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The melting of ultrathin lubricant film by friction between atomically
flat surfaces is studied. In the case of a second-order transition the spatial
distributions of the elastic shear stress and stain, and the temperature are
described on the basis of Ginzburg-Landau equation. The additive noises of
above quantities are introduced for building a phase diagrams with the
domains of sliding, stick-slip, and dry friction. It is shown that increase of the
strain noise intensity causes the lubricant film melting even at low
temperatures of the friction surfaces. Taking into account the deformational
defect of the shear modulus the analogical phase diagrams are obtained in the
case of a first-order transition.
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The study of the noise influence on the friction process has an evident fundamental
and practical importance because in some experimental situations the fluctuations can
change the frictional behavior critically, for example, providing the conditions for low
friction [1]-[3]. In particular, the thermal noise, acting in any experiments, can convert
the ultrathin lubricant film from stable solidlike phase state to the liquidlike one and,
thus, transform the dry friction into the sliding or the stick-slip (the interrupted) modes.
Therefore, in recent years the considerable study has been given to the influence of
disorder and random impurities in the interface on the static and the dynamic frictional
phenomena [4]-[6]. These investigations show that a periodic surfaces are characterized
by smaller friction coefficient during sliding than non-regular ones. Besides, the stick-
slip dynamics, inherent in solid friction, attracts an increased attention on the atomic
[71-[9] and the macroscopic [10, 11] levels as well as for granular mediums [12]-[14].
In order to achieve the better understanding of the above phenomena, here an analytic
approach is put forward, which describes the transitions between friction modes due to
variation of fluctuations of elastic and thermal fields. Moreover, in the simplest case the
proposed model gives insight into their spatial distribution in the lubricant film.

In the previous work [15] on the basis of rheological description of viscoelastic
medium the system of kinetic equations has been obtained, which define the mutually
coordinated evolution of the elastic shear components of the stress ¢ and the strain ¢,
and the temperature 7 in ultrathin lubricant film during friction between atomically flat
mica surfaces. Let us write these equations using the measure units
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for variables c,¢,7, respectively, where p is the mass density, ¢, is the specific heat
capacity, 7. is the critical temperature, m, En(T = 2Tc) is the typical value of shear
viscosity M, Tp Eplzcv/k is the time of heat conductivity, / is the scale of heat
conductivity, k is the heat conductivity constant, T, is the relaxation time of matter
strain, G, =1, /1,

T,6=-C6+ g€, 2
te=-e+(T-1o, 3)
1,7 =(T -T)+oce+c>. “)

Here the stress relaxation time T, the temperature 7, of atomically flat mica friction
surfaces, and the constant g = G/G, are introduced, where G is the lubricant shear

modulus. It can be seen [15, 16] that Egs. (2) and (3) are the Maxwell -type and the
Kelvin-Voigt equations for viscoelastic matter, correspondingly. The latter takes into
account the dependence of the shear viscosity on the dimensionless temperature
n=mn,/(T -1). Equation (4) represents the heat conductivity expression, which describes

the heat transfer from the friction surfaces to the layer of lubricant, the effect of the
dissipative heating of a viscous liquid flowing under the action of the stress, and the
reversible mechanic-and-caloric effect in linear approximation. These equations coincide
with the synergetic Lorenz system formally [17, 18], where the elastic shear stress acts
as the order parameter, the conjugate field is reduced to the elastic shear strain, and the
temperature is the control parameter. As is known this system can be used for
description of the thermodynamic phase and the kinetic transitions.

The structure of the article is the following. Section 2 is devoted to construction of
the Ginzburg-Landau scheme describing the spatial distributions of elastic and thermal
fields in the lubricant film. In Section 3 the additive noises of the shear components of
the elastic stress and strain, and the temperature are taken into account. The phase
diagrams are calculated defining the domains of sliding, stick-slip, and dry friction in the
planes temperature noise intensity - temperature of friction surfaces and noise intensity
of shear elastic strain - temperature noise intensity. In these sections the solidlike
lubricant is assumed to be amorphous (disordered). Therefore I study the glass transition
represented in terms of a second-order transition. In Section 4 taking into consideration
the deformational defect of the shear modulus the crystal-fluid transition is modeled as a
first-order transition.

