Please use this identifier to cite or link to this item:
http://essuir.sumdu.edu.ua/handle/123456789/76801
Or use following links to share this resource in social networks:
Tweet
Recommend this item
Title | Big Data & Analytics as a sustainable Customer Loyalty Instrument in Banking and Finance |
Authors |
Giebe, C.
Hammerström, L. Zwerenz, D. |
ORCID | |
Keywords |
великі дані та аналітика большие данные и аналитика Big Data & Analytics корпоративна соціальна відповідальність корпоративная социальная ответственность Corporate Social Responsibility інструмент лояльності клієнтів инструмент лояльности клиентов Customer Loyalty Instrument ділова етика деловая этика Business Ethics |
Type | Article |
Date of Issue | 2019 |
URI | http://essuir.sumdu.edu.ua/handle/123456789/76801 |
Publisher | Sumy State University |
License | Copyright not evaluated |
Citation | Giebe, C., Hammerström, L., Zwerenz, D. (2019). Big Data & Analytics as a sustainable Customer Loyalty Instrument in Banking and Finance. Financial Markets, Institutions and Risks, 3(4), 74-88. http://doi.org/10.21272/fmir.3(4).74-88.2019. |
Abstract |
A strong technological change and changed customer expectations influence the banking sector in Germany. Banks have more data about their customers than other industries. Innovative methods and solutions have been developed on the basis of mathematical-statistical models. This knowledge is used to focus on the customer and is termed as "Big Data & Analytics" and to be able to offer products that fit exactly from the information gained. |
Appears in Collections: |
Financial Markets, Institutions and Risks (FMIR) |
Views

136491

169624

1

1654408346

141974

10899

111840

134355

1209277623

1153822031

214068868

177698

1

1

1706819082

1

182574

522544213

1

1

-1530946678

1

75086

1

191767

172347

1

-1497273968

1673566871

106407

1

1

93377

18935162

-1302620561

-1530946680

1467355200

1

127428

179014

1654408344

171058

38430

1654408341

122572

1

1

212574

1

1

1209277613

1

209232

1

1209277590

38761

1004300560

522544236

199444

71114

27455

133994

1853964640

1

82435

522544238

1

1

1467355208

198322

49745

115914

1706819075

522544191

85212

1

522544211

1

-1530946689

58827

105563

119688

74575

144053749

-1302620564

-1302620563

-189946784

110596

1209277604
Downloads

228419

163076

90003

1766228152

1

1766228158

400779588

1

1

1

190995

1209277632

65254276

1

-1530946677

1

522544223

1283499129

1706819064

238284944

1209277612

1222445728

65254272

-1530946679

164238

860981791

88164

1673566896

149977

-1530946690

89689

1467355199

1

1

860981774

1

215984

1

89021039

1209277614

1

1

123261

214068871

1467355205

1

182762

1654408345

1

176030

145527

142957

1

522544239

27990

180294

1467355209

185698

1209277634

1361

144053745

181586

37755

522544212

-1530946688

1

1

209822

144053744

161045

79026

1467355207

214068870

1209277627

1

1209277606
Files
File | Size | Format | Downloads |
---|---|---|---|
Giebe_Big_Data_Analytics.pdf | 968.25 kB | Adobe PDF | 1467310068 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.