Please use this identifier to cite or link to this item: https://essuir.sumdu.edu.ua/handle/123456789/88018
Or use following links to share this resource in social networks: Recommend this item
Title Mathematical estimation of roughness Rz of threaded surface obtained by machining method
Authors Nekrasov, Serhii Serhiiovych  
Peterka, J.
Zhyhylii, Dmytro Oleksiiovych  
Dovhopolov, Andrii Yuriiovych
Kolesnyk, Vitalii Oleksandrovych  
ORCID http://orcid.org/0000-0001-9157-2829
http://orcid.org/0000-0002-7063-7213
http://orcid.org/0000-0002-0417-3801
Keywords helical surface
to-size tool
roughness
machining
formgenerating method
Type Article
Date of Issue 2022
URI https://essuir.sumdu.edu.ua/handle/123456789/88018
Publisher MM Publishing
License Creative Commons Attribution 4.0 International License
Citation Mathematical estimation of roughness Rz of threaded surface obtained by machining method / S. Nekrasov, J. Peterka, D. Zhyhylii et al. // MM Science Journal. 2022. June. P. 5699-5703. DOI: 10.17973/MMSJ.2022_06_2022090
Abstract The paper presents a mathematical model of the helical surface roughness Rz, obtained by the form-generating method with a to-size tool with a standard profile of cutting tool inserts. This machining method has maximum productivity with large pitches of the helix. The surface roughness of the auger flight is an important parameter since it works in a friction pair with an elastic element. The resulting dependence makes it possible to predict surface roughness in any of its sections, considering the helix curvature, depending on the feed and the cutting tool tip radius. The obtained dependence allows comparing the numerical solution with the linearized one obtained by finding the minimum distance from the intersection points of the tool edge circles at helical surface adjacent cutting points to the straight line connecting these adjacent points.
Appears in Collections: Наукові видання (ТеСЕТ)

Views

Argentina Argentina
1
Canada Canada
1
China China
1
Côte d’Ivoire Côte d’Ivoire
1
France France
1346981
Germany Germany
957971630
India India
1
Iran Iran
1
Ireland Ireland
7846
Singapore Singapore
1
South Korea South Korea
957971627
Taiwan Taiwan
1
Turkey Turkey
236304
Ukraine Ukraine
189880283
United Kingdom United Kingdom
2693833
United States United States
-1195773479
Unknown Country Unknown Country
945448709

Downloads

Brazil Brazil
1
China China
764066
Germany Germany
282134431
India India
1
Ireland Ireland
7843
Slovakia Slovakia
1
Ukraine Ukraine
16084599
United States United States
-1195773478
Unknown Country Unknown Country
945448710

Files

File Size Format Downloads
Necrasov_et_al_Mathematical_estimation_2022.pdf 921.64 kB Adobe PDF 48666174

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.