Approach described in Ref. [15] permits to take into account the nonhomogeneity
along the perpendicular direction y to the confining walls (value =0 corresponds to the
boundary of moving wall). With this aim, one should assume that divergence of heat

current vector q =—«xVT is equal to —divq = (K/lz)(Te -7+ kV2T , where V stands

for a derivative with respect to y. Accordingly, measuring the coordinate y in units of /
equation (4) gets the additional term describing the nonhomogeneous distribution of the
temperature:

1,7 =V*T+(T, -T)-oce+c>. (5)
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Experimental data for organic lubricant [7] show that relaxation time of the stress
1, atnormal pressure is ~10"" s, and it increases by several orders of magnitude at large

pressures. The corresponding time of the strain can be estimated by t, = a/c ~ 10712 s,
where @ ~ 1 nm is the lattice constant or the intermolecular distance and ¢ ~ 10° m/s is
the sound velocity. Since the ultrathin lubricant film consists of less than ten molecular
layers the relaxation process of the temperature to the value 7, occurs during time tr
satisfying the condition
T, Ty << Tg . 6)

These inequalities of hierarchical subordination are called adiabatic approximation
in synergetics and mean that in the course of medium evolution the strain &(¢) and the
temperature 7(¢) follow the change of the stress (f). Due to conditions (6) the left-hand
sides of Egs. (3) and (5), containing the small relaxation times, are set to be equal to zero
and the analytic solution is possible. Besides, within the framework of the one-mode
approximation the operator V is replaced by ratio (//L)*, where L is the maximal value
of the heat conductivity length [15]." As a result, the strain ¢ and the temperature T are
expressed in terms of the stress value o:

gzc{l_jﬂ@}, -

1-(/L)* + &>
T,(/L)° +(2-T,)c’
1-(/L? +c>

Insertion of Eq. (7) into (2) provided that o <<1+ 1/ L)2 and reverse transition

T=T,+

e

®)

from (I/ L)2 to the operator V? give in the domain g7, ~ 1
1,61+ g(1-T,)lo+(2g -1)o’ +V?c-2gV?c’ +2gVic. 9)
Then, within the framework of automodel representation in accordance with that
each derivative V adds the order of smallness, neglecting the powers of o larger than the

third order, the system (2), (3), and (5) is reduced to the time-dependent Ginzburg-
Landau equation:

to=vio- L, (10)
o0c
which form is defined by synergetic potential
o’ ot
E=[1+g(1—T3)]7+(1—2g)7~ an
If the temperature 7, is smaller than the critical value
T.=1+g"'; g=G/G,<1/2, Gy=n,/t,, (12)

the potential (11) assumes a minimum corresponding to the stress o=0 so that the
melting can not take place and the solidlike state is realized. At the opposite case 7, > T,
the stationary shear stress has the nonzero value

! Subsequent examination shows that the quantity / can be considered as the
lubricant film thickness.
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This causes the melting of film and its transition into fluidlike state. In accordance
with Egs. (7) and (8) at (/L)=0, the corresponding stationary values of strain and
temperature are as follows:

T,(1- - T, -
. {M} g Te=2et) 14
g1, -3) g, -3)
In the steady state 6 =0 equation (10) has the first integral
_ 2
Lvoy =E+|E)|, E, EE(UO);—M. (15)
2 41-2g)

Here it is taken into consideration that in the "ordered" phase meeting y=-co the
fulfillment of conditions ¢ =0, Vo =0 requires the equality of integration constant to

the absolute value of "ordering" potential E|.
Solution of Eq. (10) at the stationary conditions shows that the shear stress
distribution is presented by the kink

