Please use this identifier to cite or link to this item:
http://essuir.sumdu.edu.ua/handle/123456789/71607
Or use following links to share this resource in social networks:
Tweet
Recommend this item
Title | Design of a Selective Smart Gas Sensor Based on ANN-FL Hybrid Modeling |
Authors |
Kouda, S.
Dendouga, A. Barra, S. Bendib, T. |
ORCID | |
Keywords |
fuzzy logic artificial neural networks gas sensor selectivity analytical model selective model |
Type | Article |
Date of Issue | 2018 |
URI | http://essuir.sumdu.edu.ua/handle/123456789/71607 |
Publisher | Sumy State University |
License | Copyright not evaluated |
Citation | Design of a Selective Smart Gas Sensor Based on ANN-FL Hybrid Modeling / S. Kouda, A. Dendouga, S. Barra, T. Bendib // Журнал нано- та електронної фізики. - 2018. - Т.10, № 6. - 06011. - DOI: 10.21272/jnep.10(6).06011 |
Abstract |
The selectivity is one of the main challenges to develop a gas sensor, the good chemical species detection in a gaseous mixture decreasing the missed detections. The present paper proposes a new solution for gas sensor selectivity based on artificial neural networks (ANNs) and fuzzy logic (FL) algorithm. We first use ANNs to develop a gas sensor model in order to accurately express its behavior. In a second step, the FL and Matlab environment are used to create a database for a selective model, where the response of this one only depends on one chemical species. Analytical models for the gas sensor and its selective model are implemented into a Performance Simulation Program with Integrated Circuit Emphasis (PSPICE) simulator as an electrical circuit in order to prove the similarity of the analytical model output with that of the MQ-9 gas sensor where the output of the selective model only depends on one gas. Our results indicate the capability of the ANN-FL hybrid modeling for an accurate sensing analysis. |
Appears in Collections: |
Журнал нано- та електронної фізики (Journal of nano- and electronic physics) |
Views

7206574

1

1

1679732840

1255694

1

1

2511387

1204351609

27348

1

2511390

1

1454

1

1

7206569

602175805

2075456468

399108635

521783947

1564696634

1

399108640

1564696631

-144054361

1696962377

11056
Downloads

1

1

1

1

1

1255694

1

7206571

1

399108637

1

1

399108641

1

2075456467

16

1
Files
File | Size | Format | Downloads |
---|---|---|---|
Kouda_2018_jnep_06011.pdf | 402.09 kB | Adobe PDF | -1412831259 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.