Please use this identifier to cite or link to this item:
https://essuir.sumdu.edu.ua/handle/123456789/96097
Or use following links to share this resource in social networks:
Tweet
Recommend this item
Title | Enhancing Nanocomposite Filtration Membranes: Refined SVM Approach for Precise Estimation of Permeate Flux and Foulant Rejection |
Other Titles |
Покращення нанокомпозитних фільтраційних мембран: удосконалений підхід SVM для точної оцінки потоку пермеату та відторгнення забруднень |
Authors |
Yawalkar, P.M.
William, P. Tidake, V.M. Patare, P.M. Khatkale, P.B. Khatri, A.A. Ingle, S.S. |
ORCID | |
Keywords |
тонкоплівковий нанокомпозит (TFN) машинне навчання пермеатний потік відмова від забруднень вдосконалена опорна векторна машина (RSVM) thin-film nanocomposite (TFN) machine learning permeate flux foulant rejection refined support vector machine (RSVM) |
Type | Article |
Date of Issue | 2024 |
URI | https://essuir.sumdu.edu.ua/handle/123456789/96097 |
Publisher | Sumy State University |
License | Creative Commons Attribution 4.0 International License |
Citation | P.M. Yawalkar et al., J. Nano- Electron. Phys. 16 No 3, 03016 (2024) https://doi.org/10.21272/jnep.16(3).03016 |
Abstract |
Нанокомпозитні фільтраційні мембрани з’явилися як потенційні технології очищення та розділення води.
Однак надійна оцінка відторгнення забруднюючих речовин і потоку пермеату залишається важкою через складну
взаємодію багатьох компонентів. Традиційні методи моделювання не можуть повністю проконтрольювати складну
динаміку в роботі. У цій статті запропонована стратегія удосконаленої опорної векторної машини (RSVM) для
вирішення цієї проблеми та підвищення продуктивності нанокомпозитних фільтраційних мембран. Для
нормалізації функцій дані попередньо обробляються за допомогою мінімально-максимальної нормалізації.
Відображаються характеристики даних: рівень відторгнення забруднюючих речовин, значення потоку пермеату,
характеристики мембрани та експериментальна установка. Крім того, запропонований RSVM для визначення
найкращих вхідних факторів для ефективності кожної нанокомпозитної мембрани. Завдяки високій стійкості
RSVM і великій здатності моделі ML до узагальнення, отримані результати продемонстрували, що ефективність
прогнозування моделі RSVM (R2 = 0,995) перевершує математичну модель з точки зору ефективності
прогнозування. Для проведення навчання, перевірки та тестування для цієї роботи були використані статистичні
дані, включаючи 764 зразки вхідних змінних (п’ять) і вихідних змінних (дві). Підхід RSVM забезпечує надійний і
ефективний спосіб прогнозування забруднення нанокомпозитної мембрани та фільтрації води шляхом
прогнозування відторгнення забруднюючих речовин і флюсу пермеату. The nanocomposite filtration membranes have emerged as potential water purification and separation technologies. However, reliable estimation of foulant rejection and permeate flux remains difficult due to the complicated interaction of many components. Traditional modeling techniques fail to capture the complex dynamics at work. In this paper, we provide a Refined Support Vector Machine (RSVM) strategy to solve this issue and increase the performance of nanocomposite filtration membranes. To normalize the features, the data are pre-processed using min-max normalization. Data features like foulant rejection rates, permeate flux values, membrane features, and experimental setup are displayed. Furthermore, the proposed RSVM to determine the best input factors for the effectiveness of each nanocomposite membrane. Due to the strong resilience of RSVM and the great generalization ability of the ML model, the obtained results demonstrated that the RSVM model's prediction efficiency (R2 = 0.995) outperformed the mathematical model in terms of prediction performance. To conduct training, validation and testing for this work, we employed statistical data including 764 samples of the input variables (five) and output variables (two). The RSVM approach provides a dependable and effective way to forecast membrane fouling and water filtration by predicting foulant rejection and permeate flux. |
Appears in Collections: |
Журнал нано- та електронної фізики (Journal of nano- and electronic physics) |
Views
China
1
India
15
United States
34
Unknown Country
1
Downloads
China
1
India
33
Singapore
1
United States
31
Unknown Country
1
Files
File | Size | Format | Downloads |
---|---|---|---|
Yawalkar_jnep_3_2024.pdf | 540.79 kB | Adobe PDF | 67 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.