_ Yo~ ¥ 2 _ 2
a—aotanh[ : j, & _gTL)—(g+1)’ (16)

where the correlation length ¢ is introduced diverging at the critical value of friction
surfaces temperature. The integration constant yo>>¢ defines the width of a boundary
domain in which the shear stress decreases from the steady state value (13) to the zero.
Substitution of Eq. (16) into (7) gives the similar strain & vs y dependence. Plugging
distribution (16), decreasing on the correlation length & into the formula (8) it is seen
that in the transition region the temperature monotonically increases from the value

T,(/L)* + (2 - T,)o5 tanh* (v, /&)
1—(I/L)* + oj tanh?(y, /&)

at y=0 to the maximal magnitude ' =T, /[1-(I/ L)z] at y=y,. If the value of / is equal to

film thickness then at y,<y</ the shear stress changes sign and increases in absolute
value but the temperature decreases. Such o(y) and 7()) dependencies imply that in the
vicinity of confining walls the key role is played by the shear melting and near the
boundary y=y, the thermodynamic melting prevails. However, it is worth noting that
formal using of Eq. (15) at y=),, corresponding to the 0=0 leads to the finite gradient of
shear stress

T=T, +

e

a7

gy =20 = &lem(8*]) (18)
¢ [2(1-29)]

In this section, as well as in Ref. [15], a melting of ultrathin lubricant film by
friction between atomically flat mica surfaces has been represented as a result of action
of spontaneously appearing elastic field of stress shear component caused by the heating
of friction surfaces above the critical value T,=1+g"'. Thus, according to such approach
the studied solid-liquid transition of lubricant film occurs due to both thermodynamic
and shear melting. The initial reason for this self-organization process is the positive
feedback of T'and o on ¢ [see Eq. (3)] conditioned by the temperature dependence of the
shear viscosity leading to its divergence. On the other hand, the negative feedback of o
and € on T in Eq. (5) plays an important role since it ensures the system stability.
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According to this approach the lubricant represents a strongly viscous liquid that
can behave itself similar to the solid - has a high effective viscosity and still exhibits a
yield stress [7, 16]. Its liquidlike state corresponds to the elastic shear stress which rel ax
to the zero value during larger times 7, than that of the solidlike state. Moreover, at =0

Eq. (3) reduces to the Debye law describing the rapid relaxation of the elastic shear
strain during the microscopic time 7, ~10"% s. At that the heat conductivity equation (4)

takes the form of simplest expression for temperature relaxation that does not contain the
terms representing the dissipative heating and the mechanic-and-caloric effect of a
viscous liquid. Also, it is assumed that the film becomes more liquidlike and the friction
decreases with the temperature growth due to decreasing activation energy barrier to
molecular hops.

In accordance with Ref. [11] in the absence of shear deformations the temperature

mean-square displacement is defined by equality <u2> =T/Ga, where a is the lattice
constant or the intermolecular distance. The average shear displacement is found from
the relationship <u2> =c6%a?/G? . The total mean-square displacement represents the

sum of these expressions provided that the thermal fluctuations and the stress are
independent. Above implies that the transition of lubricant from solidlike to fluidlike
state is induced both by heating and under influence of stress generated by solid surfaces
at friction. This agrees with examination of solid state instability within the framework
of shear and dynamic disorder-driven melting representation in absence of thermal
fluctuations. Thus, the strain fluctuations, related to the stress ones, and the thermal
fluctuations will be considered independently.

Consider now the affect of additive noises of the elastic stress and strain shear
components &, €, and the temperature 7. With this aim, one should add to right-hand

sides of Egs. (2)—(4) the stochastic terms / (1;/ 21 gl/ 2g, I}/ 2¢ (here the noise intensities

1, 1., I; are measured in units of cf,, 831;2, (Tck/ 1)2 , correspondingly, and &(¢) is

the 6 — correlated stochastic function) [19]. Then, within the adiabatic approximation
T, >> 1., Tr , equations (3) and (4) are reduced to the time dependencies

e(t)=E+EE(t), T(t)=T +TE®); 19)
g= G(Te -1+ 62)1(6), g =41, +1,6%d(o),
T = Q + 262)1(6), T =yI; +1,6°d(c), d(o)=(1+c3)". (20

