Please use this identifier to cite or link to this item: https://essuir.sumdu.edu.ua/handle/123456789/84595
Or use following links to share this resource in social networks: Recommend this item
Title Neural network modeling of the economic and social development trajectory transformation due to quarantine restrictions during COVID-19
Authors Vasylieva, Tetiana Anatoliivna  
Kuzmenko, Olha Vitaliivna  
Kuryłowicz, M.
Letunovska, Nataliia Yevhenivna  
ORCID http://orcid.org/0000-0003-0635-7978
http://orcid.org/0000-0001-8575-5725
http://orcid.org/0000-0001-8207-9178
Keywords impact of COVID-19
forecast of quarantine measures impact
socio-economic development of Ukraine
economic mathematical model
neural network
Type Article
Date of Issue 2021
URI https://essuir.sumdu.edu.ua/handle/123456789/84595
Publisher Centre of Sociological Research in co-operation with University of Szczecin (Poland); Széchenyi István University (Hungary); Mykolas Romeris University (Lithuania); Dubcek University of Trencín, Faculty of Social and Economic Relations (Slovak Republic)
License Creative Commons Attribution 4.0 International License
Citation Vasilyeva, T., Kuzmenko, O., Kuryłowicz, M., & Letunovska, N. (2021). Neural network modeling of the economic and social development trajectory transformation due to quarantine restrictions during COVID-19. Economics and Sociology, 14(2), 313-330. doi:10.14254/2071-789X.2021/14-2/17
Abstract The article uses neural networks to model the effects of quarantine restrictions on the most important indicators of the country's socio-economic development. The authors selected the most relevant indicators and formed a specific sequence of its calculation to study the direction of transforming the trajectory of socio-economic development of a particular country due to quarantine restrictions. They used a multilayer MLP perceptron and networks based on radial basis functions. They chose BFGS and RBFT algorithms in neural network modeling. Collinearity study was the basis for data mining in terms of key factors of change. The author's approach is unique due to an iterative procedure of numerical optimization and quasi-Newton methods ("self-learning" and step-by-step "improvement" of neural networks). The model projected gross domestic product and the number of unemployed in the country affected by the COVID-19 pandemic over the three years.
Appears in Collections: Наукові видання (ННІ БіЕМ)

Views

Australia Australia
-1009405191
Belgium Belgium
1
Canada Canada
2104323969
China China
1248319007
Colombia Colombia
2104323965
Czechia Czechia
214615
Ecuador Ecuador
1
Egypt Egypt
193
Estonia Estonia
142071
Finland Finland
1
France France
1248319009
French Polynesia French Polynesia
1
Georgia Georgia
499416853
Germany Germany
25439
Ghana Ghana
1
Greece Greece
499416858
Hong Kong SAR China Hong Kong SAR China
823529510
Hungary Hungary
1
India India
231607329
Indonesia Indonesia
1022548229
Iran Iran
22813
Iraq Iraq
26987953
Ireland Ireland
2071116398
Israel Israel
1899422105
Italy Italy
1
Japan Japan
945411914
Kazakhstan Kazakhstan
1
Lithuania Lithuania
99887
Malaysia Malaysia
904274204
Mexico Mexico
-1009405187
Morocco Morocco
131606
Netherlands Netherlands
26987944
New Zealand New Zealand
1
Pakistan Pakistan
1886682744
Peru Peru
1
Philippines Philippines
2104323980
Poland Poland
499416859
Portugal Portugal
1
Romania Romania
157129
Russia Russia
1
Saudi Arabia Saudi Arabia
1
Singapore Singapore
2071116399
South Africa South Africa
40431
South Korea South Korea
410401733
Spain Spain
154223
Sri Lanka Sri Lanka
1
Switzerland Switzerland
1
Taiwan Taiwan
162644
Turkey Turkey
2104323970
Ukraine Ukraine
1303010179
United Kingdom United Kingdom
-1009405190
United States United States
231607331
Unknown Country Unknown Country
1307058535
Vietnam Vietnam
1013419371

Downloads

China China
1303010179
Colombia Colombia
1
Czechia Czechia
100390
Estonia Estonia
1
Finland Finland
1
France France
-237250613
Georgia Georgia
499416862
Germany Germany
26987952
Hong Kong SAR China Hong Kong SAR China
1
India India
231607328
Indonesia Indonesia
167450
Israel Israel
1
Japan Japan
165610
Jordan Jordan
1
Lithuania Lithuania
209620
Malaysia Malaysia
1
Mauritius Mauritius
1
Mexico Mexico
1
Netherlands Netherlands
1
Nigeria Nigeria
1
Pakistan Pakistan
1
Philippines Philippines
2104323978
Poland Poland
1
Portugal Portugal
1
Romania Romania
2333
Russia Russia
2104323979
Singapore Singapore
1
Spain Spain
19076
Taiwan Taiwan
1
Tunisia Tunisia
1
Turkey Turkey
1
Uganda Uganda
1
Ukraine Ukraine
-237250614
United Kingdom United Kingdom
2104323957
United States United States
904274207
Unknown Country Unknown Country
1307058536
Vietnam Vietnam
1013419372
Zimbabwe Zimbabwe
67489

Files

File Size Format Downloads
Vasilyeva_et_al._Neural_Network.pdf 1.03 MB Adobe PDF -1759924778

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.