.edu.ua/handle/123456789/71607 |
Publisher | Sumy State University |
License | |
Citation | Design of a Selective Smart Gas Sensor Based on ANN-FL Hybrid Modeling / S. Kouda, A. Dendouga, S. Barra, T. Bendib // Журнал нано- та електронної фізики. - 2018. - Т.10, № 6. - 06011. - DOI: 10.21272/jnep.10(6).06011 |
Abstract |
The selectivity is one of the main challenges to develop a gas sensor, the good chemical species detection in a gaseous mixture decreasing the missed detections. The present paper proposes a new solution for gas sensor selectivity based on artificial neural networks (ANNs) and fuzzy logic (FL) algorithm. We first use ANNs to develop a gas sensor model in order to accurately express its behavior. In a second step, the FL and Matlab environment are used to create a database for a selective model, where the response of this one only depends on one chemical species. Analytical models for the gas sensor and its selective model are implemented into a Performance Simulation Program with Integrated Circuit Emphasis (PSPICE) simulator as an electrical circuit in order to prove the similarity of the analytical model output with that of the MQ-9 gas sensor where the output of the selective model only depends on one gas. Our results indicate the capability of the ANN-FL hybrid modeling for an accurate sensing analysis. |
Appears in Collections: |
Журнал нано- та електронної фізики (Journal of nano- and electronic physics) |
Views
Algeria
7206574
Bangladesh
1
Canada
1
China
1679732840
Germany
1255694
Greece
1
Hong Kong SAR China
1
India
2511387
Indonesia
1204351609
Iran
27348
Iraq
1
Ireland
2511390
Lithuania
1
Netherlands
1454
Nigeria
1
Pakistan
1
Peru
7206569
Philippines
602175805
Singapore
2075456468
South Africa
399108635
South Korea
521783947
Taiwan
1564696634
Tunisia
1
Ukraine
399108640
United Kingdom
1564696631
United States
-144054361
Unknown Country
399108639
Vietnam
11056
Downloads
Colombia
1
Ecuador
1
Ghana
1
Indonesia
1
Lithuania
1
Malaysia
1255694
Nigeria
1
Peru
7206571
Saudi Arabia
1
South Africa
399108637
South Korea
1
Taiwan
1
Ukraine
399108641
United Kingdom
1
United States
2075456467
Unknown Country
16
Vietnam
1
Files
File | Size | Format | Downloads |
---|---|---|---|
Kouda_2018_jnep_06011.pdf | 402.09 kB | Adobe PDF | -1412831259 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.