Here, deterministic components are reduced to obtained in Ref. [15], whereas
fluctuational ones follow from the known property of variance additivity of independent
Gaussian random quantities [19]. Thus, using the slaving principle inherent in
synergetics [17, 18] transforms noises of both strain € and temperature 7', which are
adiabatic initially, to multiplicative form. As a result, a combination of Egs. (2), (19),
and (20) leads to the Langevin equation

. ov
156 = f(0) + 4 1(0)&(), =2 2y
where the force f is related to the synergetic potential [15]
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T
- %(1 _g)o? + g(l ; 7")111(1 +o?) 22)
and an expression for the effective noise intensity
1(0) =1, + (1, + 1,6% k2d* (o) (23)

is obtained in accordance with above mentioned property of noise variance additivity. In
order to avoid mistakes, one should notice that a direct insertion of Egs. (19) and (20)
into (2) results in the appearance of a stochastic addition

172 (1172 + 1326 kd (o) Jet) 24)
whose squared amplitude is quite different from the effective noise intensity (23).
Moreover, in contrast to the expressions (20), a direct use of the adiabatic approximation
in Egs. (3) and (4) reduces the fluctuational additions in Egs. (19) to the forms

g=V2+1)%6)d(0), T = (IF? = I''26)d(5) . The latter is obviously erroneous since

the effective noise of the temperature T disappears entirely for the stress o=,/I; /1 .

The reason for such a contradiction is that the Langevin equation does not permit the use
of usual analysis methods (see [19]).
To continue in the usual way, let us write the Fokker -Planck equation related to the
Langevin Eq. (21):
% = i{— 7(©)Po.1)+ 2 1(0) (s, z)]} : (25)
t oc o0c
At steady state, that is the single considered case, the probability distribution
P(c,T) becomes a time-independent function P(c). Consequently, under the usual

condition, that the expression in braces of the right-hand side of Eq. (25) is equal to zero,
this leads to a stationary distribution

P(c) =Z 'exp{-U(0)}, (26)
where Z is a normalization constant. The effective potential
o ’ v
U(0)=Ini(o)- [N Do, =-2L 27)
o 1(c") o0c

is determined by the synergetic potential ¥ [Eq. (22)] and the noise intensity /(o)
[Eqg. (23)] [20]. Combining these expressions, one can find the explicit form of U(o),
which is too cumbersome to be reproduced here. The equation defining the locations of
the maximums of the distribution function P(o)

(1-g)x’ +g2-T)x* -2g*I;x+4g°(I; —1,)=0, x=1+07, (28)
is much simpler. According to Eq. (28) maximums are insensitive to changes in the
intensity of the noise /; of the stress o, but they are determined by the value 7, of the
friction surfaces temperature and the intensities /, and /; of the noises of the strain ¢

and the lubricant film temperature 7, which acquire the multiplicative character in
Eq.(23). Hence, for simplicity I, can be set equal to 0 and Egs. (22), (23), and (27) give
the following expression for the effective potential:



STOCHASTIC MODELS OF ULTRATHIN... 29

U(o) =

2
ili(1-g)-g@-T)m1 +o/i]+ (1- g)-
2g2[T{ 2 (29)

1
+lg2-T,)-i(1- g)lo}+ ln[gzdz(c)(lg - cle)l i=t-l
T
According to Eq. (28) the effective potential (29) has a minimum at ¢ =0 if the
temperature 7, does not exceed the critical level
T°=1+g ' +2g(I; -21I,) (30)
whose value increases at increasing the characteristic value of shear viscosity m, and

the temperature noise intensity, but decreases with growth of the shear modulus G of
lubricant and the strain noise. Here, the lubricant film does not melt. The solutions of Eq.

