Please use this identifier to cite or link to this item:
https://essuir.sumdu.edu.ua/handle/123456789/84595
Or use following links to share this resource in social networks:
Tweet
Recommend this item
Title | Neural network modeling of the economic and social development trajectory transformation due to quarantine restrictions during COVID-19 |
Authors |
Vasylieva, Tetiana Anatoliivna
Kuzmenko, Olha Vitaliivna Kuryłowicz, M. Letunovska, Nataliia Yevhenivna |
ORCID |
http://orcid.org/0000-0003-0635-7978 http://orcid.org/0000-0001-8575-5725 http://orcid.org/0000-0001-8207-9178 |
Keywords |
impact of COVID-19 forecast of quarantine measures impact socio-economic development of Ukraine economic mathematical model neural network |
Type | Article |
Date of Issue | 2021 |
URI | https://essuir.sumdu.edu.ua/handle/123456789/84595 |
Publisher | Centre of Sociological Research in co-operation with University of Szczecin (Poland); Széchenyi István University (Hungary); Mykolas Romeris University (Lithuania); Dubcek University of Trencín, Faculty of Social and Economic Relations (Slovak Republic) |
License | Creative Commons Attribution 4.0 International License |
Citation | Vasilyeva, T., Kuzmenko, O., Kuryłowicz, M., & Letunovska, N. (2021). Neural network modeling of the economic and social development trajectory transformation due to quarantine restrictions during COVID-19. Economics and Sociology, 14(2), 313-330. doi:10.14254/2071-789X.2021/14-2/17 |
Abstract |
The article uses neural networks to model the
effects of quarantine restrictions on the most important
indicators of the country's socio-economic development.
The authors selected the most relevant indicators and
formed a specific sequence of its calculation to study the
direction of transforming the trajectory of socio-economic
development of a particular country due to quarantine
restrictions. They used a multilayer MLP perceptron and
networks based on radial basis functions. They chose
BFGS and RBFT algorithms in neural network modeling.
Collinearity study was the basis for data mining in terms of
key factors of change. The author's approach is unique due
to an iterative procedure of numerical optimization and
quasi-Newton methods ("self-learning" and step-by-step
"improvement" of neural networks). The model projected
gross domestic product and the number of unemployed in
the country affected by the COVID-19 pandemic over the
three years. |
Appears in Collections: |
Наукові видання (ННІ БіЕМ) |
Views
Australia
-1009405191
Belgium
1
Canada
2104323969
China
1248319007
Colombia
2104323965
Czechia
214615
Ecuador
1
Egypt
193
Estonia
142071
Finland
1
France
1248319009
French Polynesia
1
Georgia
499416853
Germany
25439
Ghana
1
Greece
499416858
Hong Kong SAR China
823529510
Hungary
1
India
231607329
Indonesia
1022548229
Iran
22813
Iraq
26987953
Ireland
2071116398
Israel
1899422105
Italy
1
Japan
945411914
Kazakhstan
1
Lithuania
99887
Malaysia
904274204
Mexico
-1009405187
Morocco
131606
Netherlands
26987944
New Zealand
1
Pakistan
1886682744
Peru
1
Philippines
2104323980
Poland
499416859
Portugal
1
Romania
157129
Russia
1
Saudi Arabia
1
Singapore
2071116399
South Africa
40431
South Korea
410401733
Spain
154223
Sri Lanka
1
Switzerland
1
Taiwan
162644
Turkey
2104323970
Ukraine
1303010179
United Kingdom
-1009405190
United States
231607331
Unknown Country
1307058535
Vietnam
1013419371
Downloads
China
1303010179
Colombia
1
Czechia
100390
Estonia
1
Finland
1
France
-237250613
Georgia
499416862
Germany
26987952
Hong Kong SAR China
1
India
231607328
Indonesia
167450
Israel
1
Japan
165610
Jordan
1
Lithuania
209620
Malaysia
1
Mauritius
1
Mexico
1
Netherlands
1
Nigeria
1
Pakistan
1
Philippines
2104323978
Poland
1
Portugal
1
Romania
2333
Russia
2104323979
Singapore
1
Spain
19076
Taiwan
1
Tunisia
1
Turkey
1
Uganda
1
Ukraine
-237250614
United Kingdom
2104323957
United States
904274207
Unknown Country
1307058536
Vietnam
1013419372
Zimbabwe
67489
Files
File | Size | Format | Downloads |
---|---|---|---|
Vasilyeva_et_al._Neural_Network.pdf | 1.03 MB | Adobe PDF | -1759924778 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.