Please use this identifier to cite or link to this item:
https://essuir.sumdu.edu.ua/handle/123456789/87467
Or use following links to share this resource in social networks:
Tweet
Recommend this item
Title | Using Orthogonal Legendre Polynomials for Filtering Noisy Signals over a Limited Interval in Coordinate Space |
Other Titles |
Використання ортогональних поліномів Лежандра для фільтрації зашумлених сигналів на обмеженому інтервалі в просторі координат |
Authors |
Fitio, V.M.
Petrovska, H.A. Bobitski, Y.V. |
ORCID | |
Keywords |
цифрова голографія цифрова голографічна інтерферометрія шум фільтрація сигналів поліноми Лежандра ортогональність поліномів digital holography digital holographic interferometry noise signal filtering Legendre polynomials orthogonality of polynomials |
Type | Article |
Date of Issue | 2022 |
URI | https://essuir.sumdu.edu.ua/handle/123456789/87467 |
Publisher | Sumy State University |
License | In Copyright |
Citation | V.M. Fitio, H.A. Petrovska, Y.V. Bobitski, J. Nano- Electron. Phys. 14 No 1, 01032 (2022). DOI: https://doi.org/10.21272/jnep.14(1).01032 |
Abstract |
У роботі показано, що ортогональні поліноми Лежандра в інтервалі [– 1, 1] можна ефективно використовувати для фільтрації зашумлених сигналів, у тому числі для фільтрації інтерферограм і фазових карт у цифровій голографічній інтерферометрії. Також з їх допомогою можна ефективно апроксимувати гармонічні сигнали, причому точність апроксимації зростає зі збільшенням кількості використаних поліномів. Фільтрація грунтується на використанні оптимальної кількості поліномів Лежандра при апроксимації сигналу. Здійснювати фільтрацію безпосередньо цифрових голограм і фазових
карт недоцільно, так як при цьому необхідно використовувати кілька сотень поліномів, що істотно
збільшує час чисельних розрахунків. Тому в цифровій голографічній інтерферометрії необхідно фільтрувати безпосередньо амплітуди полів, що розраховуються з цифрової голограми. Інтерферограми та
фазові карти можна розрахувати, використовуючи відфільтровані амплітуди полів для різних станів
досліджуваного об'єкта. Якщо для дійсної або уявної частини сигналу мінімальна відстань між сусідніми локальними мінімумами (максимумами) дорівнює ∆l, то для задовільної апроксимації такого сигналу поліномами Лежандра потрібно 6/∆l поліномів. Ефективність фільтрації поліномами Лежандра
є вищою, якщо шумовий сигнал містить гармонічні складові з частотою більшою за частоту корисного
сигналу. The paper shows that orthogonal Legendre polynomials in the interval [– 1, 1] can be effectively used to filter noisy signals, including filtering interferograms and phase maps in digital holographic interferometry. They can also be used to effectively approximate harmonic signals, and the approximation accuracy increases with the number of polynomials used. Filtering is based on the use of the optimal number of Legendre polynomials when approximating the signal. It is impractical to filter directly digital holograms and phase maps, since in this case it is necessary to use several hundred polynomials, which significantly increases the time of numerical calculations. Therefore, in digital holographic interferometry, it is necessary to filter directly the field amplitudes calculated from the digital hologram. Interferograms and phase maps can be calculated using filtered field amplitudes for different states of the object under study. If for the real or imaginary part of the signal the minimum distance between adjacent local minima (maxima) is equal to ∆l, then for a satisfactory approximation of such a signal by Legendre polynomials, 6/∆l polynomials are required. The efficiency of filtering by Legendre polynomials is higher if the noise signal contains harmonic components with a frequency greater than the frequency of the useful signal. |
Appears in Collections: |
Журнал нано- та електронної фізики (Journal of nano- and electronic physics) |
Views
China
322
Finland
311
France
1
Greece
1
Ireland
15456
Japan
1
Lithuania
1
Singapore
1
Taiwan
645
Ukraine
300057
United Kingdom
56662
United States
3157663
Unknown Country
1
Downloads
Algeria
15456
Canada
2410742
China
916906
Ethiopia
1
Germany
916907
Hungary
1
Japan
1
Lithuania
1
Singapore
3157665
South Africa
1
South Korea
1
Taiwan
56669
Ukraine
543446
United Kingdom
1
United States
3157665
Files
File | Size | Format | Downloads |
---|---|---|---|
Fitio_jnep_1_2022.pdf | 637.52 kB | Adobe PDF | 11175463 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.