(28)
i S o I

are obtained on the line defined by expression (30) after elimination of the root 6 =0.
At T, < TL,0 = 2(1 +2g7! )3 the roots o, are complex, starting from 7, = TL,0 they

H ™

become zero, and at 7, >TL,0 one has real magnitudes o, =—c_ #0 that implies
lubricant film melting. If equality (30) is fulfilled, the root =0 corresponds to the
minimum of the effective potential (29) at T, <TL,O, whereas at T, >TL,0 this root
corresponds to the maximum, and the roots o - to symmetrical minimums.

Now, let us find another condition for the stability of the roots &, in the simple

case I, =0. Setting the discriminant of Eq. (28) equal to zero, one gets the equations

Lo p2opl2ll-g 2-T,| 2-T)'| @-T) _, (32)
A P 3 81-g) | 2e(1-g)

the second of which gives

1/2
21T:2_7{1g+2Te}(2Tg)zi {g(lggnj(2TE)ZT+2(2TE)3 .(33)
2gl g 3 8(1-g) |[28\ g 3 8(1-¢) gl-g)

This equation defines a bell-shaped curve 7,(/;) which intersects the horizontal

axis at the point

1/2
— 2 _ 2
I - 93 jg)+8g N 93 jg)+8g N 16 ’ (34)
2g7(1-g) 2g°(1-g) g(l-2)
and vertical axis at the point 7, = 2. It has a maximum 7, =2 g 'at

2(1-

=28 (35)
g

It is easy to see that line (30) touches the curve (33) at the tricritical point
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2 - 1-g
T,=T"=2(1+2g™", I= . 36
: F02e ) = (36)
Thus, this point addresses to the appearance of real roots o, #0 (31) of Eq. (28)

that means lubricant film melting.
Let us now consider the more general case of two multiplicative noises .,/; #0.

The condition of extremum of the effective potential (29) splits into two equations, one
of which is simply 6 =0, and the other one is given by Eq. (28). As mentioned above,
the analysis of the latter indicates that the line of existence of the zero solution is defined
by expression (30). The tricritical point 7 has the coordinates

T,= %(1 +2g7 —2gl,), Ir= 6i(g*‘ —1+8gl,). 37)
g

The phase diagrams for the fixed intensities [/, are shown in Fig. 1. Physically, one

should take into consideration that lines 1 and 2 define the thresholds of stability loss of
the system. Above straight line 1 the system manifests a stable sliding friction (SF)
inherent in the liquidlike phase of lubricant, below curve 2 the dry friction (DF) occurs
that is characteristic for the solidlike state of lubricant film. Between these lines the
region of the stick-slip friction (SS) mode is realized, i.e., mode that is characterized by
periodic transitions between two dynamic states during steady-state sliding. It is relevant
to an intermittent regime of lubricant melting, where a mixture of both solidlike and

liquidlike phases exists. For 7, < (1+ gil)/ 4g the situation is generally the same as in
the simple case I, =0 (see Fig. la). At I, >(1+ gil)/ 4g the sliding friction is possible
even for small values of temperature 7, of friction surfaces and noise intensities I of
the lubricant film temperature (Fig. 1b). According to (37) the tricritical point lies on the
I-axis at I, =(1+ 2g71)/ 2g , and if the noise intensity [, is larger than the critical
value I, = 2g7%, the stable dry friction domain disappears (see Fig. 1c). It is worth

noting that this domain decreases with increase of the shear modulus value G and
decrease of the characteristic value of shear viscosity 1.
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Fig. 1. Phase diagrams at g=0.5 and fixed values /,: a— I, =12; b—1I, =5;
c— I, =8. Lines / and 2 define the boundary of stability domains of sliding

(SF), dry (DF), and stick-slip (SS) friction (7 is the tricritical point, C is the
critical point)

The consideration of the additive noises of o,&, and T shows that the

stochasticity influence is non-essential for the shear component of elastic stress tensor
and it is crucial for both the corresponding component of strain and the lubricant film
temperature. The boundary of the domain of sliding friction is fixed by the equality for
the noise intensities

Iy =21, -(1+g)/2g%, (38)
following from Eq. (28) at the conditions x=1(c=0), and 7, =0. According to

