Please use this identifier to cite or link to this item:
https://essuir.sumdu.edu.ua/handle/123456789/88018
Or use following links to share this resource in social networks:
Tweet
Recommend this item
Title | Mathematical estimation of roughness Rz of threaded surface obtained by machining method |
Authors |
Nekrasov, Serhii Serhiiovych
Peterka, J. Zhyhylii, Dmytro Oleksiiovych Dovhopolov, Andrii Yuriiovych Kolesnyk, Vitalii Oleksandrovych |
ORCID |
http://orcid.org/0000-0001-9157-2829 http://orcid.org/0000-0002-7063-7213 http://orcid.org/0000-0002-0417-3801 |
Keywords |
helical surface to-size tool roughness machining formgenerating method |
Type | Article |
Date of Issue | 2022 |
URI | https://essuir.sumdu.edu.ua/handle/123456789/88018 |
Publisher | MM Publishing |
License | Creative Commons Attribution 4.0 International License |
Citation | Mathematical estimation of roughness Rz of threaded surface obtained by machining method / S. Nekrasov, J. Peterka, D. Zhyhylii et al. // MM Science Journal. 2022. June. P. 5699-5703. DOI: 10.17973/MMSJ.2022_06_2022090 |
Abstract |
The paper presents a mathematical model of the helical surface
roughness Rz, obtained by the form-generating method with a
to-size tool with a standard profile of cutting tool inserts. This
machining method has maximum productivity with large pitches
of the helix. The surface roughness of the auger flight is an
important parameter since it works in a friction pair with an
elastic element. The resulting dependence makes it possible to
predict surface roughness in any of its sections, considering the
helix curvature, depending on the feed and the cutting tool tip
radius. The obtained dependence allows comparing the
numerical solution with the linearized one obtained by finding
the minimum distance from the intersection points of the tool
edge circles at helical surface adjacent cutting points to the
straight line connecting these adjacent points. |
Appears in Collections: |
Наукові видання (ТеСЕТ) |
Views
Argentina
1
Canada
1
China
1
Côte d’Ivoire
1
France
1346981
Germany
957971630
India
1
Iran
1
Ireland
7846
Singapore
1
South Korea
957971627
Taiwan
1
Turkey
236304
Ukraine
189880283
United Kingdom
2693833
United States
-1195773479
Unknown Country
945448709
Downloads
Brazil
1
China
764066
Germany
282134431
India
1
Ireland
7843
Slovakia
1
Ukraine
16084599
United States
-1195773478
Unknown Country
945448710
Files
File | Size | Format | Downloads |
---|---|---|---|
Necrasov_et_al_Mathematical_estimation_2022.pdf | 921.64 kB | Adobe PDF | 48666174 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.