Please use this identifier to cite or link to this item:
https://essuir.sumdu.edu.ua/handle/123456789/82214
Or use following links to share this resource in social networks:
Tweet
Recommend this item
Title | The Mathematical Model for the Secondary Breakup of Dropping Liquid |
Authors |
Pavlenko, Ivan Volodymyrovych
Sklabinskyi, Vsevolod Ivanovych Doligalski, M. Ochowiak, M. Mrugalski, M. Liaposhchenko, Oleksandr Oleksandrovych Skydanenko, Maksym Serhiiovych Ivanov, Vitalii Oleksandrovych Włodarczak, S. Woziwodzki, S. Kruszelnicka, I. Ginter-Kramarczyk, D. Olszewski, R. Michałek, B. |
ORCID |
http://orcid.org/0000-0002-6136-1040 http://orcid.org/0000-0001-9388-5861 http://orcid.org/0000-0002-6657-7051 http://orcid.org/0000-0002-0277-1867 http://orcid.org/0000-0003-0595-2660 |
Keywords |
oscillatory wall vibrational impact Weber number critical value nonstable droplet |
Type | Article |
Date of Issue | 2020 |
URI | https://essuir.sumdu.edu.ua/handle/123456789/82214 |
Publisher | MDPI |
License | Creative Commons Attribution 4.0 International License |
Citation | Pavlenko, I.; Sklabinskyi, V.; Doligalski, M.; Ochowiak, M.; Mrugalski, M.; Liaposhchenko, O.; Skydanenko, M.; Ivanov, V.; Włodarczak, S.; Woziwodzki, S.; Kruszelnicka, I.; Ginter-Kramarczyk, D.; Olszewski, R.; Michałek, B. The Mathematical Model for the Secondary Breakup of Dropping Liquid. Energies 2020, 13, 6078. https://doi.org/10.3390/en13226078 |
Abstract |
Investigating characteristics for the secondary breakup of dropping liquid is a fundamental scientific and practical problem in multiphase flow. For its solving, it is necessary to consider the features of both the main hydrodynamic and secondary processes during spray granulation and vibration separation of heterogeneous systems. A significant difficulty in modeling the secondary breakup process is that in most technological processes, the breakup of droplets and bubbles occurs through the simultaneous action of several dispersion mechanisms. In this case, the existing mathematical models based on criterion equations do not allow establishing the change over time of the process’s main characteristics. Therefore, the present article aims to solve an urgent scientific and practical problem of studying the nonstationary process of the secondary breakup of liquid droplets under the condition of the vibrational impact of oscillatory elements. Methods of mathematical modeling were used to achieve this goal. This modeling allows obtaining analytical expressions to describe the breakup characteristics. As a result of modeling, the droplet size’s critical value was evaluated depending on the oscillation frequency. Additionally, the analytical expression for the critical frequency was obtained. The proposed methodology was derived for a range of droplet diameters of 1.6–2.6 mm. The critical value of the diameter for unstable droplets was also determined, and the dependence for breakup time was established. Notably, for the critical diameter in a range of 1.90–2.05 mm, the breakup time was about 0.017 s. The reliability of the proposed methodology was confirmed experimentally by the dependencies between the Ohnesorge and Reynolds numbers for different prilling process modes. |
Appears in Collections: |
Наукові видання (ТеСЕТ) |
Views
Australia
1
Canada
1
China
587609601
France
732
Germany
1175252058
Indonesia
1
Ireland
70024990
Japan
1
Lithuania
1
Netherlands
722
Singapore
1
Sweden
22071
Ukraine
95931
United Kingdom
1350585920
United States
1239360826
Unknown Country
256246505
Vietnam
43414
Downloads
Canada
1
China
1
Germany
1175252059
Lithuania
1
Singapore
1
Ukraine
80293
United Arab Emirates
1
United Kingdom
241350
United States
-1944463178
Vietnam
1
Files
File | Size | Format | Downloads |
---|---|---|---|
Pavlenko_dropping liquid_energies.pdf | 2.38 MB | Adobe PDF | -768889470 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.