Eq.(38) in absence of the temperature noise the lubricant melting occurs if the noise
intensity of the shear strain component exceeds the value

Iy =(1+g)/4g”, (39)
corresponding to the point O in Fig. 2. The increase of both the shear strain and the
temperature noises causes the lubricant melting if their intensities are bounded by

condition (38). The domain of the stick-slip friction appears with further increase of
these intensities above magnitudes
; _2+g)

el — 2

2g

3+g
2g2

Ir = (40)
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at the tricritical point 7 in Fig. 2. Such an intermittent behavior is realized within the
region located above straight line (38) and outside the curve that is determined by

5 2 1/2

Igzl{l+ g }L 4g - 28 4 2( 2 +IT]+ 2U7 +13 . (41)
3-g)] 270-g)° [270-2) 3(1-2)* | 90-2) 1-g

If the noise intensity of the shear strain exceeds the value [, defined by (41) with

the temperature noise Iy, =2(3-g)/ g” (the point C in Fig. 2), the dry friction region
disappears at all. The curve (41) intersects the vertical axis at the point

1/2
270-8) 91 +[[27(1-g)+2 1 ]2+ 16} )

1
I = — - -
P7al 2g? g 21-9) 28> g 21-g)) g(-g)

above that the dry friction does not take place. The corresponding phase diagram
depicted in Fig. 2 has a very non-trivial form (especially, within the domain
[sl S[s S182 )

|

|

|
0 2 4 6 8 10 ‘e
Fig. 2. Phase diagram for the system with 7, =0, g =0.5,and /., I; #0

The Maxwell equation (2) assumes the use of the idealized Genki model. For the
dependence o(¢) of the stress on the strain this model is represented by the Hooke
expression 6=Ge at € < g, and the constant c,, =G¢,, at € > g, (G, €&, are the maximal
stress and strain, ¢ > o, leads to viscous flow with the deformation rate
€ =(G—Gm)/ n). Actually, the dependence o(e) curve has two regions: first one,
Hookean, has the large slope fixed by the shear modulus G, and it is followed by the
more gently sloping section of the plastic deformation whose tilt is defined by the
hardening factor ® < G. Obviously the above picture means that the shear modulus,
introduced (in terms of the relaxation time 1) in Eq. (2), depends on the stress value. In
work [15] we used the simplest approximation

G-0

Go)=0+——, (43)

1+G/Gp
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which describes the above represented transition of the elastic deformation mode to the
plastic one. It takes place at characteristic value of the stress o, which does not exceed
the value o, (in other case the plastic mode is not manifested). As a result, the relaxation
time 7, obtains the dependence on the stress value:

,1_
1 _1 1+L A (44)
(0) T, l+o/c,

where the relaxation time is introduced for the plastic flow mode 1,=mn,/©

(ns =145G is the effective value of viscosity), and the quantity 6 =0/G <1 is the
parameter describing the ratio of the tilts for the deformation curve on the plastic and the
Hookean domains. Note that at description of the structural phase transitions of a
liquidlike lubricant the third order invariants, breaking the parity of ' vs ¢ dependence,
is present. Therefore in approximation (44) we used the linear term ©/c,, instead of the
square one (cs/csp)2 [18]. It is apparent that in the following, dependence (45) is not
already even.

Within the adiabatic approximation (6) the system of the Lorenz equations (2)-(4),
where instead of the 1, it is necessary to use dependence 14(c), is reduced as well as
above, to the Langevin equation (21) with 1, instead of t,. However in the synergetic

potential (22) the factor g =G/G, is replaced by gg = G? /Gy® <1, that is formally

supposed to be no dependent on &, and the odd term appears proportional to 87" —1:
T
V= 2li-go )’ +g®[1—7€jln(l+02)+ 20! —1{5—111 j (45)
o

Here the constant o =6, /0, is introduced. The equation defining the locations of

(&)
1+—
o

the maximums of the stationary distribution function P(c) takes the form [cf. Eq. (28)]

© 1+ lxlx—l

According to Eq. (46) the probability distribution P(c) has nota maximum at 6=0,

i.e., sliding friction occurs, if the temperature 7, exceeds the critical level (30). Although
there is no way to construct the phase diagrams analytically, their numerical treatment
leads to the situation depicted in Figs. 1 and 2. Thus, the system b ehavior qualitatively
coincides with that studied in Section 3.

The above consideration of the thermal and elastic fields noise influence on the
solid-liquid transition of ultrathin lubricant film permits to define the domains of dry,
sliding, and stick-slip friction modes in the phase diagram. So that, an evidence of the
phase diagram complication is obtained due to studied fluctuations. Depending on the
initial conditions the growth of lubricant film's temperature noise can decrease or
increase friction, but the growth of elastic shear strain noise increases the sliding friction
region only. It is shown that dry friction domain is bounded by relatively small values of
the confining walls temperature and the noise intensities of lubricant strain and
temperature (see Figs. 1 and 2). Thus, used here approach predicts the possibility for
controlling of frictional behavior.

The theory of second-order transformation is based on the time-dependent
Ginzburg-Landau equation (10), defined by the synergetic potential (11), which

,1 _
{1 o -1 }ﬁ +80(2-T)x* —2g3I;x+4gd(I; —1,)=0,x=1+c". (46)
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describes the coordinate dependence of the basic freedom degrees during the glass
melting transition. The corresponding system's kinetics is determined by Langevin
equation (21) with the synergetic potential (22). At description of first-order (crystal-
liquid) transition in Eq. (21) relaxation time T, is replaced by 1, =m,/©® and the

potential has the form (45).

Above the concept of dynamical shear melting of the ultrathin lubricant film has
been used [10, 11]. In accordance with it the stick-slip friction can be described and such
melting is represented as a result of action of elastic field of shear stress component
caused by the heating of friction surfaces above the critical value. The essential
limitation of this approach is the fact that stick-slip motion I studied was independent of
the way in which the system was driven, i.e., elasticity and mass of the confining walls,
although for such friction mode the mentioned dependence is crucial. It is worth noting
that here the temperature of the confining walls 7, plays a role of the parameter of

P

external influence. Besides, the friction force decreases with increasing velocity at the
contact V' =1[0g/0t because the latter leads to the growth of the shear stress according to
the Maxwell-type stress-strain € relation: 0c/0t = -6/t + GOg/ 0t .
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CTOXACTHYHI MOJEJI IVIABJIEHHSI
YJAbBTPATOHKOI IVIIBKN MACTHUJIA

0. XoMeHKo0

CymcoKutl OeparcasHull yuigepcumen,
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JlocnimKyeThCsl TUTABJIEHHST YIIBTPATOHKOI IUTIBKM MacTHia B HPOIEC TepPTsS MiX
aTOMHO IUIOCKMMH ToOBepxHsMH. Ha ocHOBi piBHsHHs [1H30ypra-Jlanmay y BHUmaaky
Nepex oy JPYroro poiy ONHCaHi MPOCTOPOBI PO3IOIIIN NPYXHUX 3CYBHHUX HAIIPYKEHb
1 nedopmariii, a TakoXX TemrepaTypd. BBeneHo aquTHBHI IIyMH BKa3aHHWX BEIWYMH Ta
moOynoBaHi (a3oBi JiarpaMu, ¢ BU3HAYCHI OOJACTI KOB3aHHS, INEPEPUBYACTOrO Ta
cyxoro tepts. [TokazaHo, 10 301IbIICHHS IHTEHCUBHOCTI mIymMy nedopmariii npuBoauTh
JO IUIABJIEHHA IUTIBKM MacTHjia NpU HHU3BKHX TEMIEpaTypax IOBEpXOHb TEPTSL.
BpaxoByroun pedopmarniiinuii gedekT Momyns 3CyBY OTpHUMaHi aHaloriyHi ¢a3oBi
Jiarpamu y BUIAAKY ITEPEX01y HEepIIoro pomy.
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